1887

5 Cording, Cord Factors, and Trehalose Dimycolate

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

5 Cording, Cord Factors, and Trehalose Dimycolate, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap05-2.gif

Abstract:

This chapter has two purposes. The first is to review the chemistry, biosynthesis, biologic activity, and pathogenic function for trehalose dimycolate (TDM). The second purpose of the chapter is to review the history, genetic determinants, and biochemical basis of the cording morphology. The historical controversy about the relationship between cording and TDM has been partially clarified by recent studies, which are used as the basis for the attempts to summarize the importance of TDM and cording in mycobacterial pathogenesis. Cording must be distinguished from clumping, which is a general property of mycobacteria owing to their hydrophobic surface. Characterization of null mutants of BCG and revealed a strain that lacked the proximal cyclopropane ring of the alpha mycolic acid. Genetic analyses of the cording morphology in have identified multiple genes that are necessary for the expression of the cording morphology. Chemical characterization of the active compound revealed, a glycolipid whose common name became “cord factor” based on its derivation from Bloch’s petroleum ether extracts. A biochemical screen for the molecular basis for mycolic acid transfer from glucose monomycolate (GMM) to free trehalose identified antigen 85 A-C. Each of the proteins transferred a mycolic acid from glucose monomycolate to free trehalose or GMM to produce GMM or TDM respectively. TDM can be isolated from all mycobacteria that synthesize mycolic acids. Cording remains a reliable predictor of attenuation and in many cases is due to loss of specific cell envelope lipids.

Citation: S. Glickman M. 2008. 5 Cording, Cord Factors, and Trehalose Dimycolate, p 63-73. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch5

Key Concept Ranking

Fatty Acid Synthase
0.43005764
0.43005764
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Erdman grown without detergent and stained with auramine rhodamine. Characteristic cording in which the bacteria align along their long axes to form linear strands is visible.

Citation: S. Glickman M. 2008. 5 Cording, Cord Factors, and Trehalose Dimycolate, p 63-73. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

The chemical structure at the top is trehalose dimycolate. Esterified to the trehalose headgroup are two mycolic acids. In this example, cyclopropanated ketomycolate and alpha mycolate are pictured. The two mycolic acid positions can be occupied by any combination of mycolic acids, making TDM isolated from bacteria a complex mixture of compounds. The space-filling model is of the same TDM pictured on the top with the relevant functional groups indicated.

Citation: S. Glickman M. 2008. 5 Cording, Cord Factors, and Trehalose Dimycolate, p 63-73. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch05
1. Actor, J. K.,, M. Olsen,, R. L. Hunter, Jr., and, Y. J. Geng. 2001. Dysregulated response to mycobacterial cord factor trehalose-6,6′ -dimycolate in CD1D-/- mice. J. Interferon Cytokine Res. 21:10891096.
2. Austrian, R. 1981. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 3(Suppl.):S117.
3. Baba, T.,, Y. Natsuhara,, K. Kaneda, and, I. Yano. 1997. Granuloma formation activity and mycolic acid composition of mycobacterial cord factor. Cell. Mol. Life Sci. 53:227232.
4. Bardarov, S.,, J. Kriakov,, C. Carriere,, S. Yu,, C. Vaamonde,, R. A. McAdam,, B. R. Bloom,, G. F. Hatfull, and, W. R. Jacobs, Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:1096110966.
5. Barksdale, L., and, K. S. Kim. 1977. Mycobacterium. Bacteriol. Rev. 41:217372.
6. Barry, C. E., 3rd,, R. E. Lee,, K. Mdluli,, A. E. Sampson,, B. G. Schroeder,, R. A. Slayden, and, Y. Yuan. 1998. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res. 37:143179.
7. Batuwangala, T.,, D. Shepherd,, S. D. Gadola,, K. J. Gibson,, N. R. Zaccai,, A. R. Fersht,, G. S. Besra,, V. Cerundolo, and, E. Y. Jones. 2004. The crystal structure of human CD1b with a bound bacterial glycolipid. J. Immunol. 172:23822388.
8. Behling, C. A.,, B. Bennett,, K. Takayama, and, R. L. Hunter. 1993. Development of a trehalose 6,6′ -dimycolate model which explains cord formation by Mycobacterium tuberculosis. Infect. Immun. 61:22962303.
9. Behling, C. A.,, R. L. Perez,, M. R. Kidd,, G. W. Staton, Jr., and, R. L. Hunter. 1993. Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factoralpha by trehalose glycolipids. Ann. Clin. Lab. Sci. 23:256266.
10. Behr, M. A.,, M. A. Wilson,, W. P. Gill,, H. Salamon,, G. K. Schoolnik,, S. Rane, and, P. M. Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:15201523.
11. Bekierkunst, A. 1968. Acute granulomatous response produced in mice by trehalose-6,6-dimycolate. J. Bacteriol. 96:958961.
12. Bekierkunst, A.,, I. S. Levij,, E. Yarkoni,, E. Vilkas,, A. Adam, and, E. Lederer. 1969. Granuloma formation induced in mice by chemically defined mycobacterial fractions. J. Bacteriol. 100:95102.
13. Belisle, J. T.,, V. D. Vissa,, T. Sievert,, K. Takayama,, P. J. Brennan, and, G. S. Besra. 1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:14201422.
14. Beutler, B.,, Z. Jiang,, P. Georgel,, K. Crozat,, B. Croker,, S. Rutschmann,, X. Du, and, K. Hoebe. 2006. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large. Annu. Rev. Immunol. 24:353389.
15. Bhatt, A.,, N. Fujiwara,, K. Bhatt,, S. S. Gurcha,, L. Kremer,, B. Chen,, J. Chan,, S. A. Porcelli,, K. Kobayashi,, G. S. Besra, and, W. R. Jacobs, Jr. 2007. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl. Acad. Sci. USA 104:51575162.
16. Bloch, H.,, E. Sorkin, and, H. Erlenmeyer. 1953. A toxic lipid component of the tubercle bacillus (cord factor). I. Isolation from petroleum ether extracts of young bacterial cultures. Am. Rev. Tuberc. 67:629643.
17. Carpati, C. M.,, M. E. Astiz,, E. C. Rackow,, J. W. Kim,, Y. B. Kim, and, M. H. Weil. 1992. Monophosphoryl lipid A attenuates the effects of endotoxic shock in pigs. J. Lab. Clin. Med. 119:346353.
18. Champion, P. A.,, S. A. Stanley,, M. M. Champion,, E. J. Brown, and, J. S. Cox. 2006. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:16321636.
19. Darzins, E., and, G. Fahr. 1956. Cord-forming property, lethality and pathogenicity of mycobacteria. Dis. Chest 30:642648.
20. Dhariwal, K. R.,, Y. M. Yang,, H. M. Fales, and, M. B. Goren. 1987. Detection of trehalose monomycolate in Mycobacterium leprae grown in armadillo tissues. J. Gen. Microbiol. 133:201209.
21. Dubnau, E.,, J. Chan,, C. Raynaud,, V. P. Mohan,, M. A. Laneelle,, K. Yu,, A. Quemard,, I. Smith, and, M. Daffe. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36:630637.
22. Dutronc, Y., and, S. A. Porcelli. 2002. The CD1 family and T cell recognition of lipid antigens. Tissue Antigens 60:337353.
23. Fischer, K.,, E. Scotet,, M. Niemeyer,, H. Koebernick,, J. Zerrahn,, S. Maillet,, R. Hurwitz,, M. Kursar,, M. Bonneville,, S. H. Kaufmann, and, U. E. Schaible. 2004. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. USA 101:1068510690.
24. Fujita, Y.,, T. Naka,, M. R. McNeil, and, I. Yano. 2005. Intact molecular characterization of cord factor (trehalose 6,6’-dimycolate) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:34033416.
25. Gadola, S. D.,, N. R. Zaccai,, K. Harlos,, D. Shepherd,, J. C. Castro-Palomino,, G. Ritter,, R. R. Schmidt,, E. Y. Jones, and, V. Cerundolo. 2002. Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat. Immunol. 3:721726.
26. Gao, L. Y.,, F. Laval,, E. H. Lawson,, R. K. Groger,, A. Woodruff,, J. H. Morisaki,, J. S. Cox,, M. Daffe, and, E. J. Brown. 2003. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49:15471563.
27. Gao, Q.,, K. Kripke,, Z. Arinc,, M. Voskuil, and, P. Small. 2004. Comparative expression studies of a complex phenotype: cord formation in Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 84:188196.
28. Gavin, A. L.,, K. Hoebe,, B. Duong,, T. Ota,, C. Martin,, B. Beutler, and, D. Nemazee. 2006. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:19361938.
29. Geisel, R. E.,, K. Sakamoto,, D. G. Russell, and, E. R. Rhoades. 2005. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174:50075015.
30. Glickman, M. S. 2003. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the alpha-mycolic acid. J. Biol. Chem. 278:78447849.
31. Glickman, M. S.,, S. M. Cahill, and, W. R. Jacobs, Jr. 2001. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans cyclopropane synthetase. J. Biol. Chem. 276:22282233.
32. Glickman, M. S.,, J. S. Cox, and, W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5:717727.
33. Gonzalo Asensio, J.,, C. Maia,, N. L. Ferrer,, N. Barilone,, F. Laval,, C. Y. Soto,, N. Winter,, M. Daffe,, B. Gicquel,, C. Martin, and, M. Jackson. 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 281:13131316.
34. Hamasaki, N.,, K. Isowa,, K. Kamada,, Y. Terano,, T. Matsumoto,, T. Arakawa,, K. Kobayashi, and, I. Yano. 2000. In vivo administration of mycobacterial cord factor (Trehalose 6, 6′ -dimycolate) can induce lung and liver granulomas and thymic atrophy in rabbits. Infect. Immun. 68:37043709.
35. Hingley-Wilson, S. M.,, V. K. Sambandamurthy, and, W. R. Jacobs, Jr. 2003. Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis. Nat. Immunol. 4:949955.
36. Hsu, T.,, S. M. Hingley-Wilson,, B. Chen,, M. Chen,, A. Z. Dai,, P. M. Morin,, C. B. Marks,, J. Padiyar,, C. Goulding,, M. Gingery,, D. Eisenberg,, R. G. Russell,, S. C. Derrick,, F. M. Collins,, S. L. Morris,, C. H. King, and, W. R. Jacobs, Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100:1242012425.
37. Hunter, R. L.,, M. Olsen,, C. Jagannath, and, J. K. Actor. 2006. Trehalose 6,6’-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am. J. Pathol. 168:12491261.
38. Hunter, R. L.,, M. R. Olsen,, C. Jagannath, and, J. K. Actor. 2006. Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Ann. Clin. Lab. Sci. 36:371386.
39. Huygen, K.,, J. Content,, O. Denis,, D. L. Montgomery,, A. M. Yawman,, R. R. Deck,, C. M. DeWitt,, I. M. Orme,, S. Baldwin,, C. D’Souza,, A. Drowart,, E. Lozes,, P. Vandenbussche,, J. P. Van Vooren,, M. A. Liu, and, J. B. Ulmer. 1996. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat. Med. 2:893898.
40. Indrigo, J.,, R. L. Hunter, Jr., and, J. K. Actor. 2003. Cord factor trehalose 6,6′ -dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149:20492059.
41. Jackson, M.,, C. Raynaud,, M. A. Laneelle,, C. Guilhot,, C. Laurent-Winter,, D. Ensergueix,, B. Gicquel, and, M. Daffe. 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol. Microbiol. 31:15731587.
42. Johnson, R. S.,, G. R. Her,, J. Grabarek,, J. Hawiger, and, V. N. Reinhold. 1990. Structural characterization of monophosphoryl lipid A homologs obtained from Salmonella minnesota Re595 lipopolysaccharide. J. Biol. Chem. 265:81088116.
43. Koch, R. 1982. Classics in infectious diseases. The etiology of tuberculosis: Robert Koch. Berlin, Germany 1882. Rev. Infect. Dis. 4:12701274.
44. Lewis, K. N.,, R. Liao,, K. M. Guinn,, M. J. Hickey,, S. Smith,, M. A. Behr, and, D. R. Sherman. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J. Infect. Dis. 187:117123.
45. Lima, K. M.,, S. A. Santos,, V. M. Lima,, A. A. Coelho-Castelo,, J. M. Rodrigues, Jr., and, C. L. Silva. 2003. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus TDM-loaded PLGA microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther. 10:678685.
46. Lorian, V. 1969. Direct cord reading agar in routine mycobacteriology. Appl. Microbiol. 17:559562.
47. Lorian, V. 1966. Direct cord reading medium for isolation of mycobacteria. Appl. Microbiol. 14:603607.
48. Makinoshima, H., and, M. S. Glickman. 2005. Regulation of Mycobacterium tuberculosis cell envelope composition and virulence by intramembrane proteolysis. Nature 436:406409.
49. Makinoshima, H., and, M. S. Glickman. 2006. Site-2 proteases in prokaryotes: regulated intramembrane proteolysis expands to microbial pathogenesis. Microbes Infect. 8:18821888.
50. Masihi, K. N.,, W. Brehmer,, W. Lange,, E. Ribi, and, S. Schwartzman. 1984. Protective effect of muramyl dipeptide analogs in combination with trehalose dimycolate against aerogenic influenza virus and Mycobacterium tuberculosis infections in mice. J. Biol. Response Mod. 3:663671.
51. Masihi, K. N.,, W. Brehmer,, W. Lange,, H. Werner, and, E. Ribi. 1985. Trehalose dimycolate from various mycobacterial species induces differing anti-infectious activities in combination with muramyl dipeptide. Infect. Immun. 50:938940.
52. Middlebrook, G.,, R. J. Dobos, and, C. Pierce. 1947. Virulence and morphological characteristics of mammalian tubercle bacilli. J. Exp. Med. 86:175184.
53. Moody, D. B.,, B. B. Reinhold,, M. R. Guy,, E. M. Beckman,, D. E. Frederique,, S. T. Furlong,, S. Ye,, V. N. Reinhold,, P. A. Sieling,, R. L. Modlin,, G. S. Besra, and, S. A. Porcelli. 1997. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278:283286.
54. Moody, D. B.,, B. B. Reinhold,, V. N. Reinhold,, G. S. Besra, and, S. A. Porcelli. 1999. Uptake and processing of glycosylated mycolates for presentation to CD1b-restricted T cells. Immunol. Lett. 65:8591.
55. Moody, D. B.,, T. Ulrichs,, W. Muhlecker,, D. C. Young,, S. S. Gurcha,, E. Grant,, J. P. Rosat,, M. B. Brenner,, C. E. Costello,, G. S. Besra, and, S. A. Porcelli. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884888.
56. Noll, H., and, H. Bloch. 1955. Studies on the chemistry of the cord factor of Mycobacterium tuberculosis. J. Biol. Chem. 214:251265.
57. Noll, H.,, H. Bloch,, J. Asselineau, and, E. Lederer. 1956. The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim. Biophys. Acta 20:299309.
58. Ortalo-Magne, A.,, A. Lemassu,, M. A. Laneelle,, F. Bardou,, G. Silve,, P. Gounon,, G. Marchal, and, M. Daffe. 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178:456461.
59. Perez, E.,, S. Samper,, Y. Bordas,, C. Guilhot,, B. Gicquel, and, C. Martin. 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol. 41:179187.
60. Perez, R. L.,, J. Roman,, S. Roser,, C. Little,, M. Olsen,, J. Indrigo,, R. L. Hunter, and, J. K. Actor. 2000. Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6’-dimycolate. J. Interferon Cytokine Res. 20:795804.
61. Puech, V.,, N. Bayan,, K. Salim,, G. Leblon, and, M. Daffe. 2000. Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol. Microbiol. 35:10261041.
62. Puech, V.,, C. Guilhot,, E. Perez,, M. Tropis,, L. Y. Armitige,, B. Gicquel, and, M. Daffe. 2002. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol. Microbiol. 44:11091122.
63. Pym, A. S.,, P. Brodin,, R. Brosch,, M. Huerre, and, S. T. Cole. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46:709717.
64. Qureshi, N.,, P. Mascagni,, E. Ribi, and, K. Takayama. 1985. Monophosphoryl lipid A obtained from lipopolysaccharides of Salmonella minnesota R595. Purification of the dimethyl derivative by high performance liquid chromatography and complete structural determination. J. Biol. Chem. 260:52715278.
65. Rao, V.,, N. Fujiwara,, S. A. Porcelli, and, M. S. Glickman. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J. Exp. Med. 201:535543.
66. Rao, V.,, F. Gao,, B. Chen,, W. R. Jacobs, Jr., and, M. S. Glickman. 2006. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J. Clin. Invest. 116:16601667.
67. Rawlings, N. D.,, F. R. Morton, and, A. J. Barrett. 2006. MEROPS: the peptidase database. Nucleic Acids Res 34:D270272.
68. Rawson, R. B.,, N. G. Zelenski,, D. Nijhawan,, J. Ye,, J. Sakai,, M. T. Hasan,, T. Y. Chang,, M. S. Brown, and, J. L. Goldstein. 1997. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1:4757.
69. Retzinger, G. S.,, S. C. Meredith,, R. L. Hunter,, K. Takayama, and, F. J. Kezdy. 1982. Identification of the physiologically active state of the mycobacterial glycolipid trehalose 6,6’-dimycolate and the role of fibrinogen in the biologic activities of trehalose 6,6’-dimycolate monolayers. J. Immunol. 129:735744.
70. Ribi, E.,, D. L. Granger,, K. C. Milner,, K. Yamamoto,, S. M. Strain,, R. Parker,, R. W. Smith,, W. Brehmer, and, I. Azuma. 1982. Induction of resistance to tuberculosis in mice with defined components of mycobacteria and with some unrelated materials. Immunology 46:297305.
71. Ronning, D. R.,, T. Klabunde,, G. S. Besra,, V. D. Vissa,, J. T. Belisle, and, J. C. Sacchettini. 2000. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat. Struct. Biol. 7:141146.
72. Ronning, D. R.,, V. Vissa,, G. S. Besra,, J. T. Belisle, and, J. C. Sacchettini. 2004. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity. J. Biol. Chem. 279:3677136777.
73. Ryll, R.,, Y. Kumazawa, and, I. Yano. 2001. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—a review. Microbiol. Immunol. 45:801811.
74. Silva, C. L. 1989. Participation of tumor necrosis factor in the antitumor activity of mycobacterial trehalose dimycolate (cord factor). Braz. J. Med. Biol. Res. 22:341344.
75. Sorkin, E.,, H. Erlenmeyer, and, H. Bloch. 1952. Purification of a lipid material (‘cord factor’) obtained from young cultures of tubercle bacilli. Nature 170:124.
76. Stanley, S. A.,, S. Raghavan,, W. W. Hwang, and, J. S. Cox. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. USA 100:1300113006.
77. Strain, S. M.,, R. Toubiana,, E. Ribi, and, R. Parker. 1977. Separation of the mixture of trehalose 6,6′-dimycolates comprising the mycobacterial glycolipid fraction, “P3.” Biochem. Biophys. Res. Commun. 77:449456.
78. Sugawara, I.,, T. Udagawa,, S. C. Hua,, M. Reza-Gholizadeh,, K. Otomo,, Y. Saito, and, H. Yamada. 2002. Pulmonary granulomas of guinea pigs induced by inhalation exposure of heattreated BCG Pasteur, purified trehalose dimycolate and methyl ketomycolate. J. Med. Microbiol. 51:131137.
79. Takimoto, H.,, H. Maruyama,, K. I. Shimada,, R. Yakabe,, I. Yano, and, Y. Kumazawa. 2006. Interferon-gamma independent formation of pulmonary granuloma in mice by injections with trehalose dimycolate (cord factor), lipoarabinomannan and phosphatidylinositol mannosides isolated from Mycobacterium tuberculosis. Clin. Exp. Immunol. 144:134141.
80. Walters, S. B.,, E. Dubnau,, I. Kolesnikova,, F. Laval,, M. Daffe, and, I. Smith. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 60:312330.
81. Yarkoni, E., and, H. J. Rapp. 1977. Granuloma formation in lungs of mice after intravenous administration of emulsified trehalose-6,6′ -dimycolate (cord factor): reaction intensity depends on size distribution of the oil droplets. Infect. Immun. 18:552554.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error