1887

16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap16-2.gif

Abstract:

This chapter focuses on recent developments in one’s understanding of how different components of the cell envelope from virulent mycobacteria, in particular , interact with each stage of innate and adaptive immune responses. Human dendritic cells express an additional C-type lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), which is not present on macrophages but serves as a major receptor for on dendritic cells (DCs). Cell wall components of mycobacteria bind to these pathogen recognition receptors on DCs and macrophages, and initiate the host response to infection. The biological relevance of TLR activation by cell wall components has been examined by mycobacterial infection of gene-deficient mice. Inactivation of protein kinase G (PknG) by gene disruption or chemical inhibition resulted in delivery of pathogenic mycobacteria to lysosomes and mycobacterial killing, and conversely, expression of PknG in nonpathogenic prevented phagosomal maturation. The induction of adaptive immunity to mycobacteria and activation of infected macrophages by IFN-γ can overcome the maturation arrest of mycobacteria containing phagosomes. CD1 proteins, which are antigen presenting molecules encoded by genes located outside of the major histocompatibility complex (MHC), recognize nonpeptide lipid or glycolipid structures, including components of mycobacteria. The containment of mycobacterial infection requires the formation of granulomas (or tubercles), which are nodular aggregations of lymphocytes, macrophages, and epithelioid cells. In human infection, the propensity of trehalose dimycolate (TDM) and other cell wall components to promote granuloma formation in association with a chronic T-cell response leads to caseating granulomas, which may erode into airways.

Citation: Britton W, Triccas J. 2008. 16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System, p 249-270. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch16

Key Concept Ranking

Immune Systems
0.5214807
Cell Wall Components
0.51940113
MHC Class II
0.49744824
MHC Class I
0.49589857
0.5214807
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

T-cell immunity to mycobacteria. Professional antigen-presenting cells (APCs), such as dendritic cells, can present peptide fragments to classical CD8 and CD4 T cells through major histocompatibility (MHC) class I and II molecules, respectively. Mycobacterial lipids can also be presented through CD1 molecules to T-cell subsets including γδ T cells, natural killer (NK) T cells and other non classic T cells lacking expression of CD4 and CD8 surface molecules. Activated APCs release soluble meditators, such as the cytokines IL-12, IL-18, and IL-23, which act to enhance the effector function of mycobacteriaspecific T cells. Release of IFN-γ and TNF serve to activate macrophages infected with mycobacteria to promote bacterial killing. Perforin is cytolytic for infected cells, and granulysin is bactericidal for mycobacteria. Activated macrophages release cytokines and chemokines, which are required for granuloma formation in order to contain the infection effectively.

Citation: Britton W, Triccas J. 2008. 16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System, p 249-270. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Inhibition of phagosome maturation by cell envelope components of . (A) Opsonized particles and extracellular bacteria are taken into phagosomes, which mature and fuse with lysosomes containing acid hydrolases necessary to digest the bacteria. The early phagosomes acquire the GTPase Rab5 and have access to transferring receptors (TfR) and a supply of iron from the early endosome (EE) compartment. Subunits of PI3 kinase (PI3K) are recruited and generate PI3P on the maturing phagosome, which acquires Rab7 and the early endosome antigen 1 (EEA1) which is essential for fusion with lysosomes. The late phagosome also recruits syntaxin 6, which is required for acquisition of the vacuolar proton ATPase (VATPase), necessary for acidification of the phagosome. (B) Phagosomes containing virulent mycobacteria, such as do not mature beyond the early phagosome stage characterized by Rab5. They fail to acquire markers of late phagosomes, fuse with lysosomes or undergo acidification. ManLAM inhibits PI3-kinase and prevents the generation of PI3P on the surface of the phagosome and the acquisition of the tethering proteins and the V-ATPase. ManLAM also blocks the Ca flux required for recruitment of PI3-kinase to the phagosome. also secretes the acid phosphatase SapM, which hydrolyzes PI3P and prevents PI3P accumulating on the surface of phagosomes containing live, virulent mycobacteria. The production of the serine-threonine kinase G (PknG) by virulent mycobacteria also inhibits phagolysosomal fusion. By contrast, lower order PIMs increase the fusion of early phagosomes with early endosomes, so they acquire syntaxin 4 and access to iron for mycobacterial replication.

Citation: Britton W, Triccas J. 2008. 16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System, p 249-270. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Inhibition of macrophage activation by cell envelope components of . Infection with virulent inhibits the transcriptional response of macrophages to the activation by IFN-γ secreted by mycobacterium-specific CD4 T cells by disrupting the interaction of STAT1 with the transcriptional coactivators CREB-binding protein (CREB BP) and p300, as demonstrated by reduced MHC class II expression. This inhibition is dependent on activation of TLR2/MyD88 by lipoproteins, such as LpgH, and PIMS, and also on stimulation of TLR2 by the mycolyl-arabinogalactan peptidoglycan complex through an MyD88-independent pathway. LAM interferes with intracellular signaling by activating the Src homology containing tyrosine phosphatase SHP-1, which inactivates phosphorylated signaling kinases, such as protein kinase C (PKC) and MAP kinase. In addition, cell wall components, such as LAM and DIM, can act as scavengers for ROI and RNI, respectively, produced by phagocyte oxidase (Phox) and inducible nitric oxide synthase (iNOS).

Citation: Britton W, Triccas J. 2008. 16 The Constituents of the Cell Envelope and Their Impact on the Host Immune System, p 249-270. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch16
1. Abel, B.,, N. Thieblemont,, V. J. Quesniaux,, N. Brown,, J. Mpagi,, K. Miyake,, F. Bihl, and, B. Ryffel. 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169:31553162.
2. Abou-Zeid, C.,, M. P. Gares,, J. Inwald,, R. Janssen,, Y. Zhang,, D. B. Young,, C. Hetzel,, J. R. Lamb,, S. L. Baldwin,, I. M. Orme,, V. Yeremeev,, B. V. Nikonenko, and, A. S. Apt. 1997. Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae. Infect. Immun. 65:18561862.
3. Actor, J. K.,, M. Olsen,, R. L. Hunter, Jr., and, Y. J. Geng. 2001. Dysregulated response to mycobacterial cord factor trehalose-6,6′-dimycolate in CD1D–/– mice. J. Interferon Cytokine Res. 21:10891096.
4. Aderem, A., and, D. M. Underhill. 1999. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17:593623.
5. Armstrong, J. A., and, P. D. Hart. 1971. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med.134: 713–740.
6. Bafica, A.,, C. A. Scanga,, C. G. Feng,, C. Leifer,, A. Cheever, and, A. Sher. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202:17151724.
7. Banaiee, N.,, E. Z. Kincaid,, U. Buchwald,, W. R. Jacobs, Jr., and, J. D. Ernst. 2006. Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J. Immunol. 176:30193027.
8. Bean, A. G.,, D. R. Roach,, H. Briscoe,, M. P. France,, H. Korner,, J. D. Sedgwick, and, W. J. Britton. 1999. Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. J. Immunol. 162:35043511.
9. Beatty, W. L.,, E. R. Rhoades,, H. J. Ullrich,, D. Chatterjee,, J. E. Heuser, and, D. G. Russell. 2000. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 1:235247.
10. Beckman, E. M.,, S. A. Porcelli,, C. T. Morita,, S. M. Behar,, S. T. Furlong, and, M. B. Brenner. 1994. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691694.
11. Beckman, E. M.,, A. Melian,, S. M. Behar,, P. A. Sieling,, D. Chatterjee,, S. T. Furlong,, R. Matsumoto,, J. P. Rosat,, R. L. Modlin, and, S. A. Porcelli. 1996. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J. Immunol. 157:27952803.
12. Behar, S. M.,, C. C. Dascher,, M. J. Grusby,, C.-R. Wang, and, M. B. Brenner. 1999. Susceptibility of mice deficient in CD1D or Tap1 to infection with Mycobacterium tuberculosis. J. Exp. Med. 189:19731980.
13. Bekierkunst, A. 1968. Acute granulomatous response produced in mice by trehalose-6,6-dimycolate. J. Bacteriol. 96:958961.
14. Belkaid, Y.,, C. A. Piccirillo,, S. Mendez,, E. M. Shevach, and, D. L. Sacks. 2002. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420:502507.
15. Berman, J. S.,, R. L. Blumenthal,, H. Kornfeld,, J. A. Cook,, W. W. Cruikshank,, M. W. Vermeulen,, D. Chatterjee,, J. T. Belisle, and, M. J. Fenton. 1996. Chemotactic activity of mycobacterial lipoarabinomannans for human blood T lymphocytes in vitro. J. Immunol. 156:38283835.
16. Bloom, B. R., and, V. Mehra. 1984. Immunological unresponsiveness in leprosy. Immunol. Rev. 80:528.
17. Boom, W. H.,, D. H. Canaday,, S. A. Fulton,, A. J. Gehring,, R. E. Rojas, and, M. Torres. 2003. Human immunity to M. tuberculosis: T cell subsets and antigen processing. Tuberculosis (Edinburgh)83:98106.
18. Boring, L.,, J. Gosling,, S. W. Chensue,, S. L. Kunkel,, R. V. Farese, Jr.,, H. E. Broxmeyer, and, I. F. Charo. 1997. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Investig. 100:25522561.
19. Bosio, C. M.,, D. Gardner, and, K. L. Elkins. 2000. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J. Immunol. 164:64176425.
20. Brightbill, H. D.,, D. H. Libraty,, S. R. Krutzik,, R. B. Yang,, J. T. Belisle,, J. R. Bleharski,, M. Maitland,, M. V. Norgard,, S. E. Plevy,, S. T. Smale,, P. J. Brennan,, B. R. Bloom,, P. J. Godowski, and, R. L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732736.
21. Briken, V.,, S. A. Porcelli,, G. S. Besra, and, L. Kremer. 2004. Mycobacterial lipoarabinomannan and related lipoglycans: from biogenesis to modulation of the immune response. Mol. Microbiol. 53:391403.
22. Britton, W. J., and, D. N. Lockwood. 2004. Leprosy. Lancet 363:12091219.
23. Brown, R. M.,, O. Cruz,, M. Brennan,, M. L. Gennaro,, L. Schlesinger,, Y. A. Skeiky, and, D. F. Hoft. 2003. Lipoarabinomannanreactive human secretory immunoglobulin A responses induced by mucosal bacille Calmette-Guerin vaccination. J. Infect. Dis. 187:513517.
24. Calabi, F.,, J. M. Jarvis,, L. Martin, and, C. Milstein. 1989. Two classes of CD1 genes. Eur. J. Immunol. 19:285292.
25. Cardona, P. J.,, E. Julian,, X. Valles,, S. Gordillo,, M. Munoz,, M. Luquin, and, V. Ausina. 2002. Production of antibodies against glycolipids from the Mycobacterium tuberculosis cell wall in aerosol murine models of tuberculosis. Scand. J. Immunol. 55:639645.
26. Chacon-Salinas, R.,, J. Serafin-Lopez,, R. Ramos-Payan,, P. Mendez-Aragon,, R. Hernandez-Pando,, D. Van Soolingen,, L. Flores-Romo,, S. Estrada-Parra, and, I. Estrada-Garcia. 2005. Differential pattern of cytokine expression by macrophages infected in vitro with different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 140:443449.
27. Chan, J.,, X. D. Fan,, S. W. Hunter,, P. J. Brennan, and, B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59:17551761.
28. Chanteau, S.,, P. Glaziou, and, R. Chansin. 1992. Assessment of the diagnostic value of the native PGLTB1, its synthetic neoglycoconjugate PGLTB0 and the sulfolipid IV antigens for the serodiagnosis of tuberculosis. Int. J. Lepr. Other Mycobact. Dis. 60:17.
29. Chen, X.,, B. Zhou,, M. Li,, Q. Deng,, X. Wu,, X. Le,, C. Wu,, N. Larmonier,, W. Zhang,, H. Zhang,, H. Wang, and, E. Katsanis. 2007. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin. Immunol. 123:5059.
30. Chieppa, M.,, G. Bianchi,, A. Doni,, A. Del Prete,, M. Sironi,, G. Laskarin,, P. Monti,, L. Piemonti,, A. Biondi,, A. Mantovani,, M. Introna, and, P. Allavena. 2003. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. 171:45524560.
31. Cho, S. N.,, D. L. Yanagihara,, S. W. Hunter,, P. H. Gelber, and, P. J. Brennan. 1983. Serological specificity of phenolic glycolipid I from Mycobacterium leprae and use in serodiagnosis of leprosy. Infect. Immun. 41:10771083.
32. Cho, S. N.,, R. V. Cellona,, L. G. Villahermosa,, T. T. Fajardo, Jr.,, M. V. Balagon,, R. M. Abalos,, E. V. Tan,, G. P. Walsh,, J. D. Kim, and, P. J. Brennan. 2001. Detection of phenolic glycolipid I of Mycobacterium leprae in sera from leprosy patients before and after start of multidrug therapy. Clin. Diagn. Lab. Immunol. 8:138142.
33. Chujor, C. S.,, B. Kuhn,, B. Schwerer,, H. Bernheimer,, W. R. Levis, and, D. Bevec. 1992. Specific inhibition of mRNA accumulation for lymphokines in human T cell line Jurkat by mycobacterial lipoarabinomannan antigen. Clin. Exp. Immunol. 87:398403.
34. Ciaramella, A.,, A. Cavone,, M. B. Santucci,, S. K. Garg,, N. Sanarico,, M. Bocchino,, D. Galati,, A. Martino,, G. Auricchio,, M. D’Orazio,, G. R. Stewart,, O. Neyrolles,, D. B. Young,, V. Colizzi, and, M. Fraziano. 2004. Induction of apoptosis and release of interleukin-1 beta by cell wall-associated 19-kDa lipoprotein during the course of mycobacterial infection. J. Infect. Dis. 190:11671176.
35. Collins, H. L.,, U. E. Schaible, and, S. H. Kaufmann. 1998. Early IL-4 induction in bone marrow lymphoid precursor cells by mycobacterial lipoarabinomannan. J. Immunol. 161:55465554.
36. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell, and, I. M. Orme. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J. Exp. Med. 178:22432247.
37. Costello, A. M.,, A. Kumar,, V. Narayan,, M. S. Akbar,, S. Ahmed,, C. Abou-Zeid,, G. A. Rook,, J. Stanford, and, C. Moreno. 1992. Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans. R. Soc. Trop. Med. Hyg. 86:686692.
38. Cruaud, P.,, C. Berlie,, J. Torgal Garcia,, F. Papa, and, H. L. David. 1989. Human IgG antibodies immunoreacting with specific sulfolipids from Mycobacterium tuberculosis. Zentbl. Bakteriol. 271:481485.
39. Cruaud, P.,, M. C. Potar,, H. L. David,, F. Papa,, J. Torgal-Garcia,, F. Maroja, and, A. T. Orsi-Souza. 1990. IgG and IgM antibodies immunoreacting with a 2,3-diacyl trehalose-2′-sulphate in sera from leprosy patients. Zentbl. Bakteriol. 273:209215.
40. Cywes, C.,, H. C. Hoppe,, M. Daffe, and, M. R. Ehlers. 1997. Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect. Immun. 65:42584266.
41. Da Costa, C. T.,, S. Khanolkar-Young,, A. M. Elliott,, K. M. Wasunna, and, K. P. McAdam. 1993. Immunoglobulin G subclass responses to mycobacterial lipoarabinomannan in HIVinfected and non-infected patients with tuberculosis. Clin. Exp. Immunol. 91:2529.
42. Dascher, C. C., and, M. B. Brenner. 2005. CD1 and tuberculosis, p. 475–487. In S. T. Cole,, K. D. Eisenbach,, D. N. McMurray, and, W. R. Jacobs, Jr. (ed.), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC.
43. de la Salle, H.,, S. Mariotti,, C. Angenieux,, M. Gilleron,, L. F. Garcia-Alles,, D. Malm,, T. Berg,, S. Paoletti,, B. Maitre,, L. Mourey,, J. Salamero,, J. P. Cazenave,, D. Hanau,, L. Mori,, G. Puzo, and, G. De Libero. 2005. Assistance of microbial glycolipid antigen processing by CD1e. Science 310:13211324.
44. Demangel, C., and, W. J. Britton. 2000. Interaction of dendritic cells with mycobacteria: where the action starts. Immunol. Cell Biol. 78:318324.
45. Demangel, C.,, U. Palendira,, C. G. Feng,, A. W. Heath,, A. G. Bean, and, W. J. Britton. 2001. Stimulation of dendritic cells via CD40 enhances immune responses to Mycobacterium tuberculosis infection. Infect. Immun. 69:24562461.
46. Demangel, C.,, P. Bertolino, and, W. J. Britton. 2002. Autocrine IL-10 impairs dendritic cell (DC)-derived immune responses to mycobacterial infection by suppressing DC trafficking to draining lymph nodes and local IL-12 production. Eur. J. Immunol. 32:9941002.
47. Deretic, V.,, S. Singh,, S. Master,, J. Harris,, E. Roberts,, G. Kyei,, A. Davis,, S. de Haro,, J. Naylor,, H. H. Lee, and, I. Vergne. 2006. Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism. Cell Microbiol. 8:719727.
48. de Valliere, S.,, G. Abate,, A. Blazevic,, R. M. Heuertz, and, D. F. Hoft. 2005. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect. Immun. 73:67116720.
49. Emori, K.,, S. Nagao,, N. Shigematsu,, S. Kotani,, M. Tsujimoto,, T. Shiba,, S. Kusumoto, and, A. Tanaka. 1985. Granuloma formation by muramyl dipeptide associated with branched fatty acids, a structure probably essential for tubercle formation by Mycobacterium tuberculosis. Infect. Immun. 49:244249.
50. Feng, C. G.,, C. A. Scanga,, C. M. Collazo-Custodio,, A. W. Cheever,, S. Hieny,, P. Caspar, and, A. Sher. 2003. Mice lacking myeloid differentiation factor 88 display profound defects in host resistance and immune responses to Mycobacterium avium infection not exhibited by Toll-like receptor 2 (TLR2)- and TLR4-deficient animals. J. Immunol. 171:47584764.
51. Fenton, M. J.,, L. W. Riley, and, L. S. Schesinger. 2005. Receptor-mediated recognition of Mycobacterium tuberculosis by host cells, p 427–436. In S. T. Cole,, K. D. Eisenbach,, D. N. McMurray, and, W. R. Jacobs, Jr. (ed.), Tuberculosis and the Tubercle Bacillus, ASM Press, Washington, DC.
52. Ferwerda, G.,, S. E. Girardin,, B. J. Kullberg,, L. Le Bourhis,, D. J. de Jong,, D. M. Langenberg,, R. van Crevel,, G. J. Adema,, T. H. Ottenhoff,, J. W. Van der Meer, and, M. G. Netea. 2005. NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog. 1:279285.
53. Fietta, A.,, C. Francioli, and, G. Gialdroni Grassi. 2000. Mycobacterial lipoarabinomannan affects human polymorphonuclear and mononuclear phagocyte functions differently. Haematologica 85:1118.
54. Fischer, K.,, E. Scotet,, M. Niemeyer,, H. Koebernick,, J. Zerrahn,, S. Maillet,, R. Hurwitz,, M. Kursar,, M. Bonneville,, S. H. Kaufmann, and, U. E. Schaible. 2004. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. USA 101:1068510690.
55. Flynn, J. L., and, J. Chan. 2001. Immunology of tuberculosis. Annu. Rev. Immunol. 19:93129.
56. Fortune, S. M.,, A. Solache,, A. Jaeger,, P. J. Hill,, J. T. Belisle,, B. R. Bloom,, E. J. Rubin, and, J. D. Ernst. 2004. Mycobacterium tuberculosis inhibits macrophage responses to IFN-gamma through myeloid differentiation factor 88-dependent and -independent mechanisms. J. Immunol. 172:62726280.
57. Fratti, R. A.,, J. M. Backer,, J. Gruenberg,, S. Corvera, and, V. Deretic. 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154:631644.
58. Fratti, R. A.,, J. Chua,, I. Vergne, and, V. Deretic. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100:54375442.
59. Fremond, C. M.,, V. Yeremeev,, D. M. Nicolle,, M. Jacobs,, V. F. Quesniaux, and, B. Ryffel. 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J. Clin. Investig. 114:17901799.
60. Fujita, Y.,, T. Doi,, K. Sato, and, I. Yano. 2005. Diverse humoral immune responses and changes in IgG antibody levels against mycobacterial lipid antigens in active tuberculosis. Microbiology 151:20652074.
61. Gagliardi, M. C.,, R. Teloni,, F. Giannoni,, M. Pardini,, V. Sargentini,, L. Brunori,, L. Fattorini, and, R. Nisini. 2005. Mycobacterium bovis Bacillus Calmette-Guerin infects DC-SIGN-dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production. J. Leukoc. Biol. 78:106113.
62. Gehring, A. J.,, R. E. Rojas,, D. H. Canaday,, D. L. Lakey,, C. V. Harding, and, W. H. Boom. 2003. The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and Fc gamma R1 on human macrophages through Toll-like receptor 2. Infect. Immun. 71:44874497.
63. Gehring, A. J.,, K. M. Dobos,, J. T. Belisle,, C. V. Harding, and, W. H. Boom. 2004. Mycobacterium tuberculosis LprG (Rv1411c): a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J. Immunol. 173:26602668.
64. Geijtenbeek, T. B.,, S. J. Van Vliet,, E. A. Koppel,, M. Sanchez-Hernandez,, C. M. Vandenbroucke-Grauls,, B. Appelmelk, and, Y. Van Kooyk. 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197:717.
65. Geisel, R. E.,, K. Sakamoto,, D. G. Russell, and, E. R. Rhoades. 2005. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol. 174:50075015.
66. Gilleron, M.,, C. Ronet,, M. Mempel,, B. Monsarrat,, G. Gachelin, and, G. Puzo. 2001. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J. Biol. Chem. 276:3489634904.
67. Gilleron, M.,, S. Stenger,, Z. Mazorra,, F. Wittke,, S. Mariotti,, G. Bohmer,, J. Prandi,, L. Mori,, G. Puzo, and, G. De Libero. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199:649659.
68. Glatman-Freedman, A.,, A. J. Mednick,, N. Lendvai, and, A. Casadevall. 2000. Clearance and organ distribution of Mycobacterium tuberculosis lipoarabinomannan (LAM) in the presence and absence of LAM-binding immunoglobulin M. Infect. Immun. 68:335341.
69. Glatman-Freedman, A. 2006. The role of antibody-mediated immunity in defense against Mycobacterium tuberculosis: advances toward a novel vaccine strategy. Tuberculosis (Edinburgh)86:191197.
70. Guidry, T. V.,, M. Olsen,, K. S. Kil,, R. L. Hunter, Jr.,, Y. J. Geng, and, J. K. Actor. 2004. Failure of CD1D-/- mice to elicit hypersensitive granulomas to mycobacterial cord factor trehalose 6,6′-dimycolate. J. Interferon Cytokine Res. 24:362371.
71. Guyot-Revol, V.,, J. A. Innes,, S. Hackforth,, T. Hinks, and, A. Lalvani. 2006. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am. J. Respir. Crit. Care Med. 173:803810.
72. Hamasur, B.,, M. Haile,, A. Pawlowski,, U. Schroder,, G. Kallenius, and, S. B. Svenson. 2004. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab’) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138:3038.
73. Heinzel, A. S.,, J. E. Grotzke,, R. A. Lines,, D. A. Lewinsohn,, A. L. McNabb,, D. N. Streblow,, V. M. Braud,, H. J. Grieser,, J. T. Belisle, and, D. M. Lewinsohn. 2002. HLA-E-dependent presentation of Mtb-derived antigen to human CD8+ T cells. J. Exp. Med. 196:14731481.
74. Hertz, C. J.,, S. M. Kiertscher,, P. J. Godowski,, D. A. Bouis,, M. V. Norgard,, M. D. Roth, and, R. L. Modlin. 2001. Microbial lipopeptides stimulate dendritic cell maturation via Toll-like receptor 2. J. Immunol. 166:24442450.
75. Hetland, G.,, H. G. Wiker,, K. Hogasen,, B. Hamasur,, S. B. Svenson, and, M. Harboe. 1998. Involvement of antilipoarabinomannan antibodies in classical complement activation in tuberculosis. Clin. Diagn. Lab. Immunol. 5:211218.
76. Hoal-van Helden, E. G.,, L. A. Stanton,, R. Warren,, M. Richardson, and, P. D. van Helden. 2001. Diversity of in vitro cytokine responses by human macrophages to infection by Mycobacterium tuberculosis strains. Cell Biol. Int. 25:8390.
77. Hovav, A. H.,, J. Mullerad,, L. Davidovitch,, Y. Fishman,, F. Bigi,, A. Cataldi, and, H. Bercovier. 2003. The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection. Infect. Immun. 71:31463154.
78. Hovav, A. H.,, J. Mullerad,, A. Maly,, L. Davidovitch,, Y. Fishman, and, H. Bercovier. 2006. Aggravated infection in mice co-administered with Mycobacterium tuberculosis and the 27-kDa lipoprotein. Microbes Infect. 8:17501757.
79. Hu, C.,, T. Mayadas-Norton,, K. Tanaka,, J. Chan, and, P. Salgame. 2000. Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. J. Immunol. 165:25962602.
80. Huntley, J. F.,, J. R. Stabel, and, J. P. Bannantine. 2005. Immunoreactivity of the Mycobacterium avium subsp. paratuberculosis 19-kDa lipoprotein. BMC Microbiol. 5:3.
81. Ilangumaran, S.,, S. Arni,, M. Poincelet,, J. M. Theler,, P. J. Brennan,, D. Nasir ud, and, D. C. Hoessli. 1995. Integration of mycobacterial lipoarabinomannans into glycosylphosphatidylinositol-rich domains of lymphomonocytic cell plasma membranes. J. Immunol. 155:13341342.
82. Johnson, C. M.,, A. M. Cooper,, A. A. Frank,, C. B. Bonorino,, L. J. Wysoki, and, I. M. Orme. 1997. Mycobacterium tuberculosis aerogenic rechallenge infections in B cell-deficient mice. Tuber. Lung Dis. 78:257261.
83. Jones, B. W.,, T. K. Means,, K. A. Heldwein,, M. A. Keen,, P. J. Hill,, J. T. Belisle, and, M. J. Fenton. 2001. Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc. Biol. 69:10361044.
84. Juffermans, N. P.,, A. Verbon,, J. T. Belisle,, P. J. Hill,, P. Speelman,, S. J. van Deventer, and, T. van der Poll. 2000. Mycobacterial lipoarabinomannan induces an inflammatory response in the mouse lung. A role for interleukin-1. Am. J. Respir. Crit. Care Med. 162:486489.
85. Julian, E.,, L. Matas,, A. Perez,, J. Alcaide,, M. A. Laneelle, and, M. Luquin. 2002. Serodiagnosis of tuberculosis: comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens. J. Clin. Microbiol. 40:37823788.
86. Julian, E.,, L. Matas,, J. Alcaide, and, M. Luquin. 2004. Comparison of antibody responses to a potential combination of specific glycolipids and proteins for test sensitivity improvement in tuberculosis serodiagnosis. Clin. Diagn. Lab. Immunol. 11:7076.
87. Jung, S. B.,, C. S. Yang,, J. S. Lee,, A. R. Shin,, S. S. Jung,, J. W. Son,, C. V. Harding,, H. J. Kim,, J. K. Park,, T. H. Paik,, C. H. Song, and, E. K. Jo. 2006. The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect. Immun. 74:26862696.
88. Jung, Y. J.,, R. LaCourse,, L. Ryan, and, R. J. North. 2002. Virulent but not avirulent Mycobacterium tuberculosis can evade the growth inhibitory action of a T helper 1-dependent, nitric oxide Synthase 2-independent defense in mice. J. Exp. Med. 196:991998.
89. Kang, P. B.,, A. K. Azad,, J. B. Torrelles,, T. M. Kaufman,, A. Beharka,, E. Tibesar,, L. E. DesJardin, and, L. S. Schlesinger. 2005. The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J. Exp. Med. 202:987999.
90. Kaplan, G.,, R. R. Gandhi,, D. E. Weinstein,, W. R. Levis,, M. E. Patarroyo,, P. J. Brennan, and, Z. A. Cohn. 1987. Mycobacterium leprae antigen-induced suppression of T cell proliferation in vitro. J. Immunol. 138:30283034.
91. Karakousis, P. C.,, W. R. Bishai, and, S. E. Dorman. 2004. Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol. 6:105116.
92. Kawashima, T.,, Y. Norose,, Y. Watanabe,, Y. Enomoto,, H. Narazaki,, E. Watari,, S. Tanaka,, H. Takahashi,, I. Yano,, M. B. Brenner, and, M. Sugita. 2003. Cutting edge: major CD8 T cell response to live bacillus Calmette-Guerin is mediated by CD1 molecules. J. Immunol. 170:53455348.
93. Khanna, K. V.,, C. S. Choi,, G. Gekker,, P. K. Peterson, and, T. W. Molitor. 1996. Differential infection of porcine alveolar macrophage subpopulations by nonopsonized Mycobacterium bovis involves CD14 receptors. J. Leukoc. Biol. 60:214220.
94. Knutson, K. L.,, Z. Hmama,, P. Herrera-Velit,, R. Rochford, and, N. E. Reiner. 1998. Lipoarabinomannan of Mycobacterium tuberculosis promotes protein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. Role of the Src homology 2 containing tyrosine phosphatase 1. J. Biol. Chem. 273:645652.
95. Korf, J.,, A. Stoltz,, J. Verschoor,, P. De Baetselier, and, J. Grooten. 2005. The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses. Eur. J. Immunol. 35:890900.
96. Krutzik, S. R.,, M. T. Ochoa,, P. A. Sieling,, S. Uematsu,, Y. W. Ng,, A. Legaspi,, P. T. Liu,, S. T. Cole,, P. J. Godowski,, Y. Maeda,, E. N. Sarno,, M. V. Norgard,, P. J. Brennan,, S. Akira,, T. H. Rea, and, R. L. Modlin. 2003. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat. Med. 9:525532.
97. Krutzik, S. R., and, R. L. Modlin. 2004. The role of Toll-like receptors in combating mycobacteria. Semin. Immunol. 16:3541.
98. Lathigra, R.,, Y. Zhang,, M. Hill,, M. J. Garcia,, P. S. Jackett, and, J. Ivanyi. 1996. Lack of production of the 19-kDa glycolipoprotein in certain strains of Mycobacterium tuberculosis. Res. Microbiol. 147:237249.
99. Lawe, D. C.,, V. Patki,, R. Heller-Harrison,, D. Lambright, and, S. Corvera. 2000. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275:36993705.
100. Le Cabec, V.,, C. Cols, and, I. Maridonneau-Parini. 2000. Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation. Infect. Immun. 68:47364745.
101. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973983.
102. Lewinsohn, D. M.,, A. L. Briden,, S. G. Reed,, K. H. Grabstein, and, M. R. Alderson. 2000. Mycobacterium tuberculosis-reactive CD8+ T lymphocytes: the relative contribution of classical versus nonclassical HLA restriction. J. Immunol. 165:925930.
103. Lima, V. M.,, V. L. Bonato,, K. M. Lima,, S. A. Dos Santos,, R. R. Dos Santos,, E. D. Goncalves,, L. H. Faccioli,, I. T. Brandao,, J. M. Rodrigues-Junior, and, C. L. Silva. 2001. Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect. Immun. 69:53055312.
104. Lopez, B.,, D. Aguilar,, H. Orozco,, M. Burger,, C. Espitia,, V. Ritacco,, L. Barrera,, K. Kremer,, R. Hernandez-Pando,, K. Huygen, and, D. van Soolingen. 2003. A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 133:3037.
105. Luna-Herrera, J.,, O. Rojas-Espinosa, and, S. Estrada-Parra. 1996. Recognition of lipid antigens by sera of mice infected with Mycobacterium lepraemurium. Int. J. Lepr. Other Mycobact. Dis. 64:299305.
106. MacMicking, J. D.,, G. A. Taylor, and, J. D. McKinney. 2003. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654659.
107. Maeda, N.,, J. Nigou,, J.-L. Herrmann,, M. Jackson,, A. Amara,, H. Lagrange,, G. Puzo,, B. Gicquel, and, O. Neyrolles. 2003. The cell surface receptor DC-sign discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278:55135516.
108. Malik, Z. A.,, G. M. Denning, and, D. J. Kusner. 2000. Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191:287302.
109. Manca, C.,, L. Tsenova,, A. Bergtold,, S. Freeman,, M. Tovey,, J. M. Musser,, C. E. Barry, III,, V. H. Freedman, and, G. Kaplan. 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc. Natl. Acad. Sci. USA 98:57525757.
110. Manca, C.,, M. B. Reed,, S. Freeman,, B. Mathema,, B. Kreiswirth,, C. E. Barry, 3rd, and, G. Kaplan. 2004. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect. Immun. 72:55115514.
111. Mazurek, G. H.,, P. A. LoBue,, C. L. Daley,, J. Bernardo,, A. A. Lardizabal,, W. R. Bishai,, M. F. Iademarco, and, J. S. Rothel. 2001. Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. JAMA 286:17401747.
112. Means, T. K.,, E. Lien,, A. Yoshimura,, S. Wang,, D. T. Golenbock, and, M. J. Fenton. 1999. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163:67486755.
113. Means, T. K.,, S. Wang,, E. Lien,, A. Yoshimura,, D. T. Golenbock, and, M. J. Fenton. 1999. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163:39203927.
114. Meeker, H. C.,, G. Schuller-Levis,, F. Fusco,, M. A. Giardina-Becket,, E. Sersen, and, W. R. Levis. 1990. Sequential monitoring of leprosy patients with serum antibody levels to phenolic glycolipid-I, a synthetic analog of phenolic glycolipid-I, and mycobacterial lipoarabinomannan. Int. J. Lepr. Other Mycobact. Dis. 58:503511.
115. Modlin, R. L.,, H. Kato,, V. Mehra,, E. E. Nelson,, F. Xue-dong,, T. H. Rea,, P. K. Pattengale, and, B. R. Bloom. 1986. Genetically restricted suppressor T-cell clones derived from lepromatous leprosy lesions. Nature 322:459461.
116. Molloy, A.,, G. Gaudernack,, W. R. Levis,, Z. A. Cohn, and, G. Kaplan. 1990. Suppression of T-cell proliferation by Mycobacterium leprae: the role of lipopolysaccharide. Proc. Natl. Acad. Sci. 87:973977.
117. Moody, D. B.,, T. Ulrichs,, W. Muhlecker,, D. C. Young,, S. S. Gurcha,, E. Grant,, J. P. Rosat,, M. B. Brenner,, C. E. Costello,, G. S. Besra, and, S. A. Porcelli. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884888.
118. Moody, D. B.,, D. C. Young,, T. Y. Cheng,, J. P. Rosat,, C. RouraMir,, P. B. O’Connor,, D. M. Zajonc,, A. Walz,, M. J. Miller,, S. B. Levery,, I. A. Wilson,, C. E. Costello, and, M. B. Brenner. 2004. T cell activation by lipopeptide antigens. Science 303:527531.
119. Moura, A. C.,, P. S. Leonardo,, M. G. Henriques, and, R. S. Cordeiro. 1999. Opposite effects of M. leprae or M. bovis BCG delipidation on cellular accumulation into mouse pleural cavity. Distinct accomplishment of mycobacterial lipids in vivo. Inflamm. Res. 48:308313.
120. Ng, V.,, G. Zanazzi,, R. Timpl,, J. F. Talts,, J. L. Salzer,, P. J. Brennan, and, A. Rambukkana. 2000. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103:511524.
121. Nguyen, L., and, J. Pieters. 2005. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol. 15:269276.
122. Nigou, J.,, C. Zelle-Rieser,, M. Gilleron,, M. Thurnher, and, G. Puzo. 2001. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166:74777485.
123. Noss, E. H.,, R. K. Pai,, T. J. Sellati,, J. D. Radolf,, J. Belisle,, D. T. Golenbock,, W. H. Boom, and, C. V. Harding. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167:910918.
124. O’Garra, A., and, P. Vieira. 2004. Regulatory T cells and mechanisms of immune system control. Nat. Med. 10:801805.
125. O’Garra, A., and, W. J. Britton. 2007. Cytokines in tuberculosis, In S. H. E. Kaufmann,, E. Rubin,, W. J. Britton, and, P. van Helden (ed.), Handbook of Tuberculosis, vol. 2. Wiley, Mannheim, Germany.
126. Oiso, R.,, N. Fujiwara,, H. Yamagami,, S. Maeda,, S. Matsumoto,, S. Nakamura,, N. Oshitani,, T. Matsumoto,, T. Arakawa, and, K. Kobayashi. 2005. Mycobacterial trehalose 6,6’-dimycolate preferentially induces type 1 helper T cell responses through signal transducer and activator of transcription 4 protein. Microb. Pathog. 39:3543.
127. Okamoto, Y.,, Y. Fujita,, T. Naka,, M. Hirai,, I. Tomiyasu, and, I. Yano. 2006. Mycobacterial sulfolipid shows a virulence by inhibiting cord factor induced granuloma formation and TNF-alpha release. Microb. Pathog. 40:245253.
128. Pai, R. K.,, M. Convery,, T. A. Hamilton,, W. H. Boom, and, C. V. Harding. 2003. Inhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J. Immunol. 171:175184.
129. Pai, R. K.,, M. E. Pennini,, A. A. Tobian,, D. H. Canaday,, W. H. Boom, and, C. V. Harding. 2004. Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages. Infect. Immun. 72:66036614.
130. Pecora, N. D.,, A. J. Gehring,, D. H. Canaday,, W. H. Boom, and, C. V. Harding. 2006. Mycobacterium tuberculosis LprA is a lipoprotein agonist of TLR2 that regulates innate immunity and APC function. J. Immunol. 177:422429.
131. Pennini, M. E.,, R. K. Pai,, D. C. Schultz,, W. H. Boom, and, C. V. Harding. 2006. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J. Immunol. 176:43234330.
132. Perez, R. L.,, J. Roman,, S. Roser,, C. Little,, M. Olsen,, J. Indrigo,, R. L. Hunter, and, J. K. Actor. 2000. Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6’-dimycolate. J. Interferon Cytokine Res. 20:795804.
133. Pethe, K.,, D. L. Swenson,, S. Alonso,, J. Anderson,, C. Wang, and, D. G. Russell. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl. Acad. Sci. USA 101:1364213647.
134. Philips, J. A.,, E. J. Rubin, and, N. Perrimon. 2005. Drosophila RNAi screen reveals CD36 family member required for mycobacterial infection. Science 309:12511253.
135. Pinto, R.,, B. M. Saunders,, L. R. Camacho,, W. J. Britton,, B. Gicquel, and, J. A. Triccas. 2004. Mycobacterium tuberculosis defective in phthiocerol dimycocerosate translocation provides greater protective immunity against tuberculosis than the existing bacille Calmette-Guerin vaccine. J. Infect. Dis. 189:105112.
136. Porcelli, S.,, C. Morita, and, M. B. Brenner. 1992. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360:593597.
137. Prigozy, T. I.,, P. A. Sieling,, D. Clemens,, P. L. Stewart,, S. M. Behar,, S. A. Porcelli,, M. B. Brenner,, R. L. Modlin, and, M. Kronenberg. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187197.
138. Puissegur, M. P.,, C. Botanch,, J. L. Duteyrat,, G. Delsol,, C. Caratero, and, F. Altare. 2004. An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell. Microbiol. 6:423433.
139. Quesniaux, V.,, C. Fremond,, M. Jacobs,, S. Parida,, D. Nicolle,, V. Yeremeev,, F. Bihl,, F. Erard,, T. Botha,, M. Drennan,, M. N. Soler,, M. Le Bert,, B. Schnyder, and, B. Ryffel. 2004. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect. 6:946959.
140. Randhawa, A. K.,, H. J. Ziltener,, J. S. Merzaban, and, R. W. Stokes. 2005. CD43 is required for optimal growth inhibition of Mycobacterium tuberculosis in macrophages and in mice. J. Immunol. 175:18051812.
141. Rao, V.,, F. Gao,, B. Chen,, W. R. Jacobs, Jr., and, M. S. Glickman. 2006. Trans-cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis-induced inflammation and virulence. J. Clin. Investig. 116:16601667.
142. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:8487.
143. Rhoades, E. R.,, R. E. Geisel,, B. A. Butcher,, S. McDonough, and, D. G. Russell. 2005. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinburgh)85:159176.
144. Roach, D. R.,, H. Briscoe,, B. Saunders,, M. P. France,, S. Riminton, and, W. J. Britton. 2001. Secreted lymphotoxin-alpha is essential for the control of an intracellular bacterial infection. J. Exp. Med. 193:239246.
145. Roche, P. W.,, W. J. Britton,, S. S. Failbus,, W. J. Theuvenet,, M. Lavender, and, R. B. Adiga. 1991. Serological responses in primary neuritic leprosy. Trans. R. Soc. Trop. Med. Hyg. 85:299302.
146. Roche, P. W.,, W. J. Britton,, S. S. Failbus,, K. D. Neupane, and, W. J. Theuvenet. 1993. Serological monitoring of the response to chemotherapy in leprosy patients. Int. J. Lepr. Other Mycobact. Dis. 61:3543.
147. Rodriguez, A.,, A. Tjarnlund,, J. Ivanji,, M. Singh,, I. Garcia,, A. Williams,, P. D. Marsh,, M. Troye-Blomberg, and, C. Fernandez. 2005. Role of IgA in the defense against respiratory infections IgA deficient mice exhibited increased susceptibility to intranasal infection with Mycobacterium bovis BCG. Vaccine 23:25652572.
148. Rooyakkers, A. W., and, R. W. Stokes. 2005. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Microb. Pathog. 39:5767.
149. Rosat, J. P.,, E. P. Grant,, E. M. Beckman,, C. C. Dascher,, P. A. Sieling,, D. Frederique,, R. L. Modlin,, S. A. Porcelli,, S. T. Furlong, and, M. B. Brenner. 1999. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J. Immunol. 162:366371.
150. Roura-Mir, C.,, L. Wang,, T. Y. Cheng,, I. Matsunaga,, C. C. Dascher,, S. L. Peng,, M. J. Fenton,, C. Kirschning, and, D. B. Moody. 2005. Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J. Immunol. 175:17581766.
151. Rousseau, C.,, O. C. Turner,, E. Rush,, Y. Bordat,, T. D. Sirakova,, P. E. Kolattukudy,, S. Ritter,, I. M. Orme,, B. Gicquel, and, M. Jackson. 2003. Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect. Immun. 71:46844690.
152. Rousseau, C.,, N. Winter,, E. Pivert,, Y. Bordat,, O. Neyrolles,, P. Ave,, M. Huerre,, B. Gicquel, and, M. Jackson. 2004. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell. Microbiol. 6:277287.
153. Russell, D. G. 2007. Who puts the tubercle in tuberculosis? Nat. Rev. Microbiol. 5:3947.
154. Saavedra, R.,, E. Segura,, R. Leyva,, L. A. Esparza, and, L. M. Lopez-Marin. 2001. Mycobacterial di-O-acyl-trehalose inhibits mitogen- and antigen-induced proliferation of murine T cells in vitro. Clin. Diagn. Lab. Immunol. 8:10811088.
155. Saavedra, R.,, E. Segura,, E. P. Tenorio, and, L. M. Lopez-Marin. 2006. Mycobacterial trehalose-containing glycolipid with immunomodulatory activity on human CD4+ and CD8+ T-cells. Microbes Infect. 8:533540.
156. Sable, S. B.,, B. B. Plikaytis, and, T. M. Shinnick. 2007. Tuberculosis subunit vaccine development: Impact of physicochemical properties of mycobacterial test antigens. Vaccine 25:15531566.
157. Salgame, P. 2005. Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection. Curr. Opin. Immunol. 17:374380.
158. Sanchez, M. D.,, Y. Garcia,, C. Montes,, S. C. Paris,, M. Rojas,, L. F. Barrera,, M. A. Arias, and, L. F. Garcia. 2006. Functional and phenotypic changes in monocytes from patients with tuberculosis are reversed with treatment. Microbes Infect.8:24922500.
159. Saunders, B. M., and, W. J. Britton. 2007. Life and death in the granuloma: immunopathology of tuberculosis. Immunol. Cell Biol. 85:103111.
160. Scandurra, G. M.,, R. B. Williams,, J. A. Triccas,, R. Pinto,, B. Gicquel,, B. Slobedman,, A. Cunningham, and, W. J. Britton. 2007. Effect of phthiocerol dimycocerosate deficiency on the transcriptional response of human macrophages to Mycobacterium tuberculosis. Microbes Infect. 9:8795.
161. Scanga, C. A.,, A. Bafica,, C. G. Feng,, A. W. Cheever,, S. Hieny, and, A. Sher. 2004. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect. Immun. 72:24002404.
162. Schaible, U. E.,, S. Sturgill-Koszycki,, P. H. Schlesinger, and, D. G. Russell. 1998. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160:12901296.
163. Schlesinger, L.,, C. G. Bellinger-Kawahara,, N. R. Payne, and, M. A. Horwitz. 1990. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J. Immunol. 144:27712780.
164. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150:29202930.
165. Schlesinger, L. S.,, S. R. Hull, and, T. M. Kaufman. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152:40704079.
166. Schlesinger, L. S.,, T. M. Kaufman,, S. Iyer,, S. R. Hull, and, L. K. Marchiando. 1996. Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J. Immunol. 157:45684575.
167. Schnappinger, D.,, S. Ehrt,, M. I. Voskuil,, Y. Liu,, J. A. Mangan,, I. M. Monahan,, G. Dolganov,, B. Efron,, P. D. Butcher,, C. Nathan, and, G. K. Schoolnik. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198:693704.
168. Shabaana, A. K.,, K. Kulangara,, I. Semac,, Y. Parel,, S. Ilangumaran,, K. Dharmalingam,, C. Chizzolini, and, D. C. Hoessli. 2005. Mycobacterial lipoarabinomannans modulate cytokine production in human T helper cells by interfering with raft/microdomain signalling. Cell. Mol. Life Sci. 62:179187.
169. Sieling, P. A.,, D. Chatterjee,, S. A. Porcelli,, T. I. Prigozy,, R. J. Mazzaccaro,, T. Soriano,, B. R. Bloom,, M. B. Brenner,, M. Kronenberg,, P. J. Brennan, and, R. L. Modlin. 1995. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227230.
170. Silva, V. M.,, G. Kanaujia,, M. L. Gennaro, and, D. Menzies. 2003. Factors associated with humoral response to ESAT-6, 38 kDa and 14 kDa in patients with a spectrum of tuberculosis. Int. J. Tuberc. Lung Dis. 7:478484.
171. Simonney, N.,, J. M. Molina,, M. Molimard,, E. Oksenhendler,, C. Perronne, and, P. H. Lagrange. 1995. Analysis of the immunological humoral response to Mycobacterium tuberculosis glycolipid antigens (DAT, PGLTb1) for diagnosis of tuberculosis in HIV-seropositive and -seronegative patients. Eur. J. Clin. Microbiol. Infect. Dis. 14:883891.
172. Sousa, A. O.,, R. J. Mazzaccaro,, R. G. Russell,, F. K. Lee,, O. C. Turner,, S. Hong,, L. Van Kaer, and, B. R. Bloom. 2000. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA 97:42044208.
173. Stewart, G. R.,, J. Patel,, B. D. Robertson,, A. Rae, and, D. B. Young. 2005. Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog. 1:269278.
174. Stewart, G. R.,, K. A. Wilkinson,, S. M. Newton,, S. M. Sullivan,, O. Neyrolles,, J. R. Wain,, J. Patel,, K. L. Pool,, D. B. Young, and, R. J. Wilkinson. 2005. Effect of deletion or overexpression of the 19-kilodalton lipoprotein Rv3763 on the innate response to Mycobacterium tuberculosis. Infect. Immun. 73:68316837.
175. Stokes, R. W.,, I. D. Haidl,, W. A. Jefferies, and, D. P. Speert. 1993. Mycobacteria-macrophage interactions. Macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J. Immunol. 151:70677076.
176. Sutcliffe, I. C., and, D. J. Harrington. 2004. Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 28:645659.
177. Tailleux, L.,, O. Schwartz,, J. L. Herrmann,, E. Pivert,, M. Jackson,, A. Amara,, L. Legres,, D. Dreher,, L. P. Nicod,, J. C. Gluckman,, P. H. Lagrange,, B. Gicquel, and, O. Neyrolles. 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197:121127.
178. Takeda, K.,, T. Kaisho, and, S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335376.
179. Takeuchi, O.,, S. Sato,, T. Horiuchi,, K. Hoshino,, K. Takeda,, Z. Dong,, R. L. Modlin, and, S. Akira. 2002. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169:1014.
180. Takimoto, H.,, H. Maruyama,, K. I. Shimada,, R. Yakabe,, I. Yano, and, Y. Kumazawa. 2006. Interferon-gamma independent formation of pulmonary granuloma in mice by injections with trehalose dimycolate (cord factor), lipoarabinomannan and phosphatidylinositol mannosides isolated from Mycobacterium tuberculosis. Clin. Exp. Immunol. 144:134141.
181. Taylor, P. R.,, S. Gordon, and, L. Martinez-Pomares. 2005. The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol. 26:104110.
182. Theus, S. A.,, M. D. Cave, and, K. D. Eisenach. 2005. Intracellular macrophage growth rates and cytokine profiles of Mycobacterium tuberculosis strains with different transmission dynamics. J. Infect. Dis. 191:453460.
183. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. T. Ochoa,, M. Engele,, P. A. Sieling,, P. F. Barnes,, M. Rollinghoff,, P. L. Bolcskei,, M. Wagner,, S. Akira,, M. V. Norgard,, J. T. Belisle,, P. J. Godowski,, B. R. Bloom, and, R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:15441547.
184. Ting, J. P., and, K. L. Williams. 2005. The CATERPILLER family: an ancient family of immune/apoptotic proteins. Clin. Immunol. 115:3337.
185. Ting, L. M.,, A. C. Kim,, A. Cattamanchi, and, J. D. Ernst. 1999. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J. Immunol. 163:38983906.
186. Tobian, A. A.,, N. S. Potter,, L. Ramachandra,, R. K. Pai,, M. Convery,, W. H. Boom, and, C. V. Harding. 2003. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. J. Immunol. 171:14131422.
187. Torrelles, J. B.,, A. K. Azad, and, L. S. Schlesinger. 2006. Fine discrimination in the recognition of individual species of phosphatidyl-myo-inositol mannosides from Mycobacterium tuberculosis by C-type lectin pattern recognition receptors. J. Immunol. 177:18051816.
188. Tsai, M. C.,, S. Chakravarty,, G. Zhu,, J. Xu,, K. Tanaka,, C. Koch,, J. Tufariello,, J. Flynn, and, J. Chan. 2006. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8:218232.
189. Tsenova, L.,, E. Ellison,, R. Harbacheuski,, A. L. Moreira,, N. Kurepina,, M. B. Reed,, B. Mathema,, C. E. Barry, 3rd, and, G. Kaplan. 2005. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis. 192:98106.
190. Uehori, J.,, M. Matsumoto,, S. Tsuji,, T. Akazawa,, O. Takeuchi,, S. Akira,, T. Kawata,, I. Azuma,, K. Toyoshima, and, T. Seya. 2003. Simultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan. Infect. Immun. 71:42384249.
191. Uehori, J.,, K. Fukase,, T. Akazawa,, S. Uematsu,, S. Akira,, K. Funami,, M. Shingai,, M. Matsumoto,, I. Azuma,, K. Toyoshima,, S. Kusumoto, and, T. Seya. 2005. Dendritic cell maturation induced by muramyl dipeptide (MDP) derivatives: monoacylated MDP confers TLR2/TLR4 activation. J. Immunol. 174:70967103.
192. Ulrichs, T., and, S. A. Porcelli. 2000. CD1 proteins: targets of T cell recognition in innate and adaptive immunity. Rev. Immunogenet. 2:416432.
193. Uma Devi, K. R.,, B. Ramalingam,, P. J. Brennan,, P. R. Narayanan, and, A. Raja. 2001. Specific and early detection of IgG, IgA and IgM antibodies to Mycobacterium tuberculosis 38kDa antigen in pulmonary tuberculosis. Tuberculosis (Edinburgh)81:249253.
194. Vergne, I.,, J. Chua, and, V. Deretic. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198:653659.
195. Vergne, I.,, J. Chua,, S. B. Singh, and, V. Deretic. 2004a. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20:367394.
196. Vergne, I.,, R. A. Fratti,, P. J. Hill,, J. Chua,, J. Belisle, and, V. Deretic. 2004b. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol. Biol. Cell 15:751760.
197. Vergne, I.,, J. Chua,, H. H. Lee,, M. Lucas,, J. Belisle, and, V. Deretic. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102:40334038.
198. Via, L. E.,, D. Deretic,, R. J. Ulmer,, N. S. Hibler,, L. A. Huber, and, V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272:1332613331.
199. Vieira, O. V.,, R. E. Harrison,, C. C. Scott,, H. Stenmark,, D. Alexander,, J. Liu,, J. Gruenberg,, A. D. Schreiber, and, S. Grinstein. 2004. Acquisition of Hrs, an essential component of phagosomal maturation, is impaired by mycobacteria. Mol. Cell Biol. 24:45934604.
200. Villeneuve, C.,, M. Gilleron,, I. Maridonneau-Parini,, M. Daffe,, C. Astarie-Dequeker, and, G. Etienne. 2005. Mycobacteria use their surface-exposed glycolipids to infect human macrophages through a receptor-dependent process. J. Lipid Res. 46:475483.
201. Vordermeier, H. M.,, N. Venkataprasad,, D. P. Harris, and, J. Ivanyi. 1996. Increase of tuberculous infection in the organs of B cell-deficient mice. Clin. Exp. Immunol. 106:312316.
202. Vouret-Craviari, V.,, S. Cenzuales,, G. Poli, and, A. Mantovani. 1997. Expression of monocyte chemotactic protein-3 in human monocytes exposed to the mycobacterial cell wall component lipoarabinomannan. Cytokine 9:992998.
203. Walburger, A.,, A. Koul,, G. Ferrari,, L. Nguyen,, C. PrescianottoBaschong,, K. Huygen,, B. Klebl,, C. Thompson,, G. Bacher, and, J. Pieters. 2004. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:18001804.
204. Walther, M.,, J. E. Tongren,, L. Andrews,, D. Korbel,, E. King,, H. Fletcher,, R. F. Andersen,, P. Bejon,, F. Thompson,, S. J. Dunachie,, F. Edele,, J. B. de Souza,, R. E. Sinden,, S. C. Gilbert,, E. M. Riley, and, A. V. Hill. 2005. Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23:287296.
205. Watanabe, M.,, I. Honda,, K. Kawajiri,, S. Niinuma,, S. Kudoh, and, D. E. Minnikin. 1995. Distribution of antibody titres against phenolic glycolipids from Mycobacterium tuberculosis in the sera from tuberculosis patients and healthy controls. Res. Microbiol. 146:791797.