9 Mycobacterial Porins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

9 Mycobacterial Porins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap09-2.gif


Mycobacteria devote a large part of the coding capacity of its genome to fatty acid biosynthesis. Porins of induce actin nucleation in the host cell, suggesting a role in cell actin reorganization, which might influence the invasive ability of the bacteria. The growth and nutritional requirements of mycobacteria have been intensely studied since the discovery of . Nutrient uptake mechanisms obviously depend on the permeability barriers imposed by the cell envelope. Mycobacteria have evolved a complex cell wall, comprising a peptidoglycan-arabinogalactan polymer with covalently bound mycolic acids of considerable size (up to 90 carbon atoms), a variety of extractable lipids, and pore-forming proteins. The unique mycolic acid bilayer is an extremely efficient permeability barrier protecting the cell from toxic compounds and is generally thought to be the major determinant of the intrinsic resistance of mycobacteria to most common antibiotics, chemotherapeutic agents and chemical disinfectants. The susceptibility of both BCG and to zwitterionic β-lactam antibiotics was substantially enhanced by MspA, decreasing the minimal inhibitory concentration up to 16-fold. The accelerated growth of BCG on expression of MspA identified slow nutrient uptake as one of the determinants of slow growth in mycobacteria.

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9

Key Concept Ranking

Bacterial Outer Membrane Proteins
Outer Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Transport processes across the mycobacterial cell envelope. A simplified schematic representation of the mycobacterial cell envelope is shown. Adapted from Niederweis, ( ). This representation is based on the model proposed by Minnikin ( ). According to this model, the inner leaflet of the asymmetric outer membrane (OM) is composed of mycolic acids (MA), which are covalently linked to the arabinogalactan (AG)-peptidoglycan (PG) copolymer. A variety of extractable lipids presumably form the outer leaflet of the outer membrane. Surface layers such as a capsule ( ) were omitted from this figure for clarity.

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Functions of porins of gram-negative bacteria in pathogenesis. See the text for references.

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

MspA, a general porin of . (A) Side view of MspA integrated into a lipid bilayer. (B) Electrostatic potential of MspA in top view. The electrostatic potential is represented by the Gasteiger charges for the atoms in the surface of MspA. These figures are based on the crystal structure of MspA ( ). Panels A and B were created with the visualization software PyMol (DeLano Scientific LLC) and ViewerLight (Accelrys), respectively. (.)

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Arora, A.,, F. Abildgaard,, J. H. Bushweller, and, L. K. Tamm. 2001. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat. Struct. Biol. 8:334338.
2. Barry, C. E. 2001. Interpreting cell wall ‘virulence factors’ of Mycobacterium tuberculosis. Trends Microbiol. 9:237241.
3. Barry, C. E., III,, R. E. Lee,, K. Mdluli,, A. E. Sampson,, B. G. Schroeder,, R. A. Slayden, and, Y. Yuan. 1998. Mycolic acids: structure, biosynthesis and physiological functions. Prog. Lipid Res. 37:143179.
4. Bauer, F. J.,, T. Rudel,, M. Stein, and, T. F. Meyer. 1999. Mutagenesis of the Neisseria gonorrhoeae porin reduces invasion in epithelial cells and enhances phagocyte responsiveness. Mol. Microbiol. 31:903913.
5. Bavoil, P.,, H. Nikaido, and, K. von Meyenburg. 1977. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol. Gen. Genet. 158:2333.
6. Behr, M. A.,, M. A. Wilson,, W. P. Gill,, H. Salamon,, G. K. Schoolnik,, S. Rane, and, P. M Small. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:15201523.
7. Beveridge, T. J. 1995. The periplasmic space and the periplasm in gram-positive and gram-negative bacteria. ASM News 61:125130.
8. Beveridge, T. J. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181:47254733.
9. Beveridge, T. J., and, J. L. Kadurugamuwa. 1996. Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa. Microb. Drug Resist. 2:18.
10. Bogdan, C.,, M. Röllinghoff, and, A. Diefenbach. 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol. 12:6476.
11. Braun, V., and, H. Killmann. 1999. Bacterial solutions to the ironsupply problem. Trends Biochem. Sci. 24:104109.
12. Brennan, P. J., and, H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64:2963.
13. Brosch, R.,, A. S. Pym,, S. V. Gordon, and, S. T. Cole. 2001. The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol. 9:452458.
14. Bucarey, S. A.,, N. A. Villagra,, M. P. Martinic,, A. N. Trombert,, C. A. Santiviago,, N. P. Maulen,, P. Youderian, and, G. C. Mora. 2005. The Salmonella enterica serovar Typhi tsx gene, encoding a nucleoside-specific porin, is essential for prototrophic growth in the absence of nucleosides. Infect. Immun. 73:62106219.
15. Buchmeier, N.,, A. Blanc-Potard,, S. Ehrt,, D. Piddington,, L. Riley, and, E. A. Groisman. 2000. A parallel intraphagosomal survival strategy shared by Mycobacterium tuberculosis and Salmonella enterica. Mol. Microbiol. 35:13751382.
16. Chakrabarti, A. C., and, D. W. Deamer. 1992. Permeability of lipid bilayers to amino acids and phosphate. Biochim. Biophys. Acta 1111:171177.
17. Cole, S. T., and, B. G. Barrell. 1998. Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis Found. Symp. 217:160172; discussion 172177.
18. Cotter, P. D., and, C. Hill. 2003. Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67:429453.
19. Daffé, M., and, P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131203.
20. Daffé, M., and, G. Etienne. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber. Lung Dis. 79:153169.
21. Dorner, U.,, E. Maier, and, R. Benz. 2004. Identification of a cation-specific channel (TipA) in the cell wall of the gram-positive mycolata Tsukamurella inchonensis: the gene of the channel-forming protein is identical to mspA of Mycobacterium smegmatis and mppA of Mycobacterium phlei. Biochim. Biophys. Acta 1667:4755.
22. Draper, P. 1998. The outer parts of the mycobacterial envelope as permeability barriers. Front. Biosci. 3:12531261.
23. Dumas, F.,, R. Koebnik,, M. Winterhalter, and, P. van Gelder. 2000. Sugar transport through maltoporin of Escherichia coli. Role of polar tracks. J. Biol. Chem. 275:1974719751.
24. Edson, N.L. 1951. The intermediary metabolism of the mycobacteria. Bacteriol. Rev. 15:147182.
25. Etienne, G.,, F. Laval,, C. Villeneuve,, P. Dinadayala,, A. Abouwarda,, D. Zerbib,, A. Galamba, and, M. Daffe. 2005. The cell envelope structure and properties of Mycobacterium smegmatis mc(2)155: is there a clue for the unique transformability of the strain? Microbiology 151:20752086.
26. Faller, M.,, M. Niederweis, and, G. E. Schulz. 2004. The structure of a mycobacterial outer-membrane channel. Science 303:11891192.
27. Fu, L. M., and, C. S. Fu-Liu. 2002a. Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens? Tuberculosis 82:8590.
28. Fu, L. M., and, C. S. Fu-Liu. 2002b. Genome comparison of Mycobacterium tuberculosis and other bacteria. Omics 6:199206.
29. Galdiero, F.,, G. C. de L’ero,, N. Benedetto,, M. Galdiero, and, M. A. Tufano. 1993. Release of cytokines induced by Salmonella typhimurium porins. Infect. Immun. 61:155161.
30. Galdiero, M.,, M. G. Pisciotta,, E. Galdiero, and, C. R. Carratelli. 2003. Porins and lipopolysaccharide from Salmonella typhimurium regulate the expression of CD80 and CD86 molecules on B cells and macrophages but not CD28 and CD152 on T cells. Clin. Microbiol. Infect. 9:11041111.
31. Galdiero, F.,, M. A. Tufano,, M. Galdiero,, S. Masiello, and, M. Di Rosa. 1990. Inflammatory effects of Salmonella typhimurium porins. Infect. Immun. 58:31833186.
32. Gao, B.,, R. Paramanathan, and, R. S. Gupta. 2006. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie Leeuwenhoek 90:6991.
33. Graham, L. L.,, T. J. Beveridge, and, N. Nanninga. 1991. Periplasmic space and the concept of the periplasm. Trends Biochem. Sci. 16:328329.
34. Hancock, R. E., and, F. S. Brinkman. 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 56:1738.
35. Hancock, R. E.,, S. W. Farmer,, Z. S. Li, and, K. Poole. 1991. Interaction of aminoglycosides with the outer membranes and purified lipopolysaccharide and OmpF porin of Escherichia coli. Antimicrob. Agents Chemother. 35:13091314.
36. Henning, U., and, I. Haller. 1975. Mutants of Escherichia coli K12 lacking all ‘major’ proteins of the outer cell envelope membrane. FEBS Lett. 55:161164.
37. Jarlier, V., and, H. Nikaido. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J. Bacteriol. 172:14181423.
38. Kartmann, B.,, S. Stenger, and, M. Niederweis. 1999. Porins in the cell wall of Mycobacterium tuberculosis. J. Bacteriol. 181:65436546. (Authors’ correction appeared in J. Bacteriol. 181:7650).
39. Koch, R. 1882. Die Aetiologie der Tuberculose. Berl. Klin. Wochenzeitsch. 19:18.
40. Koebnik, R.,, K. P. Locher, and, P. van Gelder. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37:239253.
41. Lemassu, A.,, A. Ortalo-Magne,, F. Bardou,, G. Silve,, M. A. Laneelle, and, M. Daffé. 1996. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142:15131520.
42. Lichtinger, T.,, A. Burkovski,, M. Niederweis,, R. Kramer, and, R. Benz. 1998. Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: the channel is formed by a low molecular mass polypeptide. Biochemistry 37:1502415032.
43. Lichtinger, T.,, B. Heym,, E. Maier,, H. Eichner,, S. T. Cole, and, R. Benz. 1999. Evidence for a small anion-selective channel in the cell wall of Mycobacterium bovis BCG besides a wide cationselective pore. FEBS Lett. 454:349355.
44. Liu, X., and, T. Ferenci. 1998. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J. Bacteriol. 180:39173922.
45. Mahfoud, M.,, S. Sukumaran,, P. Hülsmann,, K. Grieger, and, M. Niederweis. 2006. Topology of the porin MspA in the outer membrane of Mycobacterium smegmatis. J. Biol. Chem. 281:59085915.
46. Maier, C.,, E. Bremer,, A. Schmid, and, R. Benz. 1988. Pore-forming activity of the Tsx protein from the outer membrane of Escherichia coli. Demonstration of a nucleoside-specific binding site. J. Biol. Chem. 263:24932499.
47. Mailaender, C.,, N. Reiling,, H. Engelhardt,, S. Bossmann,, S. Ehlers, and, M. Niederweis. 2004. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150:853864.
48. Marsollier, L.,, G. Prevot,, N. Honore,, P. Legras,, A. L. Manceau,, C. Payan,, H. Kouakou, and, B. Carbonnelle. 2003. Susceptibility of Mycobacterium ulcerans to a combination of amikacin/ rifampicin. Int. J. Antimicrob. Agents 22:562566.
49. Massari, P.,, S. Ram,, H. Macleod, and, L. M. Wetzler. 2003. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol. 11:8793.
50. Matias, V. R.,, A. Al-Amoudi,, J. Dubochet, and, T. J. Beveridge, 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:61126118.
51. Matias, V. R., and, T. J. Beveridge. 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56:240251.
52. Matias, V. R., and, T. J. Beveridge. 2006. Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188:10111021.
53. McKinney, J. D.,, K. Honer zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs, Jr., and, D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735738.
54. Merz, A. J., and, M. So. 2000. Interactions of pathogenic Neisseriae with epithelial cell membranes. Annu. Rev. Cell Dev. Biol. 16:423457.
55. Mineda, T.,, N. Ohara,, H. Yukitake, and, T. Yamada. 1998. The ribosomes contents of mycobacteria. New Microbiol. 21:17.
56. Minnikin, D. E. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95–184. In C. Ratledge and, J. Stanford (ed.), The Biology of the Mycobacteria: Physiology, Identification and Classification, vol. I. Academic Press, London, United Kingdom.
57. Molle, V.,, N. Saint,, S. Campagna,, L. Kremer,, E. Lea,, P. Draper, and, G. Molle. 2006. pH-dependent pore-forming activity of OmpATb from Mycobacterium tuberculosis and characterization of the channel by peptidic dissection. Mol. Microbiol. 61:826837.
58. Munoz-Elias, E. J., and, J. D. McKinney. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 11:638644.
59. Negm, R. S., and, T. G. Pistole. 1998. Macrophages recognize and adhere to an OmpD-like protein of Salmonella typhimurium. FEMS Immunol. Med. Microbiol. 20:191199.
60. Negm, R. S., and, T. G. Pistole. 1999. The porin OmpC of Salmonella typhimurium mediates adherence to macrophages. Can. J. Microbiol. 45:658669.
61. Niederweis, M. 2003. Mycobacterial porins-new channel proteins in unique outer membranes. Mol. Microbiol. 49:11671177.
62. Niederweis, M.,, S. Ehrt,, C. Heinz,, U. Klöcker,, S. Karosi,, K. M. Swiderek,, L. W. Riley, and, R. Benz. 1999. Cloning of the mspA gene encoding a porin from Mycobacterium smegmatis. Mol. Microbiol. 33:933945.
63. Nikaido, H. 1994. Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem. 269:39053908.
64. Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593656.
65. Nikaido, H.,, S. H. Kim, and, E. Y. Rosenberg. 1993. Physical organization of lipids in the cell wall of Mycobacterium chelonae. Mol. Microbiol. 8:10251030.
66. Nurminen, M.,, K. Lounatmaa,, M. Sarvas,, P. H. Makela, and, T. Nakae. 1976. Bacteriophage-resistant mutants of Salmonella typhimurium deficient in two major outer membrane proteins. J. Bacteriol. 127:941955.
67. Paul, T. R., and, T. J. Beveridge. 1992. Reevaluation of envelope profiles and cytoplasmic ultrastructure of mycobacteria processed by conventional embedding and freeze-substitution protocols. J. Bacteriol. 174:65086517.
68. Paul, T. R., and, T. J. Beveridge. 1993. Ultrastructure of mycobacterial surfaces by freeze-substitution. Zentbl. Bakteriol. 279:450457.
69. Paul, T. R., and, T. J. Beveridge. 1994. Preservation of surface lipids and determination of ultrastructure of Mycobacterium kansasii by freeze-substitution. Infect. Immun. 62:15421550.
70. Pautsch, A., and, G. E. Schulz. 2000. High-resolution structure of the OmpA membrane domain. J. Mol. Biol. 298:273282.
71. Ramakrishnan, T.,, P. S. Murthy, and, K. P. Gopinathan. 1972. Intermediary metabolism of mycobacteria. Bacteriol. Rev. 36:65108.
72. Rastogi, N.,, C. Frehel,, A. Ryter,, H. Ohayon,, M. Lesourd, and, H. L. David. 1981. Multiple drug resistance in Mycobacterium avium: is the wall architecture responsible for exclusion of antimicrobial agents? Antimicrob. Agents Chemother. 20:666677.
73. Rastogi, N.,, E. Legrand, and, C. Sola. 2001. The mycobacteria: an introduction to nomenclature and pathogenesis. Rev. Sci. Tech. 20:2154.
74. Ratledge, C. 1982. Nutrition, growth and metabolism, p. 186–212. In C. Ratledge and, J. Stanford (ed.), The Biology of the Mycobacteria. Academic Press, Ltd., London, United Kingdom.
75. Raynaud, C.,, K. G. Papavinasasundaram,, R. A. Speight,, B. Springer,, P. Sander,, E. C. Böttger,, M. J. Colston, and, P. Draper. 2002. The functions of OmpATb, a pore-forming protein of Mycobacterium tuberculosis. Mol. Microbiol. 46:191201.
76. Riess, F. G., and, R. Benz. 2000. Discovery of a novel channel-forming protein in the cell wall of the non-pathogenic Nocardia corynebacteroides. Biochim. Biophys. Acta 1509:485495.
77. Riess, F. G.,, U. Dorner,, B. Schiffler, and, R. Benz. 2001. Study of the properties of a channel-forming protein of the cell wall of the Gram-positive bacterium Mycobacterium phlei. J. Membr. Biol. 182:147157.
78. Riess, F. G.,, M. Elflein,, M. Benk,, B. Schiffler,, R. Benz,, N. Garton, and, I. Sutcliffe. 2003. The cell wall of the pathogenic bacterium Rhodococcus equi contains two channel-forming proteins with different properties. J. Bacteriol. 185:29522960.
79. Rodriguez-Morales, O.,, M. Fernandez-Mora,, I. Hernandez-Lucas,, A. Vazquez,, J. L. Puente, and, E. Calva. 2006. Salmonella enterica serovar Typhimurium ompS1 and ompS2 mutants are attenuated for virulence in mice. Infect. Immun. 74:13981402.
80. Rudel, T.,, A. Schmid,, R. Benz,, H. A. Kolb,, F. Lang, and, T. F. Meyer. 1996. Modulation of Neisseria porin (PorB) by cytosolic ATP/GTP of target cells: parallels between pathogen accommodation and mitochondrial endosymbiosis. Cell 85:391402.
81. Sassetti, C. M., and, E. J. Rubin. 2003. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100:1298912994.
82. Schaefer, W. B.,, A. Marshak, and, B. Burkhart. 1949. The growth of Mycobacterium tuberculosis as a function of its nutrients. J. Bacteriol. 58:549563.
83. Schaible, U. E.,, S. Sturgill-Koszycki,, P. H. Schlesinger, and, D. G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160:12901296.
84. Secundino, I.,, C. Lopez-Macias,, L. Cervantes-Barragan,, C. Gil-Cruz,, N. Rios-Sarabia,, R. Pastelin-Palacios,, M. A. VillasisKeever,, I. Becker,, J. L. Puente,, E. Calva, and, A. Isibasi. 2006. Salmonella porins induce a sustained, lifelong specific bactericidal antibody memory response. Immunology 117:5970.
85. Senaratne, R. H.,, H. Mobasheri,, K. G. Papavinasasundaram,, P. Jenner,, E. J. Lea, and, P. Draper. 1998. Expression of a gene for a porin-like protein of the OmpA family from Mycobacterium tuberculosis H37Rv. J. Bacteriol. 180:35413547.
86. Sharbati-Tehrani, S.,, B. Meister,, B. Appel, and, A. Lewin. 2004. The porin MspA from Mycobacterium smegmatis improves growth of Mycobacterium bovis BCG. Int. J. Med. Microbiol. 294:235245.
87. Sharbati-Tehrani, S.,, J. Stephan,, G. Holland,, B. Appel,, M. Niederweis, and, A. Lewin. 2005. Porins limit the intracellular persistence of Mycobacterium smegmatis. Microbiology 151:24032410.
88. Smith, I. 2003. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16:463496.
89. Stackebrandt, E.,, F. A. Rainey, and, N. L. Ward-Rainey. 1997. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 47:479491.
90. Stahl, C.,, S. Kubetzko,, I. Kaps,, S. Seeber,, H. Engelhardt, and, M. Niederweis. 2001. MspA provides the main hydrophilic pathway through the cell wall of Mycobacterium smegmatis. Mol. Microbiol. 40:451464. (Authors’ correction, 57:1509, 2005.)
91. Stephan, J.,, J. Bender,, F. Wolschendorf,, C. Hoffmann,, E. Roth,, C. Mailänder,, H. Engelhardt, and, M. Niederweis. 2005. The growth rate of Mycobacterium smegmatis depends on sufficient porin-mediated influx of nutrients. Mol. Microbiol. 58:714730.
92. Stephan, J.,, C. Mailaender,, G. Etienne,, M. Daffe, and, M. Niederweis. 2004. Multidrug resistance of a porin deletion mutant of Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48:41634170.
93. Sugawara, E.,, E. M. Nestorovich,, S. M. Bezrukov, and, H. Nikaido. 2006. Pseudomonas aeruginosa porin OprF exists in two different conformations. J. Biol. Chem. 281:1622016229.
94. Sugawara, E., and, H. Nikaido. 1992. Pore-forming activity of OmpA protein of Escherichia coli. J. Biol. Chem. 267:25072511.
95. Sugawara, E., and, H. Nikaido. 1994. OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. J. Biol. Chem. 269:1798117987.
96. Tomioka, H. 2004. Present status and future prospects of chemotherapeutics for intractable infections due to Mycobacterium avium complex. Curr. Drug Discov. Technol. 1:255268.
97. Trias, J.,, V. Jarlier, and, R. Benz. 1992. Porins in the cell wall of mycobacteria. Science 258:14791481.
98. Tufano, M. A.,, L. Biancone,, F. Rossano,, C. Capasso,, A. Baroni,, A. De Martino,, E. L. Iorio,, L. Silvestro, and, G. Camussi. 1993. Outer-membrane porins from gram-negative bacteria stimulate platelet-activating-factor biosynthesis by cultured human endothelial cells. Eur. J. Biochem. 214:685693.
99. van Putten, J. P.,, T. D. Duensing, and, J. Carlson. 1998. Gonococcal invasion of epithelial cells driven by P.IA, a bacterial ion channel with GTP binding properties. J. Exp. Med. 188:941952.
100. Vordermeier, H. M., and, W. G. Bessler. 1987. Polyclonal activation of murine B lymphocytes in vitro by Salmonella typhimurium porins. Immunobiology 175:245251.
101. Vordermeier, H. M.,, H. Drexler, and, W. G. Bessler. 1987. Polyclonal activation of human peripheral blood lymphocytes by bacterial porins and defined porin fragments. Immunol. Lett. 15:121126.
102. Wagner, V. E.,, J. G. Frelinger,, R. K. Barth, and, B. H. Iglewski. 2006. Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol. 14:5558.
103. Wen, K. K.,, P. C. Giardina,, M. S. Blake,, J. Edwards,, M. A. Apicella, and, P. A. Rubenstein. 2000. Interaction of the gonococcal porin P.IB with G- and F-actin. Biochemistry 39:86388647.
104. West, I. C., and, M. G. Page. 1984. When is the outer membrane of Escherichia coli rate-limiting for uptake of galactosides? J. Theor. Biol. 110:1119.
105. Wolschendorf, F.,, M. Mahfoud, and, M. Niederweis. 2007. Porins are required for uptake of phosphates by Mycobacterium smegmatis. J. Bacteriol. 189:24352442.
106. Wu, L.,, O. Estrada,, O. Zaborina,, M. Bains,, L. Shen,, J. E. Kohler,, N. Patel,, M. W. Musch,, E. B. Chang,, Y. X. Fu,, M. A. Jacobs,, M. I. Nishimura,, R. E. Hancock,, J. R. Turner, and, J. C. Alverdy. 2005. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309:774777.


Generic image for table
Table 1.

Mycobacterial porins of the MspA family

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9
Generic image for table
Table 2.

Kinetic parameters and permeability coefficients P of mycobacteria and for glucose

Citation: Niederweis M. 2008. 9 Mycobacterial Porins, p 153-165. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error