1887

17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815783/9781555814687_Chap17-2.gif

Abstract:

Phenolic glycolipids (PGLs) consist of a conserved lipid core and a variable carbohydrate moiety; the lipid core is composed of a family of long-chain β-diols, phenolphthiocerol, and related molecules. The structure of the backbone of PGLs and the related DIMs was established more than 30 years ago, but their synthesis remained elusive until the last decade. Early work by Gastambide-Odier and colleagues to decipher the phthiocerol and phenolphthiocerol biosynthesis pathway were based on metabolic labeling either with [1- or 3-C] propionate or with [C] methionine, followed by chemical degradation and tracing the radioactivity. DIM and PGL share a common lipid core synthesized by the same enzymatic machinery, but unlike PGL, DIM has no saccharide domain. The gene encodes an integral membrane protein predicted to be part of an ABC transporter involving two other subunits encoded by genes and mapping upstream from . Unlike DIM, which have been found in all clinical isolates of tested, PGL-tb are produced by only a small proportion of strains. The availability of the genome sequence and the concomitant development of powerful genetic tools for mycobacteria were enormous leaps forward for studying the biology of , including the biosynthesis and role of PGL-tb and related compounds.

Citation: Guilhot C, Chalut C, Daffé M. 2008. 17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in , p 273-289. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch17

Key Concept Ranking

Tumor Necrosis Factor alpha
0.41088495
0.41088495
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Structures of PGL-tb, HBAD I, HBAD II and DIM from . In , p and p′ = 3 to 5; n and n′ = 16 to 18; m2 = 15 to 17; m1 = 20 to 22; R = CH-CH or CH.

Citation: Guilhot C, Chalut C, Daffé M. 2008. 17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in , p 273-289. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Genetic organization of the DIM+PGL locus. The genes are represented by horizontal arrows. Genes encoding proteins involved in DIM, PGL, or HBAD biosynthesis are in gray. Genes encoding proteins involved in the translocation of these molecules are in black. The roles of the various genes are indicated.

Citation: Guilhot C, Chalut C, Daffé M. 2008. 17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in , p 273-289. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic representation of the PGL, HBAD, and DIM biosynthesis pathway. Enzymes for which a role is suspected but has not been demonstrated experimentally are indicated by a question mark. (A) Formation of HBA and hydroxyphenylalkanoate. (B) Formation of the lipid core common to DIM and PGL-tb. R, CH-(CH)20-22; R, H or CH; R, CH-(CH)16-18; R, CH-CH or CH. (C) Formation of the terminal species-specific carbohydrate domain common to PGL-tb and HBAD. R, COOCH or phthiocerol dimycocerosate.

Citation: Guilhot C, Chalut C, Daffé M. 2008. 17 Biosynthesis and Roles of Phenolic Glycolipids and Related Molecules in , p 273-289. In Daffé M, Reyrat J, Avenir G (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC. doi: 10.1128/9781555815783.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815783.ch17
1. Azad, A. K.,, T. D. Sirakova,, N. D. Fernandes, and, P. E. Kolattukudy. 1997. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J. Biol. Chem. 272:1674116745.
2. Azad, A. K.,, T. D. Sirakova,, L. M. Rogers, and, P. E. Kolattukudy. 1996. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc. Natl. Acad. Sci. USA 93:47874792.
3. Braibant, M.,, P. Gilot, and, J. Content. 2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24:449467.
4. Brennan, P. J. 1988. Mycobacterium and other actinomycetes, p. 203–298. In C. Ratledge and, S. G. Wilkinson (ed.), Microbial Lipids. Academic Press, London, United Kingdom.
5. Buglino, J.,, K. C. Onwueme,, J. A. Ferraras,, L. E. N. Quadri, and, C. D. Lima. 2004. Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. J. Biol. Chem. 279:3063430642.
6. Camacho, L. R.,, P. Constant,, C. Raynaud,, M.-A. Lanéelle,, J.-A. Triccas,, B. Gicquel,, M. Daffé, and, C. Guilhot. 2001. Analysis of phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276:1984519854.
7. Camacho, L. R.,, D. Ensergueix,, E. Perez,, B. Gicquel, and, C. Guilhot. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol. Microbiol. 34:257267.
8. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNiel,, S. J. Turco, and, J.-C. Sibille. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86:24532457.
9. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
10. Constant, P.,, E. Perez,, W. Malaga,, M.-A. Lanéelle,, O. Saurel,, M. Daffé, and, C. Guilhot. 2002. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the M. tuberculosis complex: evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbour a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 277:3814838158.
11. Cox, J. S.,, B. Chen,, M. McNeil, and, W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of M. tuberculosis in mice. Nature 402:7983.
12. Daffé, M., and, P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39:131203.
13. Daffé, M., and, M. A. Lanéelle. 1988a. Distribution of phthiocerol diester, phenolic mycosides and related compounds in Mycobacteria. J. Gen. Microbiol. 134:20492055.
14. Daffé, M.,, M.-A. Lanéelle,, C. Lacave, and, G. Lanéelle. 1988b. Monoglycosyl diacyl phenol-phthiocerol of Mycobacterium tuberculosis and Mycobacterium bovis. Biochem. Biophys. Acta 958:443449.
15. Daffe, M.,, M.-A. Laneelle,, J. Roussel, and, C. Asselineau. 1984. Specific lipids from Mycobacterium ulcerans. Ann. Microbiol. 135A:191201.
16. Daffé, M., and, A. Lemassu. 2000. Glycomicrobiology of the mycobacterial cell surface: structure and biological activities of the cell envelope glycoconjugates, p. 225–273. In R. J. Doyle (ed.), Glycomicrobiology. Plenum Press, New York, NY.
17. Fernandes, N. D., and, P. E. Kolattukudy. 1997. Methylmalonyl coenzyme A selectivity of cloned and expressed acyltransferase and β-ketoacyl synthase domains of mycocerosic acid synthase from Mycobacterium bovis BCG. J. Bacteriol. 179:75387543.
18. Fitzmaurice, A. M., and, P. E. Kolattukudy. 1997. Open reading frame 3, which is adjacent to the mycoserosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG. J. Bacteriol. 179:26082615.
19. Fitzmaurice, A. M., and, P. E. Kolattukudy. 1998. An acyl-CoA synthase (acoas) gene adjacent to the mycoserosic acid synthase (mas) locus is necessary for mycoserosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J. Biol. Chem. 273:80338039.
20. Fournié, J.-J.,, E. Adams,, R. J. Mullins, and, A. Basten. 1989. Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infect. Immun. 57:36533659.
21. Gastambide-Odier, M.,, J. M. Delaumény, and, E. Lederer. 1963. Biosynthesis of phthiocerol: incorporation of methionine and propionic acid. Chem. Ind. 69:12851286.
22. Gastambide-Odier, M.,, P. Sarda, and, E. Lederer. 1967. Biosynthèse des aglycones des mycosides A et B. Bull. Soc. Chim. Biol. 49:849864.
23. Goren, M. B.,, O. Brokl, and, W. B. Schaefer. 1974. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycoserosate and the attenuation indicator lipid. Infect. Immun. 9:150158.
24. Hotter, G. S.,, B. J. Wards,, P. Mouat,, G. S. Besra,, J. Gomes,, M. Singh,, S. Bassett,, P. Kawakami,, P. R. Wheeler,, G. W. de Lisle, and, D. M. Collins. 2005. Transposon mutagenesis of Mb0100 at the ppe-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. J. Bacteriol. 187:22672277.
25. Jain, M., and, J. S. Cox. 2005. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog. 1:1219.
26. Jeevarajah, D.,, J. H. Patterson,, M. J. McConville, and, H. Billman-Jacobe. 2002. Modification of glycopeptidolipids by an Omethyltransferase of Mycobacterium smegmatis. Microbiology 148:30793087.
27. Kolattukudy, P. E.,, N. D. Fernandes,, A. K. Azad,, A. M. Fitzmaurice, and, T. D. Sirakova. 1997. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24:263270.
28. Kondo, E., and, K. Kanai. 1976. A suggested role of a host-parasite lipid complex in mycobacterial infection. Jpn. J. Med. Sci. Biol. 29:199210.
29. Lefèvre, P.,, O. Denis,, L. De Wit,, A. Tanghe,, P. Vandenbussche,, J. Content, and, K. Huygen. 2000. Cloning of the gene encoding a 22-kilodalton cell surface antigen of Mycobacterium bovis BCG and analysis of its potential for DNA vaccination against tuberculosis. Infect. Immun. 68:36743679.
30. Liu, J.,, C. E. Barry III,, G. S. Besra, and, H. Nikaido. 1996. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271:2954529551.
31. Manca, C.,, M. B. Reed,, S. Freeman,, B. Mathema,, B. Kreiswirth,, C. E. Barry III, and, G. Kaplan. 2004. Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis. Infect. Immun. 72:55115514.
32. Mathur, M., and, P. E. Kolattukudy. 1992. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. J. Biol. Chem. 267:1938819395.
33. Mehra, V.,, P. J. Brennan,, E. Rada,, J. Convit, and, B. R. Bloom. 1984. Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature 308:194196.
34. Minnikin, D. E. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p. 95–184. In C. Ratledge and, J. Stanford (ed.), The Biology of Mycobacteria. Academic Press, London, United Kingdom.
35. Minnikin, D. E.,, L. Kremer,, L. G. Dover, and, G. S. Besra. 2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9:545553.
36. Neill, M. A., and, S. J. Klebanoff. 1988. The effect of phenolic glycolipid-1 from Mycobacterium leprae on the antimicrobial activity of human macrophages. J. Exp. Med. 167:3042.
37. Onwueme, K. C.,, J. A. Ferraras,, J. Buglino,, C. D. Lima, and, L. E. N. Quadri. 2004. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc. Natl. Acad. Sci. USA 101:46084613.
38. Onwueme, K. C.,, C. J. Vos,, J. Zurita,, J. A. Ferraras, and, L. E. N. Quadri. 2005a. The dimycocerosate ester polyketide virulence factors of mycobacteria. Prog. Lipid. Res. 44:259302.
39. Onwueme, K. C.,, C. J. Vos,, J. Zurita,, C. E. Soll, and, L. E. N. Quadri. 2005b. Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J. Bacteriol. 187:47604766.
40. Ortalo-Magné, A.,, A. Lemassu,, M.-A. Lanéelle,, F. Bardou,, G. Silve,, P. Gounon,, G. Marchal, and, M. Daffé. 1996. Identification of the surface-exposed lipids on the cell envelope of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178:456461.
41. Pelicic, V.,, J.-M. Reyrat, and, B. Gicquel. 1998. Genetic advances for studying Mycobacterium tuberculosis pathogenicity. Mol. Microbiol. 28:413420.
42. Perez, E.,, P. Constant,, F. Laval,, A. Lemassu,, M. A. Lanéelle,, M. Daffé, and, C. Guilhot. 2004a. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J. Biol. Chem. 279:4258442592.
43. Perez, E.,, P. Constant,, A. Lemassu,, F. Laval,, M. Daffé, and, C. Guilhot. 2004b. Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J. Biol. Chem. 279:4257442583.
44. Pethe, K.,, D. L. Swenson,, S. Alonso,, J. Anderson,, C. Wang, and, D. G. Russell. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl. Acad. Sci. USA 103:1364213647.
45. Rainwater, D. L., and, P. E. Kolattukudy. 1983. Synthesis of mycocerosic acids from methylmalonyl Coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. J. Biol. Chem. 258:29792985.
46. Rainwater, D. L., and, P. E. Kolattukudy. 1985. Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis BCG: purification and characterization of a novel fatty acid synthase, mycoserosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J. Biol. Chem. 260:616623.
47. Rao, A., and, A. Ranganathan. 2004. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol. Gen. Genomics 272:571579.
48. Reed, M. B.,, P. Domenech,, C. Manca,, H. Su,, A. K. Barczak,, B. N. Kreiswirth,, G. Kaplan, and, C. E. Barry III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:8487.
49. Rousseau, C.,, T. D. Sirakova,, V. S. Dubey,, Y. Bordat,, P. E. Kolattukudy,, B. Gicquel, and, M. Jackson. 2003. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149:18371847.
50. Rousseau, C.,, N. Winter,, N. Pivert,, Y. Bordat,, O. Neyrolles,, P. Avé,, M. Huerre,, B. Gicquel, and, M. Jackson. 2004. Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection. Cell. Microbiol. 6:277287.
51. Siebert, M.,, A. Bechthold,, M. Melzer,, U. May,, U. Berger,, G. Schröder,, J. Schröder,, K. Severin, and, L. Heide. 1992. Ubiquinone biosynthesis. Cloning of the genes coding for chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyl transferase from Escherichia coli. FEBS Lett. 307:347350.
52. Siebert, M.,, K. Severin, and, L. Heide. 1994. Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology 140:897904.
53. Simeone, R.,, P. Constant,, W. Malaga,, C. Guilhot,, M. Daffé, and, C. Chalut. 2007a. Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J. 274:19571969.
54. Simeone, R.,, P. Constant,, C. Guilhot,, M. Daffé, and, C. Chalut. 2007b. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis. J. Bacteriol. 189:45974602.
55. Sirakova, T. D.,, V. S. Dubey,, M. H. Cynamon, and, P. E. Kolattukudy. 2003a. Attenuation of Mycobacterium tuberculos is by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J. Bacteriol. 185:29993008.
56. Sirakova, T. D.,, V. S. Dubey,, H. J. Kim,, M. H. Cynamon, and, P. E. Kolattukudy. 2003b. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect. Immun. 71:37943801.
57. Smith, D. W.,, H. M. Randall,, A. P. MacLennan, and, E. Lederer. 1960. Mycosides: a new class of type-specific glycolipids of mycobacteria. Nature 186:887888.
58. Stadthagen, G.,, M. Jackson,, P. Charles,, F. Boudou,, N. Barilone,, M. Huerre,, P. Constant,, A. Liav,, I. Bottova,, J. Nigou,, T. Brando,, G. Puzo,, M. Daffé,, P. Benjamin,, S. Coade,, R. S. Buxton,, R. E. Tascon,, A. Rae,, B. D. Robertson,, D. B. Lowrie,, D. B. Young,, B. Gicquel, and, R. Griffin. 2006. Comparative investigation of the pathogenicity of three Mycobacterium tuberculosis mutants defective in the synthesis of p-hydroxybenzoic acid derivatives. Microbes Infect. 8:22452253.
59. Stadthagen, G.,, J. Kordulakova,, R. Griffin,, P. Constant,, I. Bottova,, N. Barilone,, B. Gicquel,, M. Daffé, and, M. Jackson. 2005. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J. Biol. Chem. 49:4069940706.
60. Sulzenbacher, G.,, S. Canaan,, Y. Bordat,, O. Neyrolles,, G. Stadthagen,, V. Roig-Zamboni,, J. Rauzier,, D. Maurin,, F. Laval,, M. Daffe,, C. Cambillau,, B. Gicquel,, Y. Bourne, and, M. Jackson. 2006. LppX is a lipoprotein required for the translocation of phthio cerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J. 25:14361444.
61. Thurman, P. F.,, W. Chai,, J. R. Rosankiewicz,, H. J. Rogers,, A. M. Lawson, and, P. Draper. 1993. Possible intermediates in the biosynthesis of mycoside B by Mycobacterium microti. Eur. J. Biochem. 212:705711.
62. Trivedi, O. A.,, P. Arora,, V. Sridharan,, R. Tickoo,, D. Mohanty, and, R. S. Gokhale. 2004. Enzymatic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441445.
63. Trivedi, O. A.,, P. Arora,, A. Vats,, M. Z. Ansari,, R. Tickoo,, V. Sridharan,, D. Mohanty, and, R. S. Gokhale. 2005. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 17:631643.
64. Tseng, T.-T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau, and, M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:107125.
65. Tsenova, L.,, E. Ellison,, R. Harbacheuski,, A. L. Moreira,, N. Kurepina,, M. B. Reed,, B. Mathema,, C. E. Barry III, and, G. Kaplan. 2005. Virulence of selected mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J. Infect. Dis. 192:98106.
66. Vachula, M.,, T. J. Holzer, and, B. R. Andersen. 1989. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J. Immunol. 142:16961701.
67. Vachula, M.,, T. J. Holzer,, L. Kizlaitis, and, B. R. Andersen. 1990. Effect of Mycobacterium leprae’s phenolic glycolipid-I on interferon-gamma augmentation of monocyte oxidative responses. Int. J. Lepr. Other Mycobact. Dis. 58:342346.
68. Waddell, S. J.,, G. A. Chung,, K. J. C. Gibson,, M. J. Everett,, D. E. Minnikin,, G. S. Besra, and, P. D. Butcher. 2005. Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett. Appl. Microbiol. 40:201206.
69. Yadav, G.,, R. S. Gokhale, and, D. Mohanty. 2003. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J. Mol. Biol. 328:335363.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error