11 The ABC Transporter Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

11 The ABC Transporter Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap11-2.gif


The ATP-binding cassette (ABC) transporter systems are a conserved superfamily of multisubunit permeases that are found in all living organisms. Bacterial ABC transporters can be either importers or exporters. The ABC proteins form the largest paralogous family of proteins in . It was initially predicted as a daunorubicin exporter on the basis of its similarity to the locus from . Transcriptome analysis of expression in macrophages showed that 454 genes were induced and 147 genes were repressed in activated or resting macrophages at 24 hours compared with broth culture. In several bacteria, peptide transport can be important for nutrition of the cell, signaling processes such as regulation of gene expression, sporulation, chemotaxis, competence, and virulence. Phosphate is another essential anion that is also transported by one or several multisubunits ABC permeases in mycobacteria. The gene has been shown to be required for macrophage survival and also has been identified twice as being essential for survival of in mice. The phosphate transport system (Pst) from is a tightly regulated high-affinity system encoded by three putative operons, suggesting that the bacteria are involved in subtle biochemical adaptations of for their survival under varying conditions during the infectious cycle. Active multidrug efflux pumps and the mycobacterial cell wall permeability barrier are the mechanisms that are thought to be potentially involved in the natural drug resistance of mycobacteria.

Citation: Content J, Peirs P. 2008. 11 The ABC Transporter Systems, p 185-199. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch11

Key Concept Ranking

Resistance-Nodulation-Cell Division Superfamily
Major Facilitator Superfamily
Integral Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Ribbon diagram of the vitamin BBtuCDF, ABC permease protein structure. The transporter is assembled from two membrane-spanning BtuC subunits and two ABC cassettes BtuD. At the ATP binding sites, cyclotetravanadate molecules are bound to the transporter (ball-and-stick models at the BtuD interface). Vitamin B is delivered to the periplasmic side of the transporter by a binding protein (BtuF), then translocated through a pathway provided at the interface of the two membrane-spanning BtuC subunits. It finally exits into the cytoplasm at the large gap between the four subunits. This transport cycle is powered by the hydrolysis of ATP by the ABC cassettes BtuD. Reprinted from Locher and Borths ( ), with permission of the authors.

Citation: Content J, Peirs P. 2008. 11 The ABC Transporter Systems, p 185-199. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Topological organization of the prototypical ABC transporters. ABC transporters are classified as importers and exporters, depending on the direction of translocation of their substrate (indicated by an arrow). The prokaryotic prototype is composed of two membrane-spanning domains (MSDs) and two nucleotide-binding domains (NBDs) expressed as independent polypeptides. SBP indicates the presence of a substrate binding protein, usually present in importers. This figure was adapted from ).

Citation: Content J, Peirs P. 2008. 11 The ABC Transporter Systems, p 185-199. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Maltose transport in . The maltose-binding protein (MBP) undergoes a conformational change from an open to a closed conformation on binding maltose in the periplasm. The transport complex (FGK) consists of two membrane-spanning subunits (MSD), MalF and MalG, likely consisting of bundles of eight and six α-helices, respectively, and two copies of the cytoplasmic NBD subunit, MalK. In either the open or the closed conformation, MBP binds to nucleotide-free FGK, in which the MalK NBDs are in an open conformation, and the periplasmic entrance to the translocation pathway is closed (P-closed state). MBP in the open conformation can interact with FGK, but only upon binding maltose and closing is it competent to initiate the transport cycle. ATP binding to MalK triggers NBD association, coinciding with simultaneous opening of both MBP and the periplasmic entrance to the translocation pathway (P-open state), allowing the transfer of sugar to FGK. ATP hydrolysis results in disruption of the MalK dimer interface and reorientation of the transmembrane helices to the starting conformation. Modified from Chen et al. ( ), with permission of the publisher.

Citation: Content J, Peirs P. 2008. 11 The ABC Transporter Systems, p 185-199. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Banerjee, S. K.,, K. Bhatt,, P. Misra, and, P. K. Chakraborti. 2000. Involvement of a natural transport system in the process of efflux-mediated drug resistance in Mycobacterium smegmatis. Mol. Gen. Genet. 262:949956.
2. Banerjee, S. K.,, P. Misra,, K. Bhatt,, S. C. Mande, and, P. K. Chakraborti. 1998. Identification of an ABC transporter gene that exhibits mRNA level overexpression in fluoroquinoloneresistant Mycobacterium smegmatis. FEBS Lett. 425:151156.
3. Bhatt, K.,, S. K. Banerjee, and, P. K. Chakraborti. 2000. Evidence that phosphate specific transporter is amplified in a fluoroquinolone resistant Mycobacterium smegmatis. Eur. J. Biochem. 267:40284032.
4. Borich, S. M.,, A. Murray, and, E. Gormley. 2000. Genomic arrangement of a putative operon involved in maltose transport in the Mycobacterium tuberculosis complex and Mycobacterium leprae. Microbios 102:715.
5. Braibant, M.,, L. De Wit,, P. Peirs,, M. Kalai,, J. Ooms,, A. Drowart,, K. Huygen, and, J. Content. 1994. Structure of the Mycobacterium tuberculosis antigen 88, a protein related to the Escherichia coli PstA periplasmic phosphate permease subunit. Infect. Immun. 62:849854.
6. Braibant, M.,, P. Gilot, and, J. Content. 2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24:449467.
7. Braibant, M.,, P. Lefevre,, L. de Wit,, J. Ooms,, P. Peirs,, K. Huygen,, R. Wattiez, and, J. Content. 1996a. Identification of a second Mycobacterium tuberculosis gene cluster encoding proteins of an ABC phosphate transporter. FEBS Lett. 394:206212.
8. Braibant, M.,, P. Lefevre,, L. de Wit,, P. Peirs,, J. Ooms,, K. Huygen,, A. B. Andersen, and, J. Content. 1996b. A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene 176:171176.
9. Braun, V., and, H. Killmann. 1999. Bacterial solutions to the ironsupply problem. Trends Biochem. Sci. 24:104109.
10. Camacho, L. R.,, P. Constant,, C. Raynaud,, M. A. Laneelle,, J. A. Triccas,, B. Gicquel,, M. Daffe, and, C. Guilhot. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. J. Biol. Chem. 276:1984519854.
11. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel, and, C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34:257267.
12. Chang, Z.,, A. Choudhary,, R. Lathigra, and, F. A. Quiocho. 1994. The immunodominant 38-kDa lipoprotein of M. tuberculosis is a phosphate binding protein. J. Biol. Chem. 269:19561958.
13. Chen, J.,, G. Lu,, J. Lin,, A. L. Davidson, and, F. A. Quiocho. 2003. A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol. Cell 12:651661.
14. Choudhary, A.,, M. N. Vyas,, N. K. Vyas,, Z. Chang, and, F. A. Quiocho. 1994. Crystallization and preliminary X-ray crystallographic analysis of the 38-kDa immunodominant antigen of Mycobacterium tuberculosis. Protein Sci. 3:24502451.
15. Choudhuri, B. S.,, S. Bhakta,, R. Barik,, J. Basu,, M. Kundu, and, P. Chakrabarti. 2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem. J. 367:279285.
16. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Conner,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. Mclean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396:190198.
17. Collins, D. M.,, R. P. Kawakami,, B. M. Buddle,, B. J. Wards, and, G. W. de Lisle. 2003. Different susceptibility of two animal species infected with isogenic mutants of Mycobacterium bovis identifies phoT as having roles in tuberculosis virulence and phosphate transport. Microbiology 149:32033212.
18. Content, J.,, M. Braibant,, J. Ainsa, and, N. Connell. 2005. Transport process in mycobacteria, p. 379–401. In S. T. Cole,, K. Eisenach,, D. N. McMurray, and, W. R. Jacobs, Jr. (ed.), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC.
19. Cox, J. S.,, B. Chen,, M. McNeil, and, W. R. Jacobs. 1999. Complex lipid determine tissue specific replication of Mycobacterium tuberculosis in mice. Nature 402:7983.
20. Curry, J. M.,, R. Whalan,, D. M. Hunt,, K. Gohil,, M. Strom,, L. Rickman,, M. J. Colston,, S. J. Smerdon, and, R. S. Buxton. 2005. An ABC transporter containing a forkhead-associated domain interacts with a serine-threonine protein kinase and is required for growth of Mycobacterium tuberculosis in mice. Infect. Immun. 73:44714477.
21. De Rossi, E.,, J. A. Ainsa, and, G. Riccardi. 2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol. Rev. 30:3652.
22. Doeven, M. K.,, J. Kok, and, B. Poolman. 2005. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol. Microbiol. 57:640649.
23. Fetherston, J. D.,, V. J. Bertolino, and, R. D. Perry. 1999. YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. Mol. Microbiol. 32:289299.
24. Garnier, T.,, K. Eiglmeier,, J. C. Camus,, N. Medina,, H. Mansoor,, M. Pryor,, S. Duthoy,, S. Grondin,, C. Lacroix,, C. Monsempe,, S. Simon,, B. Harris,, R. Atkin,, J. Doggett,, R. Mayes,, L. Keating,, P. R. Wheeler,, J. Parkhill,, B. G. Barrell,, S. T. Cole,, S. V. Gordon, and, R. G. Hewinson. 2003. The complete genome sequence of Mycobacterium bovis. Proc. Natl. Acad. Sci. USA 100:78777882.
25. Gebhard, S.,, S. L. Tran, and, G. M. Cook. 2006. The Phn system of Mycobacterium smegmatis: a second high-affinity ABCtransporter for phosphate. Microbiology 152:34533465.
26. Gowrishankar, J. 1989. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J. Bacteriol. 171:19231931.
27. Green, R. M.,, A. Seth and, N. D. Connell. 2000. A peptide permease mutant of Mycobacterium bovis BCG resistant to the toxic peptides glutathione and S-nitrosoglutathione. Infect. Immun. 68:429436.
28. Guilfoile, P. G., and, C. R. Hutchinson. 1991. A bacterial analog of the mdr gene of mammalian tumor cells is present in Streptomyces peucetius, the producer of daunorubicin and doxorubicin. Proc. Natl. Acad. Sci. USA 88:85538557.
29. Gupta, S.,, P. K. Chakraborti, and, D. Sarkar. 2005. Nucleotideinduced conformational change in the catalytic subunit of the phosphate-specific transporter from M. tuberculosis: Implications for the ATPase structure. Biochim. Biophys. Acta 1750:112121.
30. Joshi, S. M.,, A. K. Pandey,, N. Capite,, S. M. Fortune,, E. J. Rubin, and, C. M. Sassetti. 2006. Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc. Natl. Acad. Sci. USA 103:1176011765.
31. Koster, W. 2005. Cytoplasmic membrane iron permease systems in the bacterial cell envelope. Front. Biosci. 10:462477.
32. Kriakov, J.,, S. Lee, and, W. R. Jacobs, Jr. 2003. Identification of a regulated alkaline phosphatase, a cell surface-associated lipoprotein, in Mycobacterium smegmatis. J. Bacteriol. 185:49834991.
33. Lamichhane, G.,, S. Tyagi, and, W. R. Bishai. 2005. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect. Immun. 73:25332540.
34. Lefèvre, P.,, M. Braibant,, L. de Wit,, M. Kalai,, D. Roeper,, J. Grotzinger,, J. P. Delville,, P. Peirs,, J. Ooms,, K. Huygen, and, J. Content. 1997. Three different putative phosphate transport receptors are encoded by the Mycobacterium tuberculosis genome and are present at the surface of Mycobacterium bovis BCG. J. Bacteriol. 179:29002906.
35. Lefèvre, P.,, O. Denis,, L. De Wit,, A. Tanghe,, P. Vandenbussche,, J. Content, and, K. Huygen. 2000. Cloning of the gene encoding a 22-kilodalton cell surface antigen of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis. Infect. Immun. 68:10401047.
36. Li, X. Z.,, L. Zhang, and, H. Nikaido. 2004. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 48:24152423.
37. Lin, Y., and, J. N. Hansen. 1995. Characterization of a chimeric proU operon in a subtilin-producing mutant of Bacillus subtilis 168. J. Bacteriol. 177:68746880.
38. Linton, K. J., and, C. F. Higgins. 1998. The Escherichia coli ATP-binding cassette (ABC) proteins. Mol. Microbiol. 28:513.
39. Locher, K. P., and, E. Borths. 2004. ABC transporter architecture and mechanism: implications from the crystal structures of BtuCD and BtuF. FEBS Lett. 564:264268.
40. Luecke, H., and, F. A. Quiocho. 1990. High specificity of a phosphate transport protein determined by hydrogen bonds. Nature 347:402406.
41. McAdam, R. A.,, T. R. Weisbrod,, J. Martin,, J. D. Scuderi,, A. M. Brown,, J. D. Cirillo,, B. R. Bloom, and, W. R. Jacobs, Jr. 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect. Immun. 63:10041012.
42. Meyer, A. 2003. Molecular evolution: Duplication, duplication. Nature 421:3132.
43. Mir, M. A.,, H. S. Rajeswari,, U. Veeraraghavan, and, P. Ajitkumar. 2006. Molecular characterisation of ABC transporter type FtsE and FtsX proteins of Mycobacterium tuberculosis. Arch. Microbiol. 185:147158.
44. Onwueme, K. C.,, C. J. Vos,, J. Zurita,, J. A. Ferreras, and, L. E. N. Quadri. 2005. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog. Lipid Res. 44:259302.
45. Pai, M. P.,, K. M. Momary, and, K. A. Rodvold. 2006. Antibiotic drug interactions. Med. Clin. North Am. 90:12231255.
46. Pasca, M. R.,, P. Guglierame,, F. Arcesi,, M. Bellinzoni,, E. De Rossi, and, G. Riccardi. 2004. Rv2686c-Rv2687c-Rv2688c, an ABC fluoroquinolone efflux pump in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48:31753178.
47. Peirs, P.,, P. Lefevre,, S. Boarbi,, X. M. Wang,, O. Denis,, M. Braibant,, K. Pethe,, C. Locht,, K. Huygen, and, J. Content. 2005. Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect. Immun. 73:18981902.
48. Pethe, K.,, D. L. Swenson,, S. Alonso,, J. Anderson,, C. Wang, and, D. G. Russell. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl. Acad. Sci. USA 101:1364213647.
49. Quentin, Y.,, G. Fichant, and, F. Denizot. 1999. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J. Mol. Biol. 287:467484.
50. Rengarajan, J.,, B. R. Bloom, and, E. J. Rubin. 2005. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA 102:83278332.
51. Rodriguez, G. M. 2006. Control of iron metabolism in Mycobacterium tuberculosis. Trends Microbiol. 14:320327.
52. Rodriguez, G. M., and, I. Smith. 2006. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 188:424430.
53. Rosas-Magallanes, V.,, G. Stadthagen-Gomez,, J. Rauzier,, L. B. Barreiro,, L. Tailleux,, F. Boudou,, R. Griffin,, J. Nigou,, M. Jackson,, B. Gicquel, and, O. Neyrolles. 2007. Signature-tagged transposon mutagenesis identifies novel Mycobacterium tuberculosis genes involved in the parasitism of human macrophages. Infect. Immun. 75:504507.
54. Sarin, J.,, S. Aggarwal,, R. Chaba,, G. C. Varshney, and, P. K. Chakraborti. 2001. B-subunit of phosphate-specific transporter from Mycobacterium tuberculosis is a thermostable ATPase. J. Biol. Chem. 276:4459044597.
55. Sarin, J.,, G. P. Raghava, and, P. K. Chakraborti. 2003. Intrinsic contributions of polar amino acid residues toward thermal stability of an ABC-ATPase of mesophilic origin. Protein Sci. 12:21182120.
56. Sassetti, C. M.,, D. H. Boyd, and, E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
57. Sassetti, C. M., and, E. J. Rubin. 2003. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA 100:1298912994.
58. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan, and, G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med. 198:693704.
59. Stirling, D. A.,, C. S. Hulton,, L. Waddell,, S. F. Park,, G. S. Stewart,, I. R. Booth, and, C. F. Higgins. 1989. Molecular characterization of the proU loci of Salmonella typhimurium and Escherichia coli encoding osmoregulated glycine betaine transport systems. Mol. Microbiol. 3:10251038.
60. Stratmann, J.,, B. Strommenger,, R. Goethe,, K. Dohmann,, G. F. Gerlach,, K. Stevenson,, L. L. Li,, Q. Zhang,, V. Kapur, and, T. J. Bull. 2004. A 38-kilobase pathogenicity island specific for Mycobacterium avium subsp. paratuberculosis encodes cell surface proteins expressed in the host. Infect. Immun. 72:12651274.
61. Sulzenbacher, G.,, S. Canaan,, Y. Bordat,, O. Neyrolles,, G. Stadthagen,, V. Roig-Zamboni,, J. Rauzier,, D. Maurin,, F. Laval,, M. Daffe,, C. Cambillau,, B. Gicquel,, Y. Bourne, and, M. Jackson. 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 25:14361444.
62. Sutcliffe, I. C., and, D. J. Harrington. 2004. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 28:645659.
63. Talaat, A. M.,, R. Lyons,, S. T. Howard, and, S. A. Johnston. 2004. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA 101:46024607.
64. Ukai, H.,, H. Matsuzawa,, K. Ito,, M. Yamada, and, A. Nishimura. 1998. ftsE(Ts) affects translocation of K+-pump proteins into the cytoplasmic membrane of Escherichia coli. J. Bacteriol. 180:36633670.
65. Vyas, N. K.,, M. N. Vyas, and, F. A. Quiocho. 2003. Crystal structure of M tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 11:765774.
66. Waddell, S. J.,, G. A. Chung,, K. J. Gibson,, M. J. Everett,, D. E. Minnikin,, G. S. Besra, and, P. D. Butcher: 2005. Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett. Appl. Microbiol. 40:201206.
67. Wagner, D.,, F. J. Sangari,, A. Parker, and, L. E. Bermudez. 2005. fecB, a gene potentially involved in iron transport in Mycobacterium avium, is not induced within macrophages. FEMS Microbiol. Lett. 247:185191.
68. Wang, C.,, B. Hayes,, M. M. Vestling, and, K. Takayama. 2006. Transposome mutagenesis of an integral membrane transporter in Corynebacterium matruchotii. Biochem. Biophys. Res. Commun. 340:953960.
69. Wang, Z.,, A. Choudhary,, P. S. Ledvina, and, F. A. Quiocho. 1994. Fine tuning the specificity of the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and crystallographic studies. J. Biol. Chem. 269:2509125094.
70. Webb, M. R. 2003. Mycobacterial ABC transport system: structure of the primary phosphate receptor. Structure 11:736738.
71. Wooff, E.,, S. L. Michell,, S. V. Gordon,, M. A. Chambers,, S. Bardarov,, W. R. Jacobs, Jr.,, R. G. Hewinson, and, P. R. Wheeler. 2002. Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol. Microbiol. 43:653663.


Generic image for table
Table 1.

Reconstituted ABC transporters

Citation: Content J, Peirs P. 2008. 11 The ABC Transporter Systems, p 185-199. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error