1887

7 Antibiotics and New Inhibitors of the Cell Wall

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

7 Antibiotics and New Inhibitors of the Cell Wall, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap07-2.gif

Abstract:

A “golden age” of tuberculosis (TB) chemotherapy was heralded by the discovery of streptomycin in 1944. The chemotherapeutic regimen consists of an initial 2-month phase of treatment with isoniazid (INH), rifampin (RIF), pyrazinamide (PZA), and ethambutol (EMB), followed by a continuation phase of treatment lasting four months with INH and RIF. Important considerations for new agents include enhancement of penetration of infection sites, such as lung cavities, and long biological half-lives; achieving either might represent a significant advance toward shortening therapy and lead to simpler treatment regimens with improved patient compliance. The products of the locus of were identified as the targets for EMB using a strategy of target overexpression. The locus contains three genes, , , and ; the former encodes a putative regulator of and embB and is expendable for the resistant phenotype, which is copy number dependent. Pharmacoproteomic studies with H37Rv revealed that similar protein profiles were catalogued after both EMB and SQ109 treatments. A spontaneous mutant of designated mc651 is resistant to INH, but retains wild-type KatG activity. Analyses of treated sensitive bacteria using electron microscopy revealed dysfunction in cell wall biosynthesis and incomplete septation. The increased abundance of CmaA2, involved in mycolic acid biosynthesis under anaerobic conditions suggests a level of metabolic activity related to mycolic acid biosynthesis under conditions usually associated with a transition to dormancy that may be linked, resulting in modulation of mycolic acid chain length during a dormant or persistent anaerobic state.

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7

Key Concept Ranking

Fatty Acid Synthase
0.4912247
0.4912247
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Schematic representation of mycolic acid synthesis and its inhibition. De novo fatty acid biosynthesis is carried out by fatty acid synthase (FAS-I), a function that appears to be inhibited by pyrazinoic acid (POA) and analogues. Stearate is transformed to the monounsaturated oleate by the Δ9 desaturase DesA3, the target of ISO or ISO*. Medium-chain-length fatty acyl primers are extended to form meromycolic acid precursors by the enzymes of FAS-II (one of which is likely a target of ISO*). All enzymes and domains of FAS-I are shaded to signify function; from lightest to darkest, these are β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydratase, enoyl-ACP reductase (inhibited by INH/ETH/PTH NAD adducts), β-ketoacyl-ACP synthase (inhibited by TLM and possibly OSA). During elongation, meromycolic acids are variously modified. The methyltransferases responsible are likely the targets for TAC* and PA-824. Drugs: POA, pyrazinoic acid; ISO, isoxyl; ISO*, activated ISO; ETH, ethionamide; PTH, prothionamide; INH, isoniazid; -NAD signifies an adduct with nicotinamide adenine dinucleotide, TAC*, activated thiacetazone; OSA, -octylsulfonylacetamide; TLM, thiolactomycin.

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Structures of ethambutol and SQ109. Ethambutol inhibits arabinan deposition, whereas SQ109 appears to interfere with lipid biosynthesis.

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Antimycobacterial prodrug inhibitors of mycolic acid biosynthesis. (A) Formation of isonicotinoyl adducts with isoniazid (INH), ethionamide (ETH), and prothionamide (PTH). INH is peroxidatively activated through the peroxidase activity of KatG and reacts with NAD to form its adduct. ADPR represents adenosine diphosphate ribose. Similar products form after the oxidative activation of ETH by EthA. All three adducts represent tight-binding slow inhibitors of InhA. The adduct depicted is PTH-NAD, which has an extended alkyl branch over ETH-NAD. (B) Structures of the EthA-activable prodrugs isoxyl (ISO) and thiacetazone (TAC).

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Thiolactomycin may mimic malonyl-ACP in the active site of β-ketoacyl-ACP synthases. The figure illustrates the perceived similarity (shaded area) between the structure of thiolactomycin (TLM) (right) and the thiomalonate moiety of malonyl-ACP (left). The amino acid residues highlighted interact with TLM in its complex with β-ketoacyl-ACP synthase FabB, which is broadly analogous to KasA of . The numerals 3 and 5 indicate carbon atoms through which analogues of TLM have been generated (see text).

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Pyrazinamide and analogues, proposed inhibitors of fatty acid synthase (FAS-I). Pyrazinamide (PZA) is deamidated to pyrazinoic acid (POA) through pyrazinamidase (PZase). This processing at least promotes its retention in the cytoplasm but may unmask its toxicity. Pyrazinoic acid esters, represented here by -propyl pyrazinoate (n’PPA) can be hydrolyzed to produce POA. It is not known whether this modification, which presumably could be carried out by a mycobacterial esterase, is required to activate the drug.

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

The structures of novel agents targeting mycolic acid biosynthesis. The structures of -octylsulfonylacetamide (OSA) and nitroimidazopyran PA-824, which affect mycolic acid biosynthesis, are illustrated. OSA mimics the proposed transition state (TS) generated during the Claisen-like condensation reaction.

Citation: Dover L, Alderwick L, Bhowruth V, Brown A, Kremer L, Besra G. 2008. 7 Antibiotics and New Inhibitors of the Cell Wall, p 107-131. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch07
1. Andries, K.,, P. Verhasselt,, J. Guillemont,, H. W. Gohlmann,, J. M. Neefs,, H. Winkler,, J. Van Gestel,, P. Timmerman,, M. Zhu,, E. Lee,, P. Williams,, D. de Chaffoy,, E. Huitric,, S. Hoffner,, E. Cambau,, C. Truffot-Pernot,, N. Lounis, and, V. Jarlier. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223227.
2. Argyrou, A.,, L. Jin,, L. Siconilfi-Baez,, R. H. Angeletti, and, J. S. Blanchard. 2006a. Proteome-wide profiling of isoniazid targets in Mycobacterium tuberculosis. Biochemistry 45:1394713953.
3. Argyrou, A.,, M. W. Vetting,, B. Aladegbami, and, J. S. Blanchard. 2006b. Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid. Nat. Struct. Mol. Biol. 13:408413.
4. Banerjee, A.,, E. Dubnau,, A. Quémard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle, and, W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227230.
5. Banerjee, A.,, M. Sugantino,, J. C. Sacchettini, and, W. R. Jacobs, Jr. 1998. The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144:26972704.
6. Barclay, W. R., and, E. Winberg. 1964. Bactericidal effect of isoniazid as a function of time. Am. Rev. Respir. Dis. 90:749753.
7. Barry, C. E.,, R. A. Slayden, and, K. Mludli. 1998. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis. Drug Resist. Update 1:128134.
8. Bartz, Q. R.,, J. Ehrlich,, J. D. Mold,, M. A. Penner, and, R. M. Smith. 1951. Viomycin, a new tuberculostatic antibiotic. Am. Rev. Tuberc. 63:46.
9. Baulard, A. R.,, J. C. Betts,, J. Engohang-Ndong,, S. Quan,, R. A. McAdam,, P. J. Brennan,, C. Locht, and, G. S. Besra. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J. Biol. Chem. 275:2832628331.
10. Belanger, A. E.,, G. S. Besra,, M. E. Ford,, K. Mikusová,, J. T. Belisle,, P. J. Brennan, and, J. M. Inamine. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc. Natl. Acad. Sci. USA 93:1191911924.
11. Bermudez, L. E.,, R. Reynolds,, P. Kolonoski,, P. Aralar,, C. B. Inderlied, and, L. S. Young. 2003. Thiosemicarbazole (thiacetazone-like) compound with activity against Mycobacterium avium in mice. Antimicrob. Agents Chemother. 47:26852687.
12. Bernstein, J.,, W. A. Lott,, B. A. Steinberg, and, H. L. Yale. 1952. Chemotherapy of experimental tuberculosis. V. Isonicotinic acid hydrazide (nydrazid) and related compounds. Am. Rev. Tuberc. 65:357364.
13. Bertrand, T.,, N. A. J. Eady,, J. N. Jones,, J. M. Nagy,, B. JamartGregoire,, E. L. Raven, and, K. A. Brown. 2004. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem. 279:3899138999.
14. Bhowruth, V.,, A. K. Brown,, R. C. Reynolds,, G. D. Coxon,, S. P. Mackay,, D. E. Minnikin, and, G. S. Besra. 2006. Symmetrical and unsymmetrical analogues of isoxyl; active agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 16:47434747.
15. Boshoff, H. I., and, V. Mizrahi. 2000. Expression of Mycobacterium smegmatis pyrazinamidase in Mycobacterium tuberculosis confers hypersensitivity to pyrazinamide and related amides. J. Bacteriol. 182:54795485.
16. Boshoff, H. I.,, V. Mizrahi, and, C. E. Barry III. 2002. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 184:21672172.
17. Boshoff, H. I.,, T. G. Myers,, B. R. Copp,, M. R. McNeil,, M. A. Wilson, and, C. E. Barry III. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem. 279:4017440184.
18. Britton, L. N., and, A. J. Markovetz. 1977. A novel ketone monooxygenase from Pseudomonas cepacia. Purification and properties. J. Biol. Chem. 252:85618566.
19. Cavalieri, S. J.,, J. R. Biehle, and, W. E. Sanders, Jr. 1995. Synergistic activities of clarithromycin and antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 39:15421545.
20. Chen, P.,, J. Gearhart,, M. Protopopova,, L. Einck, and, C. A. Nacy. 2006. Synergistic interactions of SQ109, a new ethylene diamine, with front-line antitubercular drugs in vitro. J. Antimicrob. Chemother. 58:332337.
21. Choi, K. H.,, L. Kremer,, G. S. Besra, and, C. O. Rock. 2000. Identification and substrate specificity of beta-ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem. 275:2820128207.
22. Chorine, V. 1945. Action de l’amide nicotinique sur les bacilless du genre Mycobacterium. C. R. Acad. Sci. 220:150151.
23. Cohn, M. L.,, C. Kovitz,, U. Oda, and, G. Middlebrook. 1954. Studies on isoniazid and tubercle bacilli. 2. The growth requirements, catalase activities, and pathogenic properties of isoniazid-resistant mutants. Am. Rev. Tuberc. 70:641664.
24. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward, and, B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
25. Crowle, A. J.,, R. S. Mitchell, and, T. L. Petty. 1963. The effectiveness of a thiocarbanilide (Isoxyl) as a therapeutic drug in mouse tuberculosis. Am. Rev. Respir. Dis. 88:716717.
26. Crowle, A. J., and, M. H. May. 1990. Inhibition of tubercle bacilli in cultured human macrophages by chloroquine used alone and in combination with streptomycin, isoniazid, pyrazinamide, and two metabolites of vitamin D3. Antimicrob. Agents Chemother. 34:22172222.
27. Crowle, A. J.,, R. Dahl,, E. Ross, and, M. H. May. 1991. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect. Immun. 59:18231831.
28. Cynamon, M. H.,, R. Gimi,, F. Gyenes,, C. A. Sharpe,, K. E. Bergmann,, H. J. Han,, L. B. Gregor,, R. Rapolu,, G. Luciano, and, J. T. Welch. 1995. Pyrazinoic acid esters with broad spectrum in vitro antimycobacterial activity. J. Med. Chem. 38:39023907.
29. Cynamon, M. H.,, R. J. Speirs, and, J. T. Welch. 1998. In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob. Agents Chemother. 42:462463.
30. Davidson, L. A., and, K. Takayama. 1979. Isoniazid inhibition of the synthesis of monounsaturated long-chain fatty acids in Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 16:104105.
31. Davidson, P. T., and, H. Q. Le. 1992. Drug treatment of tuberculosis-1992. Drugs 43:651673.
32. De Logu, A.,, V. Onnis,, B. Saddi,, C. Congiu,, M. L. Schivo, and, M. T. Cocco. 2002. Activity of a new class of isonicotinoylhydrazones used alone and in combination with isoniazid, rifampicin, ethambutol, para-aminosalicylic acid and clofazimine against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 49:275282.
33. DeBarber, A. E.,, K. Mdluli,, M. Bosman,, L. G. Bekker, and, C. E. Barry III. 2000. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 97:96779682.
34. Deng, L.,, K. Mikusová,, K. G. Robuck,, M. Scherman,, P. J. Brennan, and, M. R. McNeil. 1995. Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother. 39:694701.
35. Dessen, A.,, A. Quémard,, J. S. Blanchard,, W. R. Jacobs, Jr., and, J. C. Sacchettini. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267:16381641.
36. Dong, X.,, S. Bhamidi,, M. Scherman,, Y. Xin, and, M. R. McNeil. 2006. Development of a quantitative assay for mycobacterial endogenous arabinase and ensuing studies of arabinase levels and arabinan metabolism in Mycobacterium smegmatis. Appl. Environ. Microbiol. 72:26012605.
37. Douglas, J. D.,, S. J. Senior,, C. Morehouse,, B. Phetsukiri,, I. B. Campbell,, G. S. Besra, and, D. E. Minnikin. 2002. Analogues of thiolactomycin: potential drugs with enhanced anti-mycobacterial activity. Microbiology 148:31013109.
38. Dover, L. G.,, P. E. Corsino,, I. R. Daniels,, S. L. Cocklin,, V. Tatituri,, G. S. Besra, and, K. Futterer. 2004. Crystal structure of the TetR/CamR family repressor Mycobacterium tuberculosis EthR implicated in ethionamide resistance. J. Mol. Biol. 340:10951105.
39. Dover, L. G.,, A. Alahari,, P. Gratraud,, J. M. Gomes,, V. Bhowruth,, R. C. Reynolds,, G. S. Besra, and, L. Kremer. 2007. EthA, a common activator of thiocarbamide-containing drugs acting on different mycobacterial targets. Antimicrob. Agents Chemother. 51:10551063.
40. Dubnau, E.,, J. Chan,, C. Raynaud,, V. P. Mohan,, M. A. Laneelle,, K. Yu,, A. Quemard,, I. Smith, and, M. Daffe. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36:630637.
41. Ducasse-Cabanot, S.,, M. Cohen-Gonsaud,, H. Marrakchi,, M. Nguyen,, D. Zerbib,, J. Bernadou,, M. Daffé,, G. Labesse, and, A. Quémard. 2004. In vitro inhibition of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA by isoniazid. Antimicrob. Agents Chemother. 48:242249.
42. Dye, C.,, C. J. Watt,, D. M. Bleed,, S. M. Hosseini, and, M. C. Raviglione. 2005. Evolution of tuberculosis control and prospects for reducing tuberculosis incidence, prevalence, and deaths globally. J. A. M. A. 293:27672775.
43. Eisman, P. C.,, E. A. Konopka, and, R. L. Mayer. 1954. Antituberculous activity of substituted thioureas. II. Activity in mice. Am. Rev. Tuberc. 70:121129.
44. Engohang-Ndong, J.,, D. Baillat,, M. Aumercier,, F. Bellefontaine,, G. S. Besra,, C. Locht, and, A. R. Baulard. 2004. EthR, a repressor of the TetR/CamR family implicated in ethionamide resistance in mycobacteria, octamerizes cooperatively on its operator. Mol. Microbiol. 51:175188.
45. Escalante, P.,, S. Ramaswamy,, H. Sanabria,, H. Soini,, X. Pan,, O. Valiente-Castillo, and, J. M. Musser. 1998. Genotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from Peru. Tuber. Lung Dis. 79:111118.
46. Escuyer, V. E.,, M. A. Lety,, J. B. Torrelles,, K. H. Khoo,, J. B. Tang,, C. D. Rithner,, C. Frehel,, M. R. McNeil,, P. J. Brennan, and, D. Chatterjee. 2001. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276:4885448862.
47. Fattorini, L.,, E. Iona,, M. L. Ricci,, O. F. Thoresen,, G. Orru,, M. R. Oggioni,, E. Tortoli,, C. Piersimoni,, P. Chiaradonna,, M. Tronci,, G. Pozzi, and, G. Orefici. 1999. Activity of 16 antimicrobial agents against drug-resistant strains of Mycobacterium tuberculosis. Microb. Drug Resist. 5:265270.
48. Forbes, M.,, N. A. Kuck, and, E. A. Peets. 1965. Effect of ethambutol on nucleic acid metabolism in Mycobacterium smegmatis and its reversal bypolyamines and divalent cations. J. Bacteriol. 89:12991305.
49. Fox, H. H. 1952. The chemical approach to the control of tuberculosis. Science 115:129134.
50. Fraaije, M. W.,, N. M. Kamerbeek,, A. J. Heidekamp,, R. Fortin, and, D. B. Janssen. 2004. The prodrug activator EtaA from Mycobacterium tuberculosis is a Baeyer-Villiger monooxygenase. J. Biol. Chem. 279:33543360.
51. Frenois, F.,, J. Engohang-Ndong,, C. Locht,, A. R. Baulard, and, V. Villeret. 2004. Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol. Cell 16:301307.
52. Gao, L. Y.,, F. Laval,, E. H. Lawson,, R. K. Groger,, A. Woodruff,, J. H. Morisaki,, J. S. Cox,, M. Daffé, and, E. J. Brown. 2003. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol. Microbiol. 49:15471563.
53. Glickman, M. S.,, S. M. Cahill, and, W. R. Jacobs, Jr. 2001. The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J. Biol. Chem. 276:22282233.
54. Hamada, S.,, T. Fujiwara,, H. Shimauchi,, T. Ogawa,, T. Nishihara,, T. Koga,, T. Nehashi, and, T. Matsuno. 1990. Antimicrobial activities of thiolactomycin against gram-negative anaerobes associated with periodontal disease. Oral Microbiol. Immunol. 5:340345.
55. Hanoulle, X.,, J. M. Wieruszeski,, P. Rousselot-Pailley,, I. Landrieu,, A. R. Baulard, and, G. Lippens. 2005. Monitoring of the ethionamide pro-drug activation in mycobacteria by 1H high resolution magic angle spinning NMR. Biochem. Biophys. Res. Commun. 331:452458.
56. Hanoulle, X.,, J. M. Wieruszeski,, P. Rousselot-Pailley,, I. Landrieu,, C. Locht,, G. Lippens, and, A. R. Baulard. 2006. Selective intracellular accumulation of the major metabolite issued from the activation of the prodrug ethionamide in mycobacteria. J. Antimicrob. Chemother. 58:768772.
57. Harries, A. D.,, R. Chimzizi, and, R. Zachariah. 2006. Safety, effectiveness, and outcomes of concomitant use of highly active antiretroviral therapy with drugs for tuberculosis in resource-poor settings. Lancet 367:944945.
58. Hayashi, T.,, O. Yamamoto,, H. Sasaki,, A. Kawaguchi, and, H. Okazaki. 1983. Mechanism of action of the antibiotic thiolactomycin inhibition of fatty acid synthesis of Escherichia coli. Biochem. Biophys. Res. Commun. 115:11081113.
59. Hayashi, T.,, O. Yamamoto,, H. Sasaki,, H. Okazaki, and, A. Kawaguchi. 1984. Inhibition of fatty acid synthesis by the antibiotic thiolactomycin. J. Antibiot. (Tokyo) 37:14561461.
60. Hazbón, M. H.,, M. Bobadilla del Valle,, M. I. Guerrero,, M. Varma-Basil,, I. Filliol,, M. Cavatore,, R. Colangeli,, H. Safi,, H. Billman-Jacobe,, C. Lavender,, J. Fyfe,, L. Garcia-Garcia,, A. Davidow,, M. Brimacombe,, C. I. Leon,, T. Porras,, M. Bose,, F. Chaves,, K. D. Eisenach,, J. Sifuentes-Osornio,, A. Ponce de Leon,, M. D. Cave, and, D. Alland. 2005. Role of embB codon 306 mutations in Mycobacterium tuberculosis revisited: a novel association with broad drug resistance and IS6110 clustering rather than ethambutol resistance. Antimicrob. Agents Chemother. 49:37943802.
61. Hedgecock, L. W., and, I. O. Faucher. 1957. Relation of pyrogallol-peroxidative activity to isoniazid resistance in Mycobacterium tuberculosis. Am. Rev. Tuberc. Pulmon. Dis. 75:670674.
62. Heifets, L., and, P. Lindholm-Levy. 1992. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis. 145:12231225.
63. Heifets, L. B.,, P. J. Lindholm-Levy, and, M. Flory. 1990. Thiacetazone: in vitro activity against Mycobacterium avium and M. tuberculosis. Tubercle 71:287291.
64. Herr, E. B.,, M. E. Haney,, G. E. Pittenger, and, C. E. Higgens. 1960. Isolation and characterisation of a new peptide antibiotic. Proc. Indiana Acad. Sci. 69:134.
65. Heym, B.,, Y. Zhang,, S. Poulet,, D. Young, and, S. T. Cole. 1993. Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 175:42554259.
66. Heym, B.,, P. M. Alzari,, N. Honoré, and, S. T. Cole. 1995. Missense mutations in the catalase-peroxidase gene, KatG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol. Microbiol. 15:235245.
67. Houston, S., and, A. Fanning. 1994. Current and potential treatment of tuberculosis. Drugs 48:689708.
68. Isola, D.,, M. Pardini,, F. Varaine,, S. Niemann,, S. Rusch-Gerdes,, L. Fattorini,, G. Orefici,, F. Meacci,, C. Trappetti,, M. Rinaldo Oggioni, and, G. Orru. 2005. A pyrosequencing assay for rapid recognition of SNPs in Mycobacterium tuberculosis embB306 region. J. Microbiol. Methods 62:113120.
69. Jagannath, C.,, V. M. Reddy, and, P. R. Gangadharam. 1995. Enhancement of drug susceptibility of multidrug resistant strains of Mycobacterium tuberculosis by ethambutol and dimethyl sulphoxide. J. Antimicrob. Chemother. 35:381390.
70. Jenner, P. J., and, S. E. Smith. 1987. Plasma levels of ethionamide and prothionamide in a volunteer following intravenous and oral dosages. Lepr. Rev. 58:3137.
71. Jia, L.,, L. Coward,, G. S. Gorman,, P. E. Noker, and, J. E. Tomaszewski. 2005a. Pharmacoproteomic effects of isoniazid, ethambutol, and N-geranyl-N’-(2-adamantyl)ethane-1,2-diamine (SQ109) on Mycobacterium tuberculosis H37Rv. J. Pharmacol. Exp. Ther. 315:905911.
72. Jia, L.,, J. E. Tomaszewski,, C. Hanrahan,, L. Coward,, P. Noker,, G. Gorman,, B. Nikonenko, and, M. Protopopova. 2005b. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br. J. Pharmacol. 144:8087.
73. Jia, L.,, P. E. Noker,, L. Coward,, G. S. Gorman,, M. Protopopova, and, J. E. Tomaszewski. 2006. Interspecies pharmacokinetics and in vitro metabolism of SQ109. Br. J. Pharmacol. 147:476485.
74. Johnsson, K.,, D. S. King, and, P. G. Schultz. 1995. Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. JACS 117:50095010.
75. Jones, P. B.,, N. M. Parrish,, T. A. Houston,, A. Stapon,, N. P. Bansal,, J. D. Dick, and, C. A. Townsend. 2000. A new class of antituberculosis agents. J. Med. Chem. 43:33043314.
76. Jones, S. M.,, J. E. Urch,, R. Brun,, J. L. Harwood,, C. Berry, and, I. H. Gilbert. 2004. Analogues of thiolactomycin as potential antimalarial and anti-trypanosomal agents. Bioorg. Med. Chem. 12:683692.
77. Kamal, A.,, A. A. Shaik,, R. Sinha,, J. S. Yadav, and, S. K. Arora. 2005. Antitubercular agents. Part 2: New thiolactomycin analogues active against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 15:19271929.
78. Kikuchi, S.,, D. L. Rainwater, and, P. E. Kolattukudy. 1992. Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. Arch. Biochem. Biophys. 295:318326.
79. Kilburn, J. O., and, J. Greenberg. 1977. Effect of ethambutol on the viable cell count in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 11:534540.
80. Kilburn, J. O., and, K. Takayama. 1981. Effects of ethambutol on accumulation and secretion of trehalose mycolates and free mycolic acid in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 20:401404.
81. Kilburn, J. O.,, K. Takayama,, E. L. Armstrong, and, J. Greenberg. 1981. Effects of ethambutol on phospholipid metabolism in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 19:346348.
82. Kim, P.,, Y. M. Zhang,, G. Shenoy,, Q. A. Nguyen,, H. I. Boshoff,, U. H. Manjunatha,, M. B. Goodwin,, J. Lonsdale,, A. C. Price,, D. J. Miller,, K. Duncan,, S. W. White,, C. O. Rock,, C. E. Barry, and, C. S. Dowd. 2006. Structure-activity relationships at the 5-position of thiolactomycin: An intact (5R)-isoprene unit is required for activity against the condensing enzymes from Mycobacterium tuberculosis and Escherichia coli. J. Med. Chem. 49:159171.
83. Konno, K.,, F. M. Feldmann, and, W. McDermott. 1967. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 95:461469.
84. Kremer, L.,, J. D. Douglas,, A. R. Baulard,, C. Morehouse,, M. R. Guy,, D. Alland,, L. G. Dover,, J. H. Lakey,, W. R. Jacobs,, P. J. Brennan,, D. E. Minnikin, and, G. S. Besra. 2000. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275:1685716864.
85. Kremer, L.,, L. G. Dover,, H. R. Morbidoni,, C. Vilchèze,, W. N. Maughan,, A. Baulard,, S. C. Tu,, N. Honoré,, V. Deretic,, J. C. Sacchettini,, C. Locht,, W. R. Jacobs, Jr., and, G. S. Besra. 2003. Inhibition of InhA activity, but not KasA activity, induces formation of a KasA-containing complex in mycobacteria. J. Biol. Chem. 278:2054720554.
86. Kurosawa, H. 1952. Studies on the antibiotic substances from actinomycetes. XXIII. The isolation of an antibiotic produced by strain of Streptomyces “K 30.” J. Antibiot. Ser. B 5:682688.
87. Kwara, A.,, T. P. Flanigan, and, E. J. Carter. 2005. Highly active antiretroviral therapy (HAART) in adults with tuberculosis: current status. Int. J. Tuberc. Lung Dis. 9:248257.
88. Lambelin, G. 1970. Pharmacology and toxicology of Isoxyl. Antibiot. Chemother. 16:8495.
89. Larsen, M. H.,, C. Vilchèze,, L. Kremer,, G. S. Besra,, L. Parsons,, M. Salfinger,, L. Heifets,, M. H. Hazbon,, D. Alland,, J. C. Sacchettini, and, W. R. Jacobs, Jr. 2002. Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol. Microbiol. 46:453466.
90. Lee, A. S.,, S. N. Othman,, Y. M. Ho, and, S. Y. Wong. 2004. Novel mutations within the embB gene in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48:44474449.
91. Lee, H. Y.,, H. J. Myoung,, H. E. Bang,, G. H. Bai,, S. J. Kim,, J. D. Kim, and, S. N. Cho. 2002. Mutations in the embB locus among Korean clinical isolates of Mycobacterium tuberculosis resistant to ethambutol. Yonsei Med. J. 43:5964.
92. Lee, R. E.,, M. Protopopova,, E. Crooks,, R. A. Slayden,, M. Terrot, and, C. E. Barry III. 2003. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem. 5:172187.
93. Lehmann, J. 1946. p-aminosalicylic acid in the treatment of tuberculosis. Lancet 1:1516.
94. Lenaerts, A. J.,, V. Gruppo,, K. S. Marietta,, C. M. Johnson,, D. K. Driscoll,, N. M. Tompkins,, J. D. Rose,, R. C. Reynolds, and, I. M. Orme. 2005. Preclinical testing of the nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Antimicrob. Agents Chemother. 49:22942301.
95. Lety, M. A.,, S. Nair,, P. Berche, and, V. Escuyer. 1997. A single point mutation in the embB gene is responsible for resistance to ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 41:26292633.
96. Liebermann, D.,, M. Moyeux,, N. Rist, and, F. Grumbach. 1956. Sur le preparation de nouveaux thioamides pyridiniques acitifs dans la tuberculose exerimentale. C. R. Acad. Sci. 242:24092412.
97. Liu, Z. Z.,, X. D. Guo,, L. E. Straub,, G. Erdos,, R. J. Prankerd,, R. J. Gonzalez-Rothi, and, H. Schreier. 1991. Lipophilic N-acylpyrazinamide derivatives: synthesis, physicochemical characterization, liposome incorporation, and in vitro activity against Mycobacterium avium-intracellulare. Drug Des. Discov. 8:5767.
98. Lukat-Rodgers, G. S.,, N. L. Wengenack,, F. Rusnak, and, K. R. Rodgers. 2000. Spectroscopic comparison of the heme active sites in WT KatG and its S315T mutant. Biochemistry 39:99849993.
99. Mackaness, G. B., and, N. Smith. 1953. The bactericidal action of isoniazid, streptomycin, and terramycin on extracellular and intracellular tubercle bacilli. Am. Rev. Tuberc. 67:322340.
100. Maggi, N.,, C. R. Pasqualucci,, R. Ballotta, and, P. Sensi. 1966. Rifampicin: a new orally active rifamycin. Chemotherapy 11:285292.
101. Malone, L.,, A. Schurr,, H. Lindh,, D. McKenzie,, J. S. Kiser, and, J. H. Williams. 1952. The effect of pyrazinamide (aldinamide) on experimental tuberculosis in mice. Am. Rev. Tuberc. 65:511518.
102. Manjunatha, U. H.,, H. Boshoff,, C. S. Dowd,, L. Zhang,, T. J. Albert,, J. E. Norton,, L. Daniels,, T. Dick,, S. S. Pang, and, C. E. Barry III. 2006. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103:431436.
103. Marrakchi, H.,, S. Ducasse,, G. Labesse,, H. Montrozier,, E. Margeat,, L. Emorine,, X. Charpentier,, M. Daffé, and, A. Quémard. 2002. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology 148:951960.
104. Marttila, H. J.,, H. Soini,, E. Eerola,, E. Vyshnevskaya,, B. I. Vyshnevskiy,, T. F. Otten,, A. V. Vasilyef, and, M. K. Viljanen. 1998. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob. Agents Chemother. 42:24432445.
105. McCarthy, C. 1971. Utilization of palmitic acid by Mycobacterium avium. Infect. Immun. 4:199204.
106. McClatchy, J. K.,, A. Y. Tsang, and, M. S. Cernich. 1981. Use of pyrazinamidase activity on Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob. Agents Chemother. 20:556557.
107. McCune, R. M., Jr.,, W. McDermott, and, R. Tompsett. 1956. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J. Exp. Med. 104:763802.
108. McDermott, W., and, R. Tompsett. 1954. Activation of pyrazinamide and nicotinamide in acidic environments in vitro. Am. Rev. Tuberc. 70:748754.
109. McFadden, J. M.,, G. L. Frehywot, and, C. A. Townsend. 2002. A flexible route to (5R)-thiolactomycin, a naturally occurring inhibitor of fatty acid synthesis. Org. Lett. 4:38593862.
110. Mdluli, K.,, D. R. Sherman,, M. J. Hickey,, B. N. Kreiswirth,, S. Morris,, C. K. Stover, and, C. E. Barry III. 1996. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J. Infect. Dis. 174:10851090.
111. Mdluli, K.,, R. A. Slayden,, Y. Zhu,, S. Ramaswamy,, X. Pan,, D. Mead,, D. D. Crane,, J. M. Musser, and, C. E. Barry III. 1998. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 280:16071610.
112. Middlebrook, G. 1954. Isoniazid-resistance and catalase activity of tubercle bacilli-a preliminary report. Am. Rev. Tuberc. 69:471472.
113. Middlebrook, G.,, M. L. Cohn, and, W. B. Schaefer. 1954. Studies on isoniazid and tubercle bacilli. 3. The isolation, drug-susceptibility, and catalase-testing of tubercle bacilli from isoniazidtreated patients. Am. Rev. Tuberc. 70:852872.
114. Miesel, L.,, T. R. Weisbrod,, J. A. Marcinkeviciene,, R. Bittman, and, W. R. Jacobs, Jr. 1998. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J. Bacteriol. 180:24592467.
115. Mikusová, K.,, R. A. Slayden,, G. S. Besra, and, P. J. Brennan. 1995. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob. Agents Chemother. 39:24842489.
116. Mills, J. A.,, K. Motichka,, M. Jucker,, H. P. Wu,, B. C. Uhlik,, R. J. Stern,, M. S. Scherman,, V. D. Vissa,, F. Pan,, M. Kundu,, Y. F. Ma, and, M. McNeil. 2004. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J. Biol. Chem. 279:4354043546.
117. Mitchison, D. A. 1979. Basic mechanisms of chemotherapy. Chest 76:771781.
118. Mokrousov, I.,, T. Otten,, B. Vyshnevskiy, and, O. Narvskaya. 2002. Detection of embB306 mutations in ethambutol-susceptible clinical isolates of Mycobacterium tuberculosis from Northwestern Russia: implications for genotypic resistance testing. J. Clin. Microbiol. 40:38103813.
119. Mokrousov, I.,, N. V. Bhanu,, P. N. Suffys,, G. V. Kadival,, S. F. Yap,, S. N. Cho,, A. M. Jordaan,, O. Narvskaya,, U. B. Singh,, H. M. Gomes,, H. Lee,, S. P. Kulkarni,, K. C. Lim,, B. K. Khan,, D. van Soolingen,, T. C. Victor, and, L. M. Schouls. 2004. Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates. J. Microbiol. Methods 57:323335.
120. Moore-Gillon, J. 2001. Multidrug-resistant tuberculosis: this is the cost. Ann. N. Y. Acad. Sci. 953:233240.
121. Musser, J. M.,, V. Kapur,, D. L. Williams,, B. N. Kreiswirth,, D. vanSoolingen, and, J. D. A. vanEmbden. 1996. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and -susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: Restricted array of mutations associated with drug resistance. J. Infect. Dis. 173:196202.
122. Ng, V. H.,, J. S. Cox,, A. O. Sousa,, J. D. MacMicking, and, J. D. McKinney. 2004. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol. 52:12911302.
123. Nishida, I.,, A. Kawaguchi, and, M. Yamada. 1986. Effect of thiolactomycin on the individual enzymes of the fatty acid synthase system in Escherichia coli. J. Biochem. (Tokyo) 99:14471454.
124. Noto, T.,, S. Miyakawa,, H. Oishi,, H. Endo, and, H. Okazaki. 1982. Thiolactomycin, a new antibiotic. III. In vitro antibacterial activity. J. Antibiot. (Tokyo) 35:401410.
125. Offe, H. A.,, W. Sieken, and, G. Domagk. 1952. The tuberculostatic activity of hydrazine derivatives from pyridine carboxylic acids and carbonyl compounds. Z. Naturforsch. 7:462468.
126. Oishi, H.,, T. Noto,, H. Sasaki,, K. Suzuki,, T. Hayashi,, H. Okazaki,, K. Ando, and, M. Sawada. 1982. Thiolactomycin, a new antibiotic. I. Taxonomy of the producing organism, fermentation and biological properties. J. Antibiot. 35:391395.
127. Okuyama, H.,, T. Kankura, and, S. Nojima. 1967. Positional distribution of fatty acids in phospholipids from Mycobacteria. J. Biochem. (Tokyo) 61:732737.
128. Parrish, N. M.,, T. Houston,, P. B. Jones,, C. Townsend, and, J. D. Dick. 2001. In vitro activity of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its effects on lipid and mycolic acid synthesis. Antimicrob. Agents Chemother. 45:11431150.
129. Parrish, N. M.,, C. G. Ko,, M. A. Hughes,, C. A. Townsend, and, J. D. Dick. 2004. Effect of N-octanesulphonylacetamide (OSA) on ATP and protein expression in Mycobacterium bovis BCG. J. Antimicrob. Chemother. 54:722729.
130. Parsons, L. M.,, M. Salfinger,, A. Clobridge,, J. Dormandy,, L. Mirabello,, V. L. Polletta,, A. Sanic,, O. Sinyavskiy,, S. C. Larsen,, J. Driscoll,, G. Zickas, and, H. W. Taber. 2005. Phenotypic and molecular characterization of Mycobacterium tuberculosis isolates resistant to both isoniazid and ethambutol. Antimicrob. Agents Chemother. 49:22182225.
131. Phetsuksiri, B.,, A. R. Baulard,, A. M. Cooper,, D. E. Minnikin,, J. D. Douglas,, G. S. Besra, and, P. J. Brennan. 1999. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob. Agents Chemother. 43:10421051.
132. Phetsuksiri, B.,, M. Jackson,, H. Scherman,, M. McNeil,, G. S. Besra,, A. R. Baulard,, R. A. Slayden,, A. E. DeBarber,, C. E. Barry III,, M. S. Baird,, D. C. Crick, and, P. J. Brennan. 2003. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem. 278:5312353130.
133. Picone, A.,, M. Di Vincenzo, and, C. Russo. 1965. 4,4 Diisoamyloxythiocarbanilide (isoxyl) in the therapy of chronic pulmonary tuberculosis resistant to antibiotics and the usual chemotherapeutic agents. G. Ital. Chemioter. 12:99106. (In Italian.)
134. Pierattelli, R.,, L. Banci,, N. A. J. Eady,, J. Bodiguel,, J. N. Jones,, P. C. E. Moody,, E. L. Raven,, B. Jamart-Gregoire, and, K. A. Brown. 2004. Enzyme-catalyzed mechanism of isoniazid activation in class I and class III peroxidases. J. Biol. Chem. 279:3900039009.
135. Plinke, C.,, S. Rusch-Gerdes, and, S. Niemann. 2006. Significance of mutations in embB codon 306 for prediction of ethambutol resistance in clinical Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 50:19001902.
136. Poso, H.,, L. Paulin, and, E. Brander. 1983. Specific inhibition of spermidine synthase from mycobacteria by ethambutol. Lancet 2:1418.
137. Post, F. A.,, P. A. Willcox,, B. Mathema,, L. M. Steyn,, K. Shean,, S. V. Ramaswamy,, E. A. Graviss,, E. Shashkina,, B. N. Kreiswirth, and, G. Kaplan. 2004. Genetic polymorphism in Mycobacterium tuberculosis isolates from patients with chronic multidrug-resistant tuberculosis. J. Infect. Dis. 190:99106.
138. Price, A. C.,, K. H. Choi,, R. J. Heath,, Z. Li,, S. W. White, and, C. O. Rock. 2001. Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J. Biol. Chem. 276:65516559.
139. Protopopova, M.,, C. Hanrahan,, B. Nikonenko,, R. Samala,, P. Chen,, J. Gearhart,, L. Einck, and, C. A. Nacy. 2005. Identification of a new antitubercular drug candidate, SQ109, from a combinatorial library of 1,2-ethylenediamines. J. Antimicrob. Chemother. 56:968974.
140. Pym, A. S.,, P. Domenech,, N. Honoré,, J. Song,, V. Deretic, and, S. T. Cole. 2001. Regulation of catalase-peroxidase (KatG) expression, isoniazid sensitivity and virulence by furA of Mycobacterium tuberculosis. Mol. Microbiol. 40:879889.
141. Qian, L., and, P. R. Ortiz de Montellano. 2006. Oxidative activation of thiacetazone by the Mycobacterium tuberculosis flavin monooxygenase EtaA and human FMO1 and FMO3. Chem. Res. Toxicol. 19:443449.
142. Quémard, A.,, C. Lacave, and, G. Lanéelle. 1991. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob. Agents Chemother. 35:10351039.
143. Quémard, A.,, J. C. Sacchettini,, A. Dessen,, C. Vilchèze,, R. Bittman,, W. R. Jacobs, Jr., and, J. S. Blanchard. 1995. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 34:82358241.
144. Quémard, A.,, A. Dessen,, M. Sugantino,, W. R. Jacobs,, J. C. Sacchettini, and, J. S. Blanchard. 1996. Binding of catalaseperoxidase-activated isoniazid to wild-type and mutant Myco- bacterium tuberculosis enoyl-ACP reductases. JACS 118:15611562.
145. Ramaswamy, S. V.,, A. G. Amin,, S. Goksel,, C. E. Stager,, S. J. Dou,, H. El Sahly,, S. L. Moghazeh,, B. N. Kreiswirth, and, J. M. Musser. 2000. Molecular genetic analysis of nucleotide polymorphisms associated with ethambutol resistance in human isolates of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44:326336.
146. Ramaswamy, S. V.,, S. J. Dou,, A. Rendon,, Z. Yang,, M. D. Cave, and, E. A. Graviss. 2004. Genotypic analysis of multidrug-resistant Mycobacterium tuberculosis isolates from Monterrey, Mexico. J. Med. Microbiol. 53:107113.
147. Rastogi, N.,, K. S. Goh,, L. Horgen, and, W. W. Barrow. 1998. Synergistic activities of antituberculous drugs with cerulenin and trans-cinnamic acid against Mycobacterium tuberculosis. FEMS Immunol. Med. Microbiol. 21:149157.
148. Rawat, R.,, A. Whitty, and, P. J. Tonge. 2003. The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: adduct affinity and drug resistance. Proc. Natl. Acad. Sci. USA 100:1388113886.
149. Rinder, H.,, K. T. Mieskes,, E. Tortoli,, E. Richter,, M. Casal,, M. Vaquero,, E. Cambau,, K. Feldmann, and, T. Loscher. 2001. Detection of embB codon 306 mutations in ethambutol resistant Mycobacterium tuberculosis directly from sputum samples: a low-cost, rapid approach. Mol. Cell Probes 15:3742.
150. Rouse, D. A.,, J. A. DeVito,, Z. M. Li,, H. Byer, and, S. L. Morris. 1996. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: Effects on catalase-peroxidase activities and isoniazid resistance. Mol. Microbiol. 22:583592.
151. Rozwarski, D. A.,, G. A. Grant,, D. H. Barton,, W. R. Jacobs, Jr., and, J. C. Sacchettini. 1998. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279:98102.
152. Salfinger, M., and, L. B. Heifets. 1988. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob. Agents Chemother. 32:10021004.
153. Sasaki, H.,, H. Oishi,, T. Hayashi,, I. Matsuura,, K. Ando, and, M. Sawada. 1982. Thiolactomycin, a new antibiotic. II. Structure elucidation. J. Antibiot. (Tokyo) 35:396400.
154. Schaeffer, M. L.,, G. Agnihotri,, C. Volker,, H. Kallender,, P. J. Brennan, and, J. T. Lonsdale. 2001. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J. Biol. Chem. 276:4702947037.
155. Schatz, A.,, E. Bugie, and, S. A. Waksman. 1944. Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55:6669.
156. Scorpio, A., and, Y. Zhang. 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2:662667.
157. Scorpio, A.,, D. Collins,, D. Whipple,, D. Cave,, J. Bates, and, Y. Zhang. 1997a. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J. Clin. Microbiol. 35:106110.
158. Scorpio, A.,, P. Lindholm-Levy,, L. Heifets,, R. Gilman,, S. Siddiqi,, M. Cynamon, and, Y. Zhang. 1997b. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 41:540543.
159. Senior, S. J.,, P. A. Illarionova,, S. S. Gurcha,, I. B. Campbell,, M. L. Schaeffer,, D. E. Minnikin, and, G. S. Besra. 2003. Biphenylbased analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett. 13:36853688.
160. Senior, S. J.,, P. A. Illarionov,, S. S. Gurcha,, I. B. Campbell,, M. L. Schaeffer,, D. E. Minnikin, and, G. S. Besra. 2004. Acetylenebased analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett. 14:373376.
161. Sensi, P.,, P. Margalith, and, M. T. Timbal. 1959. Rifomycin, a new antibiotic; preliminary report. Farmaco [Sci] 14:146147.
162. Sharma, S. K., and, Mohan. Mohan. 2004. Multidrug-resistant tuberculosis. Indian J. Med. Res. 120:354376.
163. Silve, G.,, P. Valero-Guillen,, A. Quémard,, M. A. Dupont,, M. Daffé, and, G. Lanéelle. 1993. Ethambutol inhibition of glucose metabolism in mycobacteria: a possible target of the drug. Antimicrob. Agents Chemother. 37:15361538.
164. Singh, B., and, D. A. Mitchison. 1954. Bactericidal activity of streptomycin and isoniazid against tubercle bacilli. BMJ i:130132.
165. Singh, R.,, B. Wiseman,, T. Deemagarn,, L. J. Donald,, H. W. Duckworth,, X. Carpena,, I. Fita, and, P. C. Loewen. 2004. Catalase-peroxidases (KatG) exhibit NADH oxidase activity. J. Biol. Chem. 279:4309843106.
166. Slayden, R. A.,, R. E. Lee,, J. W. Armour,, A. M. Cooper,, I. M. Orme,, P. J. Brennan, and, G. S. Besra. 1996. Antimycobacterial action of thiolactomycin: an inhibitor of fatty acid and mycolic acid synthesis. Antimicrob. Agents Chemother. 40:28132819.
167. Slayden, R. A., and, C. E. Barry. 2000. The genetics and biochemistry of isoniazid resistance in Mycobacterium tuberculosis. Microb. Infect. 2:659669.
168. Slayden, R. A.,, R. E. Lee, and, C. E. Barry III. 2000. Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis. Mol. Microbiol. 38:514525.
169. Slayden, R. A., and, C. E. Barry III. 2002. The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis 82:149160.
170. Speirs, R. J.,, J. T. Welch, and, M. H. Cynamon. 1995. Activity of n-propyl pyrazinoate against pyrazinamide-resistant Mycobacterium tuberculosis: investigations into mechanism of action of and mechanism of resistance to pyrazinamide. Antimicrob. Agents Chemother. 39:12691271.
171. Spigelman, M., and, Gillespie. Gillespie. 2006. Tuberculosis drug development pipeline: progress and hope. Lancet 367:945947.
172. Sreevatsan, S.,, K. E. Stockbauer,, X. Pan,, B. N. Kreiswirth,, S. L. Moghazeh,, W. R. Jacobs, Jr.,, A. Telenti, and, J. M. Musser. 1997. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chemother. 41:16771681.
173. Sridharan, S.,, L. Wang,, A. K. Brown,, L. G. Dover,, L. Kremer,, G. S. Besra, and, J. C. Sacchettini. 2007. X-Ray crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase II (mtKasB). J. Mol. Biol. 366:469480.
174. Starck, J.,, G. Kallenius,, B. I. Marklund,, D. I. Andersson, and, T. Akerlund. 2004. Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. Microbiology 150:38213829.
175. Stover, C. K.,, P. Warrener,, D. R. VanDevanter,, D. R. Sherman,, T. M. Arain,, M. H. Langhorne,, S. W. Anderson,, J. A. Towell,, Y. Yuan,, D. N. McMurray,, B. N. Kreiswirth,, C. E. Barry, and, W. R. Baker. 2000. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405:962966.
176. Sturgill-Koszycki, S.,, P. H. Schlesinger,, P. Chakraborty,, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser, and, D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678681.
177. Takayama, K.,, L. Wang, and, H. L. David. 1972. Effect on isoniazid on in-vivo mycolic acid synthesis, cell-growth, and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2:2935.
178. Takayama, K.,, E. L. Armstrong, and, H. L. David. 1974. Restoration of mycolate synthetase activity in Mycobacterium tuberculosis exposed to isoniazid. Am. Rev. Respir. Dis. 110:4348.
179. Takayama, K.,, E. L. Armstrong,, K. A. Kunugi, and, J. O. Kilburn. 1979. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 16:240242.
180. Takayama, K., and, N. Qureshi. 1979. Presented at the 14th US-Japan Tuberculosis Research Conference.
181. Takayama, K., and, J. O. Kilburn. 1989. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33:14931499.
182. Tarnok, I., and, Rohrscheidt. Rohrscheidt. 1976. Biochemical background of some enzymatic tests used for the differentiation of mycobacteria. Tubercle 57:145150.
183. Tarshis, M. S., and, W. A. Weed, Jr. 1953. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am. Rev. Tuberc. 67:391395.
184. Telenti, A.,, W. J. Philipp,, S. Sreevatsan,, C. Bernasconi,, K. E. Stockbauer,, B. Wieles,, J. M. Musser, and, W. R. Jacobs, Jr. 1997. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat. Med. 3:567570.
185. Thomas, J. P.,, C. O. Baughn,, R. G. Wilkinson, and, R. G. Shepherd. 1961. A new synthetic compound with antituberculous activity in mice: ethambutol (dextro-2,2’-(ethylenediimino)-di-l-butanol). Am. Rev. Respir. Dis. 83:891893.
186. Todorovic, S.,, N. Juranic,, S. Macura, and, F. Rusnak. 1999. Binding of N-15-labeled isoniazid to KatG and KatG(S315T): Use of two-spin [zz]-order relaxation rate for N-15-Fe distance determination. JACS 121:1096210966.
187. Tracevska, T.,, I. Jansone,, A. Nodieva,, O. Marga,, G. Skenders, and, V. Baumanis. 2004. Characterisation of rpsL, rrs and embB mutations associated with streptomycin and ethambutol resistance in Mycobacterium tuberculosis. Res. Microbiol. 155:830834.
188. Trivedi, S. S., and, S. G. Desai. 1987. Pyrazinamidase activity of Mycobacterium tuberculosis-a test of sensitivity to pyrazinamide. Tubercle 68:221224.
189. Tsay, J. T.,, C. O. Rock, and, S. Jackowski. 1992. Overproduction of beta-ketoacyl-acyl carrier protein synthase I imparts thiolactomycin resistance to Escherichia coli K-12. J. Bacteriol. 174:508513.
190. Tsunekawa, H.,, T. Miyachi,, E. Nakamura,, M. Tsukamura, and, H. Amano. 1987. Therapeutic effect of ofloxacin on ‘treatmentfailure’ pulmonary tuberculosis. Kekkaku 62:435439. (In Japanese.)
191. Turner, D. J.,, S. L. Hoyle,, V. A. Snewin,, M. P. Gares,, I. N. Brown, and, D. B. Young. 2002. An ex vivo culture model for screening drug activity against in vivo phenotypes of Mycobacterium tuberculosis. Microbiology 148:29292936.
192. Tyagi, S.,, E. Nuermberger,, T. Yoshimatsu,, K. Williams,, I. Rosenthal,, N. Lounis,, W. Bishai, and, J. Grosset. 2005. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. Antimicrob. Agents Chemother. 49:22892293.
193. Umezawa, H.,, M. Ueda,, K. Maeda,, K. Yagishita,, S. Kondo,, Y. Okami,, R. Utahara,, Y. Osato,, K. Nitta, and, T. Takeuchi. 1957. Production and isolation of a new antibiotic: kanamycin. J. Antibiot. (Tokyo) 10:181188.
194. Urbancik, B. 1966. A clinical trial of thiocarlide (4-4′ diisoamyloxythiocarbanilide). Tubercle 47:283288.
195. Urbancik, B. 1970. Clinical experience with thiocarlide (Isoxyl). Antibiot. Chemother. 16:117123.
196. Urbancik, R.,, L. Trnka,, J. Kruml, and, H. Polenska. 1964. Antimycobacterial activity of isoxyl. II. Experiments with guinea pigs and rabbits. Pathol. Microbiol. 27:7987. (In German.)
197. Van Rie, A.,, R. Warren,, I. Mshanga,, A. M. Jordaan,, G. D. van der Spuy,, M. Richardson,, J. Simpson,, R. P. Gie,, D. A. Enarson,, N. Beyers,, P. D. van Helden, and, T. C. Victor. 2001. Analysis for a limited number of gene codons can predict drug resistance of Mycobacterium tuberculosis in a high-incidence community. J. Clin. Microbiol. 39:636641.
198. Vannelli, T. A.,, A. Dykman, and, P. R. Ortiz de Montellano. 2002. The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. J. Biol. Chem. 277:1282412829.
199. Veyron-Churlet, R.,, O. Guerrini,, L. Mourey,, M. Daffé, and, D. Zerbib. 2004. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol. Microbiol. 54:11611172.
200. Veyron-Churlet, R.,, S. Bigot,, O. Guerrini,, S. Verdoux,, W. Malaga,, M. Daffé, and, D. Zerbib. 2005. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. J. Mol. Biol. 353:847858.
201. Vilchèze, C.,, H. R. Morbidoni,, T. R. Weisbrod,, H. Iwamoto,, M. Kuo,, J. C. Sacchettini, and, W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182:40594067.
202. Vilchèze, C.,, T. R. Weisbrod,, B. Chen,, L. Kremer,, M. H. Hazbon,, F. Wang,, D. Alland,, J. C. Sacchettini, and, W. R. Jacobs, Jr. 2005. Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob. Agents Chemother. 49:708720.
203. Vilchèze, C.,, F. Wang,, M. Arai,, M. H. Hazbon,, R. Colangeli,, L. Kremer,, T. R. Weisbrod,, D. Alland,, J. C. Sacchettini, and, W. R. Jacobs, Jr. 2006. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat. Med. 12:10271029.
204. Wada, T.,, S. Maeda,, A. Tamaru,, S. Imai,, A. Hase, and, K. Kobayashi. 2004. Dual-probe assay for rapid detection of drug-resistant Mycobacterium tuberculosis by real-time PCR. J. Clin. Microbiol. 42:52775285.
205. Wade, M. M., and, Y. Zhang. 2004. Anaerobic incubation conditions enhance pyrazinamide activity against Mycobacterium tuberculosis. J. Med. Microbiol. 53:769773.
206. Walker, R. W.,, H. Barakat, and, J. G. Hung. 1970. The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 5:684691.
207. Waller, R. F.,, P. J. Keeling,, R. G. Donald,, B. Striepen,, E. Handman,, N. Lang-Unnasch,, A. F. Cowman,, G. S. Besra,, D. S. Roos, and, G. I. McFadden. 1998. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 95:1235212357.
208. Wang, C.-L. J., and, J. M. Salvino. 1984. Total synthesis of (±) thiolactomycin. Tetrahedron Lett. 25:52435246.
209. Wang, F.,, R. Langley,, G. Gulten,, L. G. Dover,, G. S. Besra,, W. R. Jacobs, Jr., and, J. C. Sacchettini. 2007. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med. 204:7378.
210. Wang, L., and, K. Takayama. 1972. Relationship between uptake of isoniazid and its action on in vivo mycolic acid synthesis in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2:438441.
211. Weir, M. P.,, W. H. Langridge III, and, R. W. Walker. 1972. Relationships between oleic acid uptake and lipid metabolism in Mycobacterium smegmatis. Am. Rev. Respir. Dis. 106:450457.
212. Wengenack, N. L.,, J. R. Uhl,, A. L. S. Amand,, A. J. Tomlinson,, L. M. Benson,, S. Naylor,, B. C. Kline,, F. R. Cockerill, and, F. Rusnak. 1997. Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid. J. Infect. Dis. 176:722727.
213. Wengenack, N. L.,, S. Todorovic,, L. Yu, and, F. Rusnak. 1998. Evidence for differential binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG (S315T). Biochemistry 37:1582515834.
214. Wengenack, N. L.,, M. P. Jensen,, F. Rusnak, and, M. K. Stern. 1999. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem. Biophys. Res. Commun. 256:485487.
215. Wheeler, P. R.,, K. Bulmer, and, C. Ratledge. 1990. Enzymes for biosynthesis de novo and elongation of fatty acids in mycobacteria grown in host cells: is Mycobacterium leprae competent in fatty acid biosynthesis? J. Gen. Microbiol. 136:211217.
216. Wheeler, P. R., and, P. M. Anderson. 1996. Determination of the primary target for isoniazid in mycobacterial mycolic acid biosynthesis with Mycobacterium aurum A+. Biochem. J. 318:451457.
217. Wilming, M., and, K. Johnsson. 1999. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew. Chem. Int. Ed. Engl. 38:25882590.