1887

12 The MmpL Protein Family

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

12 The MmpL Protein Family, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap12-2.gif

Abstract:

The diverse array of lipids, many of which are critical for virulence and mediate interactions with host cells, exist primarily on the outermost surface of the bacterium. Fourteen genes have been identified by analysis of the two completed genomic sequences. These genes encode for large, multitransmembrane containing proteins and were thus given the moniker MmpL (for mycobacterial membrane protein, large). Initial models of MmpL function were based on the RND transporters from gram-negative bacteria. MmpL7 was the first MmpL family member to be studied and was identified as required for virulence and bacterial growth in vivo in a mouse model of infection. Mutants in were also isolated in a signature- tagged mutagenesis screen, and MmpL8 is indispensable for growth and virulence in mice. First, transcription is induced, albeit modestly, during infection of activated macrophages. The eukaryotic larger resistance, nodulation, and division (RND-family member, Niemann-Pick C1 (NPC1) utilizes the proton motive force to translocate cholesterol across the cell membrane and it is widely thought that RND family members use proton antiport or symport as a mechanism of facilitated transport of their substrates. The Lol system functions to export lipoproteins across the periplasm of to the inner leaflet of the outer membrane. LolCDE bind specifically to lipoproteins destined for the outer membrane and export them across the cell membrane, where they bind the periplasmic shuttle LolA.

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12

Key Concept Ranking

Integral Membrane Proteins
0.4720564
Outer Membrane Proteins
0.46327567
Efflux Pumps
0.4009237
0.4720564
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Phylogenetic tree of MmpL proteins from sequenced mycobacterial species. The MmpLs from are shown in bold. Most of the orthologues of the MmpLs are omitted because they are identical in sequence except Mb1177, which has a frameshift mutation in , and Mb1583, which is a full-length version of MmpL6. Mb, ; ML, ; MAP, ; MM, ; MUL, ; MSMEG, .

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Predicted membrane topology of MmpLs, indicating the two non-transmembrane regions.

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Gene organization of MmpLs. Genes predicted to be involved in lipid transport, including the and genes, the and genes, and the operon are shown as white arrows. Genes predicted to be involved in lipid biosynthesis and metabolism are shown in black.

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Model of MmpL secretion. The proposed models for PDIM and SL-1 secretion through MmpL7 and MmpL8, respectively, are shown. PpsA-E and Mas are polyketide synthases that extend straight chain fatty acids to phthiocerol and mycocerosic acid, respectively ( ). The enzymes FadD26 and FadD28 are thought to be AMP ligases that activate straight-chain fatty acids for transfer to the Pps and Mas enzymes ( ). The thioesterase TesA is also required for the synthesis of PDIM and interacts with PpsE ( ). PapA5 is able to catalyze the esterification of mycocerosic acids to phthiocerol to form PDIM ( ). MmpL7 and DrrABC are required to transport PDIM across the cell membrane ( ). Finally, LppX is a signal sequence containing protein that is thought to transport PDIM across the periplasm to the cell wall ( ). Two models for SL-1 secretion are shown. Pks2 is required for the synthesis of SL ( ). In model A, MmpL8 recruits an as yet unidentified biosynthetic factor to complete the synthesis of SL-1 from SL, before transport across the cell membrane ( ). In model B, MmpL8 exports SL across the cell membrane, after which it is converted to SL-1 by an as yet unidentified enzyme ( ). CM, cytoplasmic membrane; PG, peptidoglycan; mAG, mycolyl-arabinogalactan.

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch12
1. Azad, A. K.,, T. D. Sirakova,, N. D. Fernandes, and, P. E. Kolattukudy. 1997. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272:1674116745.
2. Azad, A. K.,, T. D. Sirakova,, L. M. Rogers, and, P. E. Kolattukudy. 1996. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93:47874792.
3. Betts, J. C.,, P. Dodson,, S. Quan,, A. P. Lewis,, P. J. Thomas,, K. Duncan, and, R. A. McAdam. 2000. Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. Microbiology 146:32053216.
4. Brennan, P. J., and, H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64:2963.
5. Brosch, R.,, S. V. Gordon,, M. Marmiesse,, P. Brodin,, C. Buchrieser,, K. Eiglmeier,, T. Garnier,, C. Gutierrez,, G. Hewinson,, K. Kremer,, L. M. Parsons,, A. S. Pym,, S. Samper,, D. van Soolingen, and, S. T. Cole. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl. Acad. Sci. USA 99:36843689.
6. Bystrykh, L. V.,, M. A. Fernandez-Moreno,, J. K. Herrema,, F. Malpartida,, D. A. Hopwood, and, L. Dijkhuizen. 1996. Production of actinorhodin-related “blue pigments” by Streptomyces coelicolor A3(2). J. Bacteriol. 178:22382244.
7. Camacho, L. R.,, P. Constant,, C. Raynaud,, M. A. Laneelle,, J. A. Triccas,, B. Gicquel,, M. Daffe and, C. Guilhot. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol. Chem. 276:1984519854.
8. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel, and, C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34:257267.
9. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels, B., G. A. Krogh,, J. Mclean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
10. Converse, S. E.,, J. D. Mougous,, M. D. Leavell,, J. A. Leary,, C. R. Bertozzi, and, J. S. Cox. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA 100:61216126.
11. Cox, J. S.,, B. Chen,, M. McNeil, and, W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:7983.
12. Davies, J. P.,, F. W. Chen, and, Y. A. Ioannou. 2000. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290:22952298.
13. Domenech, P.,, M. B. Reed, and, C. E. Barry III. 2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun. 73:34923501.
14. Domenech, P.,, M. B. Reed,, C. S. Dowd,, C. Manca,, G. Kaplan, and, C. E. Barry III. 2004. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J. Biol. Chem. 279:2125721265.
15. Elkins, C. A., and, H. Nikaido. 2002. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J. Bacteriol. 184:64906498.
16. Fleischmann, R. D.,, D. Alland,, J. A. Eisen,, L. Carpenter,, O. White,, J. Peterson,, R. DeBoy,, R. Dodson,, M. Gwinn,, D. Haft,, E. Hickey,, J. F. Kolonay,, W. C. Nelson,, L. A. Umayam,, M. Ermolaeva,, S. L. Salzberg,, A. Delcher,, T. Utterback,, J. Weidman,, H. Khouri,, J. Gill,, A. Mikula,, W. Bishai,, W. R. Jacobs, Jr.,, J. C. Venter, and, C. M. Fraser. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J. Bacteriol. 184:54795490.
17. Gilleron, M.,, S. Stenger,, Z. Mazorra,, F. Wittke,, S. Mariotti,, G. Bohmer,, J. Prandi,, L. Mori,, G. Puzo, and, G. De Libero. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199:649659.
18. Goren, M. B.,, O. Brokl, and, W. B. Schaefer. 1974. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect. Immun. 9:150158.
19. Higgins, M. K.,, E. Bokma,, E. Koronakis,, C. Hughes, and, V. Koronakis. 2004. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl. Acad. Sci. USA 101:99949999.
20. Jain, M., and, J. S. Cox. 2005. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog. 1:e2.
21. Jain, M.,, C. J. Petzold,, M. W. Schelle,, M. D. Leavell,, J. D. Mougous,, C. R. Bertozzi,, J. A. Leary, and, J. S. Cox. 2007. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc. Natl. Acad. Sci. USA 104:51335138.
22. Kim, S. H.,, A. B. Chang, and, M. H. Saier, Jr. 2004. Sequence similarity between multidrug resistance efflux pumps of the ABC and RND superfamilies. Microbiology 150:24932495.
23. Koronakis, V.,, A. Sharff,, E. Koronakis,, B. Luisi, and, C. Hughes. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914919.
24. Ma, Y.,, A. Erkner,, R. Gong,, S. Yao,, J. Taipale,, K. Basler, and, P. A. Beachy. 2002. Hedgehog-mediated patterning of the mammalian embryo requires transporter-like function of dispatched. Cell 111:6375.
25. Martinez, A.,, S. Torello, and, R. Kolter. 1999. Sliding motility in mycobacteria. J. Bacteriol. 181:73317338.
26. Mikolosko, J.,, K. Bobyk,, H. I. Zgurskaya, and, P. Ghosh. 2006. Conformational flexibility in the multidrug efflux system protein AcrA. Structure 14:577587.
27. Murakami, S.,, R. Nakashima,, E. Yamashita,, T. Matsumoto, and, A. Yamaguchi. 2006. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature 443:173179.
28. Murakami, S.,, R. Nakashima,, E. Yamashita and, A. Yamaguchi. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419:587593.
29. Onwueme, K. C.,, J. A. Ferreras,, J. Buglino,, C. D. Lima, and, L. E. Quadri. 2004. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc. Natl. Acad. Sci. USA 101:46084613.
30. Pos, K. M.,, A. Schiefner,, M. A. Seeger, and, K. Diederichs. 2004. Crystallographic analysis of AcrB. FEBS Lett. 564:333339.
31. Rao, A., and, A. Ranganathan. 2004. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol. Genet. Genomics 272:571579.
32. Recht, J.,, A. Martinez,, S. Torello, and, R. Kolter. 2000. Genetic analysis of sliding motility in Mycobacterium smegmatis. J. Bacteriol. 182:43484351.
33. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry, 3rd. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:8487.
34. Rodriguez, G. M.,, M. I. Voskuil,, B. Gold,, G. K. Schoolnik, and, I. Smith. 2002. ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 70:33713381.
35. Rousseau, C.,, N. Winter,, E. Pivert,, Y. Bordat,, O. Neyrolles,, P. Ave,, M. Huerre,, B. Gicquel, and, M. Jackson. 2004. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell. Microbiol. 6:277287.
36. Sassetti, C. M.,, D. H. Boyd, and, E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
37. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan, and, G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:693704.
38. Seeger, M. A.,, A. Schiefner,, T. Eicher,, F. Verrey,, K. Diederichs, and, K. M. Pos. 2006. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science 313:12951298.
39. Sirakova, T. D.,, A. K. Thirumala,, V. S. Dubey,, H. Sprecher, and, P. E. Kolattukudy. 2001. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethylbranched fatty acids required for sulfolipid synthesis. J. Biol. Chem. 276:1683316839.
40. Sonden, B.,, D. Kocincova,, C. Deshayes,, D. Euphrasie,, L. Rhayat,, F. Laval,, C. Frehel,, M. Daffe,, G. Etienne, and, J. M. Reyrat. 2005. Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol. Microbiol. 58:426440.
41. Straight, P. D.,, M. A. Fischbach,, C. T. Walsh,, D. Z. Rudner, and, R. Kolter. 2007. A singular enzymatic megacomplex from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 104:305310.
42. Sulzenbacher, G.,, S. Canaan,, Y. Bordat,, O. Neyrolles,, G. Stadthagen,, V. Roig-Zamboni,, J. Rauzier,, D. Maurin,, F. Laval,, M. Daffe,, C. Cambillau,, B. Gicquel,, Y. Bourne, and, M. Jackson. 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 25:14361444.
43. Tekaia, F.,, S. V. Gordon,, T. Garnier,, R. Brosch,, B. G. Barrell, and, S. T. Cole. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis. 79:329342.
44. Thanassi, D. G.,, L. W. Cheng, and, H. Nikaido. 1997. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179:25122518.
45. Tikhonova, E. B.,, Q. Wang, and, H. I. Zgurskaya. 2002. Chimeric analysis of the multicomponent multidrug efflux transporters from gram-negative bacteria. J. Bacteriol. 184:64996507.
46. Tikhonova, E. B., and, H. I. Zgurskaya. 2004. AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex. J. Biol. Chem. 279:3211632124.
47. Touze, T.,, J. Eswaran,, E. Bokma,, E. Koronakis,, C. Hughes, and, V. Koronakis. 2004. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol. Microbiol. 53:697706.
48. Trivedi, O. A.,, P. Arora,, V. Sridharan,, R. Tickoo,, D. Mohanty, and, R. S. Gokhale. 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441445.
49. Trivedi, O. A.,, P. Arora,, A. Vats,, M. Z. Ansari,, R. Tickoo,, V. Sridharan,, D. Mohanty, and, R. S. Gokhale. 2005. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 17:631643.
50. Tseng, T. T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau, and, M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:107125.
51. Venter, H.,, R. A. Shilling,, S. Velamakanni,, L. Balakrishnan, and, H. W. Van Veen. 2003. An ABC transporter with a secondaryactive multidrug translocator domain. Nature 426:866870.
52. Yu, E. W.,, J. R. Aires,, G. McDermott, and, H. Nikaido. 2005. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J. Bacteriol. 187:68046815.
53. Yu, E. W.,, G. McDermott,, H. I. Zgurskaya,, H. Nikaido, and, D. E. Koshland, Jr. 2003. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300:976980.
54. Zgurskaya, H. I., and, H. Nikaido. 1999. Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli. Proc. Natl. Acad. Sci. USA 96:71907195.

Tables

Generic image for table
Table 1.

Distribution of MmpL transporters in mycobacteria

Citation: Jain M, Chow E, Cox J. 2008. 12 The MmpL Protein Family, p 201-209. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error