1887

13 ESAT-6 and the Mycobacterial ESX Secretion Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

13 ESAT-6 and the Mycobacterial ESX Secretion Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap13-2.gif

Abstract:

The search for important antigens among secreted proteins from present in culture filtrates led to the identification of ESAT-6 (early secretory antigenic target of 6 kDa), a small molecule that migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular mass of 6 kDa. When administered as a subunit vaccine in mice, the mixture of culture filtrate proteins induced protection at the same level as the live vaccine BCG (BCG). This chapter talks about ESAT-6 and related proteins in the past few years since their discovery. The original ESAT-6 protein was purified from culture filtrates by ammonium sulfate precipitation, hydrophobic interaction chromatography, followed by anion exchange chromatography. CFP-10 is another important T-cell antigen present in culture filtrates and identified as a member of the ESX protein family. The active secretion of ESAT-6 and CFP-10 and the surface features of the CFP-10-ESAT-6 complex suggested a function based on specific binding to host proteins rather than a pore-forming role of the complex to mediate cell lysis activity. The ESAT-6 family proteins are also found to be important in the development of vaccines against tuberculosis. The infectious cycle of ranges from lifelong asymptomatic parasitism to the rapid development of tuberculous cavities in the lungs of patients that have become susceptible to develop the disease.

Citation: Rosenkrands I, Bottai D, Andersen P, Brosch R. 2008. 13 ESAT-6 and the Mycobacterial ESX Secretion Systems, p 211-221. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch13

Key Concept Ranking

Immune System Proteins
0.5378949
0.5378949
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Genomic organization of the ESX operons in H37Rv, after Tekaia et al. ( ) and Gey van Pittius et al. ( ). The upper part provides information about the proteins encoded by the various genes and their corresponding partitions shown in abridged form. The figure is centered around the ESAT-6- and CFP-10-encoding genes and and is not to scale. Operon structures are not shown.

Citation: Rosenkrands I, Bottai D, Andersen P, Brosch R. 2008. 13 ESAT-6 and the Mycobacterial ESX Secretion Systems, p 211-221. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

A ribbon representation of the backbone topology of the CFP-10·ESAT-6 complex based on the solution structure ( ) (A) and the model of the ESAT-6 CFP-10 complex ( ) (B), showing experimentally introduced mutations into ESAT-6 mutations and their effect in the SCID mouse model.

Citation: Rosenkrands I, Bottai D, Andersen P, Brosch R. 2008. 13 ESAT-6 and the Mycobacterial ESX Secretion Systems, p 211-221. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Working model for biogenesis and export of ESAT-6 proteins in H37Rv plus the positions of various genes and deletions ( ). The upper part presents a possible functional model indicating predicted subcellular localization and known or potential protein-protein interactions. Rosetta stone analysis indicates direct interaction between proteins Rv3870 and Rv3871; Rv3868 is an AAA-ATPase that is likely to act as a chaperone. ESAT-6 and CFP-10 are predicted to be exported through a transmembrane channel, consisting of at least Rv3870, Rv3871, and Rv3877 and possibly Rv3869 in a process catalyzed by ATP hydrolysis. The lower part shows key genes, the various proteins from the RD1 region, their sizes (number of amino acid residues), and the protein families.

Citation: Rosenkrands I, Bottai D, Andersen P, Brosch R. 2008. 13 ESAT-6 and the Mycobacterial ESX Secretion Systems, p 211-221. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch13
1. Abdallah, A. M.,, T. Verboom,, F. Hannes,, M. Safi,, M. Strong,, D. Eisenberg,, R. J. Musters,, C. M. Vandenbroucke-Grauls,, B. J. Appelmelk,, J. Luirink, and, W. Bitter. 2006. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol. Microbiol. 62:667679.
2. Agger, E. M.,, I. Brock,, L. M. Okkels,, S. M. Arend,, C. S. Aagaard,, K. N. Weldingh, and, P. Andersen. 2003. Human T-cell responses to the RD1-encoded protein TB27.4 (Rv3878) from Mycobacterium tuberculosis. Immunology 110:507512.
3. Alderson, M. R.,, T. Bement,, C. H. Day,, L. Zhu,, D. Molesh,, Y. A. Skeiky,, R. Coler,, D. M. Lewinsohn,, S. G. Reed, and, D. C. Dillon. 2000. Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T cells. J. Exp. Med. 191:551560.
4. Andersen, P. 1994. The T cell response to secreted antigens of Mycobacterium tuberculosis. Immunobiology 191:537547.
5. Andersen, P.,, A. B. Andersen,, A. L. Sorensen, and, S. Nagai. 1995. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J. Immunol. 154:33593372.
6. Andersen, P.,, T. M. Doherty,, M. Pai, and, K. Weldingh. 2007. The prognosis of latent tuberculosis: can disease be predicted? Trends Mol. Med. 13:175182.
7. Arend, S. M.,, P. Andersen,, K. E. van Meijgaarden,, R. L. Skjøt,, Y. W. Subronto,, J. T. van Dissel, and, T. H. Ottenhoff. 2000. Detection of active tuberculosis infection by T cell responses to early-secreted antigenic target 6-kDa protein and culture filtrate protein 10. J. Infect. Dis. 181:18501854.
8. Bennekov, T.,, J. Dietrich,, I. Rosenkrands,, A. Stryhn,, T. M. Doherty, and, P. Andersen. 2006. Alteration of epitope recognition pattern in Ag85B and ESAT-6 has a profound influence on vaccine-induced protection against Mycobacterium tuberculosis. Eur. J. Immunol. 36:33463355.
9. Berthet, F. X.,, P. B. Rasmussen,, I. Rosenkrands,, P. Andersen, and, B. Gicquel. 1998. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology 144:31953203.
10. Brandt, L.,, M. Elhay,, I. Rosenkrands,, E. B. Lindblad, and, P. Andersen. 2000. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect. Immun. 68:791795.
11. Brandt, L.,, T. Oettinger,, A. Holm,, A. B. Andersen, and, P. Andersen. 1996. Key epitopes on the ESAT-6 antigen recognized in mice during the recall of protective immunity to Mycobacterium tuberculosis. J. Immunol. 157:35273533.
12. Brodin, P.,, M. I. de Jonge,, L. Majlessi,, C. Leclerc,, M. Nilges,, S. T. Cole, and, R. Brosch. 2005. Functional analysis of early secreted antigenic target-6, the dominant T-cell antigen of Mycobacterium tuberculosis, reveals key residues involved in secretion, complex formation, virulence, and immunogenicity. J. Biol. Chem. 280:3395333959.
13. Brodin, P.,, K. Eiglmeier,, M. Marmiesse,, A. Billault,, T. Garnier,, S. Niemann,, S. T. Cole, and, R. Brosch. 2002. Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect. Immun. 70:55685578.
14. Brodin, P.,, L. Majlessi,, R. Brosch,, D. Smith,, G. Bancroft,, S. Clark,, A. Williams,, C. Leclerc, and, S. T. Cole. 2004a. Enhanced protection against tuberculosis by vaccination with recombinant Mycobacterium microti vaccine that induces T cell immunity against region of difference 1 antigens. J. Infect. Dis. 190:115122.
15. Brodin, P.,, L. Majlessi,, L. Marsollier,, M. I. de Jonge,, D. Bottai,, C. Demangel,, J. Hinds,, O. Neyrolles,, P. D. Butcher,, C. Leclerc,, S. T. Cole, and, R. Brosch. 2006. Dissection of ESAT-6 system 1 of Mycobacterium tuberculosis and impact on immunogenicity and virulence. Infect. Immun. 74:8898.
16. Brodin, P.,, I. Rosenkrands,, P. Andersen,, S. T. Cole, and, R. Brosch. 2004b. ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol. 12:500508.
17. Brusasca, P. N.,, R. Colangeli,, K. P. Lyashchenko,, X. Zhao,, M. Vogelstein,, J. S. Spencer,, D. N. McMurray, and, M. L. Gennaro. 2001. Immunological characterization of antigens encoded by the RD1 region of the Mycobacterium tuberculosis genome. Scand. J. Immunol. 54:448452.
18. Brusasca, P. N.,, R. L. Peters,, S. L. Motzel,, H. J. Klein, and, M. L. Gennaro. 2003. Antigen recognition by serum antibodies in non-human primates experimentally infected with Mycobacterium tuberculosis. Comp. Med. 53:165172.
19. Champion, P. A.,, S. A. Stanley,, M. M. Champion,, E. J. Brown, and, J. S. Cox. 2006. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science 313:16321636.
20. Choudhary, R. K.,, S. Mukhopadhyay,, P. Chakhaiyar,, N. Sharma,, K. J. Murthy,, V. M. Katoch, and, S. E. Hasnain. 2003. PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect. Immun. 71:63386343.
21. Christie, P. J.,, K. Atmakuri,, V. Krishnamoorthy,, S. Jakubowski, and, E. Cascales. 2005. Biogenesis, architecture, and function of bacterial type IV secretion systems. Annu. Rev. Microbiol. 59:451485.
22. Cockle, P. J.,, S. V. Gordon,, A. Lalvani,, B. M. Buddle,, R. G. Hewinson, and, H. M. Vordermeier. 2002. Identification of novel Mycobacterium tuberculosis antigens with potential as diagnostic reagents or subunit vaccine candidates by comparative genomics. Infect. Immun. 70:69967003.
23. Colangeli, R.,, J. S. Spencer,, P. Bifani,, A. Williams,, K. Lyashchenko,, M. A. Keen,, P. J. Hill,, J. Belisle, and, M. L. Gennaro. 2000. MTSA-10, the product of the Rv3874 gene of Mycobacterium tuberculosis, elicits tuberculosis-specific, delayed-type hypersensitivity in guinea pigs. Infect. Immun. 68:990993.
24. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, 3rd,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
25. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward, and, B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
26. Converse, S. E., and, J. S. Cox. 2005. A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J. Bacteriol. 187:12381245.
27. de Jonge, M. I.,, G. Pehau-Arnaudet,, M. M. Fretz,, F. Romain,, D. Bottai,, P. Brodin,, N. Honoré,, G. Marchal,, W. Jiskoot,, P. England,, S. T. Cole, and, R. Brosch. 2007. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membranelysing activity. J. Bacteriol. 189:60286034.
28. Demangel, C.,, P. Brodin,, P. J. Cockle,, R. Brosch,, L. Majlessi,, C. Leclerc, and, S. T. Cole. 2004. Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-kilodalton culture filtrate protein and ESAT-6. Infect. Immun. 72:21702176.
29. Derrick, S. C., and, S. L. Morris. 2007. The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression. Cell. Microbiol. 9:15471555.
30. Dietrich, J.,, C. Aagaard,, R. Leah,, A. W. Olsen,, A. Stryhn,, T. M. Doherty, and, P. Andersen. 2005. Exchanging ESAT6 with TB10.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT6-based sensitive monitoring of vaccine efficacy. J. Immunol. 174:63326339.
31. Dillon, D. C.,, M. R. Alderson,, C. H. Day,, T. Bement,, A. Campos-Neto,, Y. A. Skeiky,, T. Vedvick,, R. Badaro,, S. G. Reed, and, R. Houghton. 2000. Molecular and immunological characterization of Mycobacterium tuberculosis CFP-10, an immunodiagnostic antigen missing in Mycobacterium bovis BCG. J. Clin. Microbiol. 38:32853290.
32. Elhay, M. J.,, T. Oettinger, and, P. Andersen. 1998. Delayed-type hypersensitivity responses to ESAT-6 and MPT64 from Mycobacterium tuberculosis in the guinea pig. Infect. Immun. 66:34543456.
33. Flint, J. L.,, J. C. Kowalski,, P. K. Karnati, and, K. M. Derbyshire. 2004. The RD1 virulence locus of Mycobacterium tuberculosis regulates DNA transfer in Mycobacterium smegmatis. Proc. Natl. Acad. Sci. USA 101:1259812603.
34. Fortune, S. M.,, A. Jaeger,, D. A. Sarracino,, M. R. Chase,, C. M. Sassetti,, D. R. Sherman,, B. R. Bloom, and, E. J. Rubin. 2005. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc. Natl. Acad. Sci. USA 102:1067610681.
35. Gao, L. Y.,, S. Guo,, B. McLaughlin,, H. Morisaki,, J. N. Engel, and, E. J. Brown. 2004. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol. Microbiol. 53:16771693.
36. Gey Van Pittius, N. C.,, J. Gamieldien,, W. Hide,, G. D. Brown,, R. J. Siezen, and, A. D. Beyers. 2001. The ESAT-6 gene cluster of Mycobacterium tuberculosis and other high G+C Gram-positive bacteria. Genome Biol. 2:RESEARCH0044.
37. Gey van Pittius, N. C.,, S. L. Sampson,, H. Lee,, Y. Kim,, P. D. van Helden, and, R. M. Warren. 2006. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol. Biol. 6:95.
38. Guinn, K. I.,, M. J. Hickey,, S. K. Mathur,, K. L. Zakel,, J. E. Grotzke,, D. M. Lewinsohn,, S. Smith, and, D. R. Sherman. 2004. Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol. Microbiol. 51:359370.
39. Gutierrez, M. C.,, S. Brisse,, R. Brosch,, M. Fabre,, B. Omais,, M. Marmiesse,, P. Supply, and, V. Vincent. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 1:e5.
40. Harboe, M.,, T. Oettinger,, H. G. Wiker,, I. Rosenkrands, and, P. Andersen. 1996. Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG. Infect. Immun. 64:1622.
41. Hogarth, P. J.,, K. E. Logan,, H. M. Vordermeier,, M. Singh,, R. G. Hewinson, and, M. A. Chambers. 2005. Protective immunity against Mycobacterium bovis induced by vaccination with Rv3109c—a member of the esat-6 gene family. Vaccine 23:25572564.
42. Hsu, T.,, S. M. Hingley-Wilson,, B. Chen,, M. Chen,, A. Z. Dai,, P. M. Morin,, C. B. Marks,, J. Padiyar,, C. Goulding,, M. Gingery,, D. Eisenberg,, R. G. Russell,, S. C. Derrick,, F. M. Collins,, S. L. Morris,, C. H. King, and, W. R. Jacobs, Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc. Natl. Acad. Sci. USA 100:1242012425.
43. Kamath, A. B.,, J. Woodworth,, X. Xiong,, C. Taylor,, Y. Weng, and, S. M. Behar. 2004. Cytolytic CD8 + T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J. Exp. Med. 200:14791489.
44. Kamath, A. T.,, C. G. Feng,, M. Macdonald,, H. Briscoe, and, W. J. Britton. 1999. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect. Immun. 67:17021707.
45. Lalvani, A.,, A. A. Pathan,, H. McShane,, R. J. Wilkinson,, M. Latif,, C. P. Conlon,, G. Pasvol, and, A. V. Hill. 2001. Rapid detection of Mycobacterium tuberculosis infection by enumeration of antigen-specific T cells. Am. J. Respir. Crit. Care Med. 163:824828.
46. Langermans, J. A.,, T. M. Doherty,, R. A. Vervenne,, T. van der Laan,, K. Lyashchenko,, R. Greenwald,, E. M. Agger,, C. Aagaard,, H. Weiler,, D. van Soolingen,, W. Dalemans,, A. W. Thomas, and, P. Andersen. 2005. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 23:27402750.
47. Lewis, K. N.,, R. Liao,, K. M. Guinn,, M. J. Hickey,, S. Smith,, M. A. Behr, and, D. R. Sherman. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J. Infect. Dis. 187:117123.
48. Lightbody, K. L.,, P. S. Renshaw,, M. L. Collins,, R. L. Wright,, D. M. Hunt,, S. V. Gordon,, R. G. Hewinson,, R. S. Buxton,, R. A. Williamson, and, M. D. Carr. 2004. Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family. Towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol. Lett. 238:255262.
49. Lyashchenko, K.,, R. Colangeli,, M. Houde,, H. Al Jahdali,, D. Menzies, and, M. L. Gennaro. 1998a. Heterogeneous antibody responses in tuberculosis. Infect. Immun. 66:39363940.
50. Lyashchenko, K. P.,, R. Greenwald,, J. Esfandiari,, J. H. Olsen,, R. Ball,, G. Dumonceaux,, F. Dunker,, C. Buckley,, M. Richard,, S. Murray,, J. B. Payeur,, P. Andersen,, J. M. Pollock,, S. Mikota,, M. Miller,, D. Sofranko, and, W. R. Waters. 2006. Tuberculosis in elephants: antibody responses to defined antigens of Mycobacterium tuberculosis, potential for early diagnosis, and monitoring of treatment. Clin. Vaccine Immunol. 13:722732.
51. Lyashchenko, K. P.,, J. M. Pollock,, R. Colangeli, and, M. L. Gennaro. 1998b. Diversity of antigen recognition by serum antibodies in experimental bovine tuberculosis. Infect. Immun. 66:53445349.
52. MacGurn, J. A.,, S. Raghavan,, S. A. Stanley, and, J. S. Cox. 2005. A non-RD1 gene cluster is required for Snm secretion in Mycobacterium tuberculosis. Mol. Microbiol. 57:16531663.
53. Mahairas, G. G.,, P. J. Sabo,, M. J. Hickey,, D. C. Singh, and, C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178:12741282.
54. Majlessi, L.,, P. Brodin,, R. Brosch,, M. J. Rojas,, H. Khun,, M. Huerre,, S. T. Cole, and, C. Leclerc. 2005. Influence of ESAT-6 Secretion System 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J. Immunol. 174:35703579.
55. Majlessi, L.,, M. J. Rojas,, P. Brodin, and, C. Leclerc. 2003. CD8+-T-cell responses of Mycobacterium-infected mice to a newly identified major histocompatibility complex class I-restricted epitope shared by proteins of the ESAT-6 family. Infect. Immun. 71:71737177.
56. Marei, A.,, A. Ghaemmaghami,, P. Renshaw,, M. Wiselka,, M. Barer,, M. Carr, and, L. Ziegler-Heitbrock. 2005. Superior T cell activation by ESAT-6 as compared with the ESAT-6-CFP-10 complex. Int. Immunol. 17:14391446.
57. Marmiesse, M.,, P. Brodin,, C. Buchrieser,, C. Gutierrez,, N. Simoes,, V. Vincent,, P. Glaser,, S. T. Cole, and, R. Brosch. 2004. Macroarray and bioinformatic analyses reveal mycobacterial ‘ore’-genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150:483496.
58. Mollenkopf, H. J.,, D. Groine-Triebkorn,, P. Andersen,, J. Hess, and, S. H. Kaufmann. 2001. Protective efficacy against tuberculosis of ESAT-6 secreted by a live Salmonella typhimurium vaccine carrier strain and expressed by naked DNA. Vaccine 19:40284035.
59. Mori, T.,, M. Sakatani,, F. Yamagishi,, T. Takashima,, Y. Kawabe,, K. Nagao,, E. Shigeto,, N. Harada,, S. Mitarai,, M. Okada,, K. Suzuki,, Y. Inoue,, K. Tsuyuguchi,, Y. Sasaki,, G. H. Mazurek, and, I. Tsuyuguchi. 2004. Specific detection of tuberculosis infection with an interferon-gamma based assay using new antigens. Am. J. Respir. Crit. Care Med. 70:5964.
60. Mostowy, S.,, D. Cousins, and, M. A. Behr. 2004. Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J. Bacteriol. 186:104109.
61. Mustafa, A. S.,, H. A. Amoudy,, H. G. Wiker,, A. T. Abal,, P. Ravn,, F. Oftung, and, P. Andersen. 1998. Comparison of antigen-specific T-cell responses of tuberculosis patients using complex or single antigens of Mycobacterium tuberculosis. Scand. J. Immunol. 48:535543.
62. Mustafa, A. S.,, P. J. Cockle,, F. Shaban,, R. G. Hewinson, and, H. M. Vordermeier. 2002. Immunogenicity of Mycobacterium tuberculosis RD1 region gene products in infected cattle. Clin. Exp. Immunol. 130:3742.
63. Mustafa, A. S.,, F. Oftung,, H. A. Amoudy,, N. M. Madi,, A. T. Abal,, F. Shaban,, I. Rosenkrands, and, P. Andersen. 2000. Multiple epitopes from the Mycobacterium tuberculosis ESAT-6 antigen are recognized by antigen-specific human T cell lines. Clin. Infect. Dis. 30:S201S205.
64. Mustafa, A. S.,, F. A. Shaban,, R. Al-Attiyah,, A. T. Abal,, A. M. El-Shamy,, P. Andersen, and, F. Oftung. 2003. Human Th1 cell lines recognize the Mycobacterium tuberculosis ESAT-6 antigen and its peptides in association with frequently expressed HLA class II molecules. Scand. J. Immunol. 57:125134.
65. Okkels, L. M., and, P. Andersen. 2004. Protein-protein interactions of proteins from the ESAT-6 family of Mycobacterium tuberculosis. J. Bacteriol. 186:24872491.
66. Okkels, L. M.,, I. Brock,, F. Follmann,, E. M. Agger,, S. M. Arend,, T. H. Ottenhoff,, F. Oftung,, I. Rosenkrands, and, P. Andersen. 2003. PPE protein (Rv3873) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T-cell epitopes and epitopes conserved within the PPE family. Infect. Immun. 71:61166123.
67. Okkels, L. M.,, E. C. Muller,, M. Schmid,, I. Rosenkrands,, S. H. Kaufmann,, P. Andersen, and, P. R. Jungblut. 2004. CFP10 discriminates between nonacetylated and acetylated ESAT-6 of Mycobacterium tuberculosis by differential interaction. Proteomics 4:29542960.
68. Olsen, A. W.,, P. R. Hansen,, A. Holm, and, P. Andersen. 2000. Efficient protection against Mycobacterium tuberculosis by vaccination with a single subdominant epitope from the ESAT-6 antigen. Eur. J. Immunol. 30:17241732.
69. Olsen, A. W.,, A. Williams,, L. M. Okkels,, G. Hatch, and, P. Andersen. 2004. Protective effect of a tuberculosis subunit vaccine based on a fusion of antigen 85B and ESAT-6 in the aerosol guinea pig model. Infect. Immun. 72:61486150.
70. Pai, M. 2005. Alternatives to the tuberculin skin test: interferon-gamma assays in the diagnosis of Mycobacterium tuberculosis infection. Indian J. Med. Microbiol. 23:151158.
71. Pathan, A. A.,, K. A. Wilkinson,, R. J. Wilkinson,, M. Latif,, H. McShane,, G. Pasvol,, A. V. Hill, and, A. Lalvani. 2000. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease. Eur. J. Immunol. 30:27132721.
72. Pollock, J. M., and, P. Andersen. 1997. Predominant recognition of the ESAT-6 protein in the first phase of interferon with Mycobacterium bovis in cattle. Infect. Immun. 65:25872592.
73. Pollock, J. M.,, J. McNair,, H. Bassett,, J. P. Cassidy,, E. Costello,, H. Aggerbeck,, I. Rosenkrands, and, P. Andersen. 2003. Specific delayed-type hypersensitivity responses to ESAT-6 identify tuberculosis-infected cattle. J. Clin. Microbiol. 41:18561860.
74. Pym, A. S.,, P. Brodin,, R. Brosch,, M. Huerre, and, S. T. Cole. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. Microbiol. 46:709717.
75. Pym, A. S.,, P. Brodin,, L. Majlessi,, R. Brosch,, C. Demangel,, A. Williams,, K. E. Griffiths,, G. Marchal,, C. Leclerc, and, S. T. Cole. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat. Med. 9:533539.
76. Ravn, P.,, A. Demissie,, T. Eguale,, H. Wondwosson,, D. Lein,, H. A. Amoudy,, A. S. Mustafa,, A. K. Jensen,, A. Holm,, I. Rosenkrands,, F. Oftung,, J. Olobo,, F. von Reyn, and, P. Andersen. 1999. Human T cell responses to the ESAT-6 antigen from Mycobacterium tuberculosis. J. Infect. Dis. 179:637645.
77. Renshaw, P. S.,, K. L. Lightbody,, V. Veverka,, F. W. Muskett,, G. Kelly,, T. A. Frenkiel,, S. V. Gordon,, R. G. Hewinson,, B. Burke,, J. Norman,, R. A. Williamson, and, M. D. Carr. 2005. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 24:24912498.
78. Renshaw, P. S.,, P. Panagiotidou,, A. Whelan,, S. V. Gordon,, R. G. Hewinson,, R. A. Williamson, and, M. D. Carr. 2002. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J. Biol. Chem. 277:2159821603.
79. Rison, S. C.,, J. Mattow,, P. R. Jungblut, and, N. G. Stoker. 2007. Experimental determination of translational starts using peptide mass mapping and tandem mass spectrometry within the proteome of Mycobacterium tuberculosis. Microbiology 153:521528.
80. Rogerson, B. J.,, Y. J. Jung,, R. LaCourse,, L. Ryan,, N. Enright, and, R. J. North. 2006. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195201.
81. Sassetti, C. M.,, D. H. Boyd, and, E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
82. Schumann, G.,, S. Schleier,, I. Rosenkrands,, N. Nehmann,, S. Hälbich,, P. F. Zipfel,, M. I. de Jonge,, S. T. Cole,, T. Munder, and, U. Möllmann. 2006. Mycobacterium tuberculosis secreted protein ESAT-6 interacts with the human protein syntenin-1. Centr. Eur. J. Biol. 1:183202.
83. Singh, A.,, D. Mai,, A. Kumar, and, A. J. Steyn. 2006. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc. Natl. Acad. Sci. USA 103:1134611351.
84. Skjøt, R. L. V.,, T. Oettinger,, I. Rosenkrands,, P. Ravn,, I. Brock,, S. Jacobsen, and, P. Andersen. 2000. Comparative evaluation of low-molecular-mass proteins from Mycobacterium tuberculosis identifies members of the ESAT-6 family as immunodominant T-cell antigens. Infect. Immun. 68:214220.
85. Skjøt, R. L.,, I. Brock,, S. M. Arend,, M. E. Munk,, M. Theisen,, T. H. Ottenhoff, and, P. Andersen. 2002. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect. Immun. 70:54465453.
86. Smith, S. M.,, M. R. Klein,, A. S. Malin,, J. Sillah,, K. Huygen,, P. Andersen,, K. P. McAdam, and, H. M. Dockrell. 2000. Human CD8(+) T cells specific for Mycobacterium tuberculosis secreted antigens in tuberculosis patients and healthy BCG-vaccinated controls in The Gambia. Infect. Immun. 68:71447148.
87. Sorensen, A. L.,, S. Nagai,, G. Houen,, P. Andersen, and, A. B. Andersen. 1995. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 63:17101717.
88. Stanley, S. A.,, J. E. Johndrow,, P. Manzanillo, and, J. S. Cox. 2007. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J. Immunol. 178:31433152.
89. Stanley, S. A.,, S. Raghavan,, W. W. Hwang, and, J. S. Cox. 2003. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc. Natl. Acad. Sci. USA 100:1300113006.
90. Strong, M.,, M. R. Sawaya,, S. Wang,, M. Phillips,, D. Cascio, and, D. Eisenberg. 2006. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103:80608065.
91. Stukova, M. A.,, S. Sereinig,, N. V. Zabolotnyh,, B. Ferko,, C. Kittel,, J. Romanova,, T. I. Vinogradova,, H. Katinger,, O. I. Kiselev, and, A. Egorov. 2006. Vaccine potential of influenza vectors expressing Mycobacterium tuberculosis ESAT-6 protein. Tuberculosis (Edinburgh) 86:236246.
92. Tekaia, F.,, S. V. Gordon,, T. Garnier,, R. Brosch,, B. G. Barrell, and, S. T. Cole. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber. Lung Dis. 79:329342.
93. Tundup, S.,, Y. Akhter,, D. Thiagarajan, and, S. E. Hasnain. 2006. Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett. 580:12851293.
94. van Pinxteren, L. A.,, P. Ravn,, E. M. Agger,, J. Pollock, and, P. Andersen. 2000. Diagnosis of tuberculosis based on the two specific antigens ESAT-6 and CFP10. Clin. Diagn. Lab. Immunol. 7:155160.
95. Volkman, H. E.,, H. Clay,, D. Beery,, J. C. Chang,, D. R. Sherman, and, L. Ramakrishnan. 2004. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol. 2:e367.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error