Chapter 5 : Coronavirus Replicative Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Coronavirus Replicative Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap05-2.gif


Over the past few years, impressive progress into the functions and structures of coronavirus replicative proteins has been made. Nevertheless, our understanding of the molecular mechanisms that coronaviruses have evolved to synthesize, express, and maintain their unusually large RNA genomes is still far from being complete. Coronaviruses form one genus in the family , which also contains the genus and the tentative genus . The family has been grouped with the families and in the virus order . Apart from similar genome structures and expression strategies, the phylogenetic relationship of corona-, toro-, bafini-, roni-, and arteriviruses is evident from the conserved array of replicase gene-encoded protein functions, which includes (i) a chymotrypsin-like protease (3CL/M) that is flanked by membrane-spanning domains, (ii) a superfamily 1 RNA-dependent RNA polymerase (RdRp), (iii) a superfamily 1 helicase that has an amino-terminal Zn-binding domain (ZBD), and (iv) a uridylate-specific endoribonuclease (NendoU). Furthermore, coronaviruses encode 3’-to-5’ exoribonuclease (ExoN), putative ribose-2’-O-methyltransferase (MT), PL, and ADP-ribose 1’’-phosphatase (ADRP) activities, whereas putative cyclic nucleotide phosphodiesterase domains have been identified only in group 2a coronaviruses. A second, “noncanonical” polymerase activity has recently been identified in coronaviruses, which may act as a primase, thus further adding to the amazing complexity of the enzymology involved in coronavirus RNA synthesis. The functional domains and enzymatic activities associated with coronavirus nsp1 to nsp16 are summarized in this chapter.

Citation: Ziebuhr J. 2008. Coronavirus Replicative Proteins, p 65-81. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch5

Key Concept Ranking

Porcine epidemic diarrhea virus
Severe Acute Respiratory Syndrome
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Domain organizations of pp1a and pp1ab of representative viruses of coronavirus groups 1b, 2a, 2b, and 3 ( ). Arrowheads indicate sites in pp1a and pp1ab that are cleaved by PL1 and PL2 (white and black, respectively) or the 3C-like main protease (gray). The proteolytic cleavage products (nsps) are numbered, and conserved domains are highlighted. Abbreviations: C/H, domains with conserved cysteine and histidine residues; Ac, acidic domain; A, ADRP; Y, Y domain; Rp, noncanonical RNA polymerase (potential primase); HEL, helicase; NeU, NendoU. Note that the IBV PL1 domain is proteolytically inactive.

Citation: Ziebuhr J. 2008. Coronavirus Replicative Proteins, p 65-81. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allaire, M.,, M. M. Chernaia,, B. A. Malcolm, and, M. N. James. 1994. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:7276.
2. Allen, M. D.,, A. M. Buckle,, S. C. Cordell,, J. Löwe, and, M. Bycroft. 2003. The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A. J. Mol. Biol. 330:503511.
3. Almazán, F.,, M. L. Dediego,, C. Galán,, D. Escors,, E. Álvarez,, J. Ortego,, I. Sola,, S. Zuñiga,, S. Alonso,, J. L. Moreno,, A. Nogales,, C. Capiscol, and, L. Enjuanes. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J. Virol. 80:1090010906.
4. Almazán, F.,, C. Galán, and, L. Enjuanes. 2004. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78:1268312688.
5. Almeida, M. S.,, M. A. Johnson,, T. Herrmann,, M. Geralt, and, K. Wüthrich. 2007. Novel β-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J. Virol. 81:31513161.
6. Anand, K.,, G. J. Palm,, J. R. Mesters,, S. G. Siddell,, J. Ziebuhr, and, R. Hilgenfeld. 2002. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J. 21:32133224.
7. Anand, K.,, J. Ziebuhr,, P. Wadhwani,, J. R. Mesters, and, R. Hilgenfeld. 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:17631767.
8. Baker, S. C.,, C. K. Shieh,, L. H. Soe,, M. F. Chang,, D. M. Vannier, and, M. M. Lai. 1989. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein. J. Virol. 63:36933699.
9. Barretto, N.,, D. Jukneliene,, K. Ratia,, Z. Chen,, A. D. Mesecar, and, S. C. Baker. 2005. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 79:1518915198.
10. Barrila, J.,, U. Bacha, and, E. Freire. 2006. Long-range cooperative interactions modulate dimerization in SARS 3CLpro. Biochemistry 45:1490814916.
11. Bartlam, M.,, H. Yang, and, Z. Rao. 2005. Structural insights into SARS coronavirus proteins. Curr. Opin. Struct. Biol. 15:664672.
12. Bernini, A.,, O. Spiga,, V. Venditti,, F. Prischi,, L. Bracci,, J. Huang,, J. A. Tanner, and, N. Niccolai. 2006. Tertiary structure prediction of SARS coronavirus helicase. Biochem. Biophys. Res. Commun. 343:11011104.
13. Bhardwaj, K.,, L. Guarino, and, C. C. Kao. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J. Virol. 78:1221812224.
14. Bhardwaj, K.,, J. Sun,, A. Holzenburg,, L. A. Guarino, and, C. C. Kao. 2006. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J. Mol. Biol. 361:243256.
15. Bonilla, P. J.,, S. A. Hughes, and, S. R. Weiss. 1997. Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J. Virol. 71:900909.
16. Bost, A. G.,, E. Prentice, and, M. R. Denison. 2001. Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:2129.
17. Brierley, I. 1995. Ribosomal frameshifting viral RNAs. J. Gen. Virol. 76:18851892.
18. Brierley, I.,, M. E. Boursnell,, M. M. Binns,, B. Bilimoria,, V. C. Blok,, T. D. Brown, and, S. C. Inglis. 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 6:37793785.
19. Brockway, S. M.,, C. T. Clay,, X. T. Lu, and, M. R. Denison. 2003. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J. Virol. 77:1051510527.
20. Brockway, S. M., and, M. R. Denison. 2005. Mutagenesis of the murine hepatitis virus nsp1-coding region identifies residues important for protein processing, viral RNA synthesis, and viral replication. Virology 340:209223.
21. Brockway, S. M.,, X. T. Lu,, T. R. Peters,, T. S. Dermody and, M. R. Denison. 2004. Intracellular localization and protein interactions of the gene 1 protein p28 during mouse hepatitis virus replication. J. Virol. 78:1155111562.
22. Cavanagh, D. 1997. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch. Virol. 142:629633.
23. Chen, C.-J.,, K. Sugiyama,, H. Kubo,, C. Huang, and, S. Makino. 2004. Murine coronavirus nonstructural protein p28 arrests cell cycle in G0/G1 phase. J. Virol. 78:1041010419.
24. Chen, H.,, P. Wei,, C. Huang,, L. Tan,, Y. Liu, and, L. Lai. 2006. Only one protomer is active in the dimer of SARS 3C-like proteinase. J. Biol. Chem. 281:1389413898.
25. Cheng, A.,, W. Zhang,, Y. Xie,, W. Jiang,, E. Arnold,, S. G. Sarafianos, and, J. Ding. 2005. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology 335:165176.
26. Chou, C. Y.,, H. C. Chang,, W. C. Hsu,, T. Z. Lin,, C. H. Lin, and, G. G. Chang. 2004. Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry 43:1495814970.
27. Culver, G. M.,, S. A. Consaul,, K. T. Tycowski,, W. Filipowicz, and, E. M. Phizicky. 1994. tRNA splicing in yeast and wheat germ. A cyclic phosphodiesterase implicated in the metabolism of ADP-ribose 1̋,2̋-cyclic phosphate. J. Biol. Chem. 269:2492824934.
28. Denison, M. R.,, B. Yount,, S. M. Brockway,, R. L. Graham,, A. C. Sims,, X. Lu, and, R. S. Baric. 2004. Cleavage between replicase proteins p28 and p65 of mouse hepatitis virus is not required for virus replication. J. Virol. 78:59575965.
29. Dong, S., and, S. C. Baker. 1994. Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204:541549.
30. Dos Ramos, F.,, M. Carrasco,, T. Doyle, and, I. Brierley. 2004. Programmed —1 ribosomal frameshifting in the SARS coronavirus. Biochem. Soc. Trans. 32:10811083.
31. Draker, R.,, R. L. Roper,, M. Petric, and, R. Tellier. 2006. The complete sequence of the bovine torovirus genome. Virus Res. 115:5668.
32. Eckerle, L. D.,, S. M. Brockway,, S. M. Sperry,, X. Lu, and, M. R. Denison. 2006. Effects of mutagenesis of murine hepatitis virus nsp1 and nsp14 on replication in culture. Adv. Exp. Med. Biol. 581:5560.
33. Egloff, M. P.,, F. Ferron,, V. Campanacci,, S. Longhi,, C. H. Rancurel,, H. Dutartre,, E. J. Snijder,, A. E. Gorbalenya,, C. Cambillau, and, B. Canard. 2004. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA 101:37923796.
34. Egloff, M. P.,, H. Malet,, Á. Putics,, M. Heinonen,, H. Dutartre,, A. Frangeul,, A. Gruez,, V. Campanacci,, C. Cambillau,, J. Ziebuhr,, T. Ahola, and, B. Canard. 2006. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80:84938502.
35. Enokizono, Y.,, Y. Konishi,, K. Nagata,, K. Ouhashi,, S. Uesugi,, F. Ishikawa, and, M. Katahira. 2005. Structure of hnRNP D complexed with single-stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D. J. Biol. Chem. 280:1886218870.
36. Fan, K.,, L. Ma,, X. Han,, H. Liang,, P. Wei,, Y. Liu, and, L. Lai. 2005. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun. 329:934940.
37. Fan, K.,, P. Wei,, Q. Feng,, S. Chen,, C. Huang,, L. Ma,, B. Lai,, J. Pei,, Y. Liu,, J. Chen, and, L. Lai. 2004. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem. 279:16371642.
38. Feder, M.,, J. Pas,, L. S. Wyrwicz, and, J. M. Bujnicki. 2003. Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2’-O-methyltransferases. Gene 302:129138.
39. Filipowicz, W., and, V. Pogačić. 2002. Biogenesis of small nucleolar ribonucleoproteins. Curr. Opin. Cell Biol. 14:319327.
40. Gioia, U.,, P. Laneve,, M. Dlakić,, M. Arceci,, I. Bozzoni, and, E. Caffarelli. 2005. Functional characterization of XendoU, the endoribonuclease involved in small nucleolar RNA biosynthesis. J. Biol. Chem. 280:1899619002.
41. González, J. M.,, P. Gomez-Puertas,, D. Cavanagh,, A. E. Gorbalenya, and, L. Enjuanes. 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148:22072235.
42. Gorbalenya, A. E.,, L. Enjuanes,, J. Ziebuhr, and, E. J. Snijder. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117:1737.
43. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko, and, V. M. Blinov. 1989. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 17:48474861.
44. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko, and, V. M. Blinov. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Res. 17:47134730.
45. Gorbalenya, A. E.,, E. V. Koonin, and, M. M. Lai. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 288:201205.
46. Gorbalenya, A. E.,, E. J. Snijder, and, W. J. Spaan. 2004. Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J. Virol. 78:78637866.
47. Gosert, R.,, A. Kanjanahaluethai,, D. Egger,, K. Bienz, and, S. C. Baker. 2002. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol. 76:36973708.
48. Graham, R. L., and, M. R. Denison. 2006. Replication of murine hepatitis virus is regulated by papain-like proteinase 1 processing of nonstructural proteins 1, 2, and 3. J. Virol. 80:1161011620.
49. Graham, R. L.,, A. C. Sims,, S. M. Brockway,, R. S. Baric, and, M. R. Denison. 2005. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome corona-virus are dispensable for viral replication. J. Virol. 79:1339913411.
50. Graziano, V.,, W. J. McGrath,, L. Yang, and, W. F. Mangel. 2006. SARS CoV main proteinase: the monomer-dimer equilibrium dissociation constant. Biochemistry 45:1463214641.
51. Harcourt, B. H.,, D. Jukneliene,, A. Kanjanahaluethai,, J. Bechill,, K. M. Severson,, C. M. Smith,, P. A. Rota, and, S. C. Baker. 2004. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J. Virol. 78:1360013612.
52. Hegyi, A.,, A. Friebe,, A. E. Gorbalenya, and, J. Ziebuhr. 2002. Mutational analysis of the active centre of coronavirus 3C-like proteases. J. Gen. Virol. 83:581593.
53. Hegyi, A., and, J. Ziebuhr. 2002. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol. 83:595599.
54. Herold, J.,, A. E. Gorbalenya,, V. Thiel,, B. Schelle, and, S. G. Siddell. 1998. Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J. Virol. 72:910918.
55. Herold, J., and, S. G. Siddell. 1993. An ‘elaborated’ pseudoknot is required for high frequency frameshifting during translation of HCV 229E polymerase mRNA. Nucleic Acids Res. 21:58385842.
56. Herold, J.,, S. G. Siddell, and, A. E. Gorbalenya. 1999. A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J. Biol. Chem. 274:1491814925.
57. Hsu, M. F.,, C. J. Kuo,, K. T. Chang,, H. C. Chang,, C. C. Chou,, T. P. Ko,, H. L. Shr,, G. G. Chang,, A. H. Wang, and, P. H. Liang. 2005. Mechanism of the maturation process of SARS-CoV 3CL protease. J. Biol. Chem. 280:3125731266.
58. Hsu, W. C.,, H. C. Chang,, C. Y. Chou,, P. J. Tsai,, P. I. Lin, and, G. G. Chang. 2005. Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. J. Biol. Chem. 280:2274122748.
59. Hu, M.,, P. Li,, M. Li,, W. Li,, T. Yao,, J. W. Wu,, W. Gu,, R. E. Cohen, and, Y. Shi. 2002. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 111:10411054.
60. Imbert, I.,, J. C. Guillemot,, J. M. Bourhis,, C. Bussetta,, B. Coutard,, M. P. Egloff,, F. Ferron,, A. E. Gorbalenya, and, B. Canard. 2006. A second, non-canonical RNA-dependent RNA polymerase in SARS coronavirus. EMBO J. 25:49334942.
61. Ivanov, K. A.,, T. Hertzig,, M. Rozanov,, S. Bayer,, V. Thiel,, A. E. Gorbalenya, and, J. Ziebuhr. 2004. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101:1269412699.
62. Ivanov, K. A.,, V. Thiel,, J. C. Dobbe,, Y. van der Meer,, E. J. Snijder, and, J. Ziebuhr. 2004. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78:56195632.
63. Ivanov, K. A., and, J. Ziebuhr. 2004. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5’-triphosphatase activities. J. Virol. 78:78337838.
64. Joseph, J. S.,, K. S. Saikatendu,, V. Subramanian,, B. W. Neuman,, A. Brooun,, M. Griffith,, K. Moy,, M. K. Yadav,, J. Velasquez,, M. J. Buchmeier,, R. C. Stevens, and, P. Kuhn. 2006. Crystal structure of nonstructural protein 10 from the severe acute respiratory syndrome coronavirus reveals a novel fold with two zinc-binding motifs. J. Virol. 80:78947901.
65. Kadaré, G., and, A. L. Haenni. 1997. Virus-encoded RNA helicases. J. Virol. 71:25832590.
66. Kamitani, W.,, K. Narayanan,, C. Huang,, K. Lokugamage,, T. Ikegami,, N. Ito,, H. Kubo, and, S. Makino. 2006. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. USA 103:1288512890.
67. Kanjanahaluethai, A., and, S. C. Baker. 2000. Identification of mouse hepatitis virus papain-like proteinase 2 activity. J. Virol. 74:79117921.
68. Kanjanahaluethai, A.,, Z. Chen,, D. Jukneliene, and, S. C. Baker. 2007. Membrane topology of murine coronavirus replicase nonstructural protein 3. Virology 361:391401.
69. Karras, G. I.,, G. Kustatscher,, H. R. Buhecha,, M. D. Allen,, C. Pugieux,, F. Sait,, M. Bycroft, and, A. G. Ladurner. 2005. The macro domain is an ADP-ribose binding module. EMBO J. 24:19111920.
70. Kiss, T. 2001. Small nucleolar RNA-guided post-transcriptional modification of cellular RNAs. EMBO J. 20:36173622.
71. Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72:21972206.
72. Koonin, E. V.,, A. E. Gorbalenya,, M. A. Purdy,, M. N. Rozanov,, G. R. Reyes, and, D. W. Bradley. 1992. Computer-assisted assignment of functional domains in the nonstructural poly-protein of hepatitis E virus: delineation of an additional group of positive-strand RNA plant and animal viruses. Proc. Natl. Acad. Sci. USA 89:82598263.
73. Krishna, S. S.,, I. Majumdar, and, N. V. Grishin. 2003. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31:532550.
74. Kumaran, D.,, S. Eswaramoorthy,, F. W. Studier, and, S. Swaminathan. 2005. Structure and mechanism of ADP-ribose-1ʺ-monophosphatase (Appr-1 ʺ-pase), a ubiquitous cellular processing enzyme. Protein Sci. 14:719726.
75. Kustatscher, G.,, M. Hothorn,, C. Pugieux,, K. Scheffzek, and, A. G. Ladurner. 2005. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12:624625.
76. Lai, L.,, X. Han,, H. Chen,, P. Wei,, C. Huang,, S. Liu,, K. Fan,, L. Zhou,, Z. Liu,, J. Pei, and, Y. Liu. 2006. Quaternary structure, substrate selectivity and inhibitor design for SARS 3C-like proteinase. Curr. Pharm. Des. 12:45554564.
77. Laneve, P.,, F. Altieri,, M. E. Fiori,, A. Scaloni,, I. Bozzoni, and, E. Caffarelli. 2003. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J. Biol. Chem. 278:1302613032.
78. Lim, K. P.,, L. F. Ng, and, D. X. Liu. 2000. Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. J. Virol. 74:16741685.
79. Lindner, H. A.,, N. Fotouhi-Ardakani,, V. Lytvyn,, P. Lachance,, T. Sulea, and, R. Menard. 2005. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79:1519915208.
80. Liu, D. X., and, T. D. Brown. 1995. Characterisation and mutational analysis of an ORF 1a-encoding proteinase domain responsible for proteolytic processing of the infectious bronchitis virus 1a/1b polyprotein. Virology 209:420427.
81. Lu, Y.,, X. Lu, and, M. R. Denison. 1995. Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J. Virol. 69:35543559.
82. Masters, P. S. 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66:193292.
83. Matthes, N.,, J. R. Mesters,, B. Coutard,, B. Canard,, E. J. Snijder,, R. Moll, and, R. Hilgenfeld. 2006. The non-structural protein Nsp10 of mouse hepatitis virus binds zinc ions and nucleic acids. FEBS Lett. 580:41434149.
84. Matthews, D. A.,, W. W. Smith,, R. A. Ferre,, B. Condon,, G. Budahazi,, W. Sisson,, J. E. Villafranca,, C. A. Janson,, H. E. McElroy,, C. L. Gribskov, et al. 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761771.
85. Minskaia, E.,, T. Hertzig,, A. E. Gorbalenya,, V. Campanacci,, C. Cambillau,, B. Canard, and, J. Ziebuhr. 2006. Discovery of an RNA virus 3’—5’ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103:51085113.
86. Moser, M. J.,, W. R. Holley,, A. Chatterjee, and, I. S. Mian. 1997. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res. 25:51105118.
87. Mosimann, S. C.,, M. M. Cherney,, S. Sia,, S. Plotch, and, M. N. James. 1997. Refined X-ray crystallographic structure of the poliovirus 3C gene product. J. Mol. Biol. 273:10321047.
88. Namy, O.,, S. J. Moran,, D. I. Stuart,, R. J. Gilbert, and, I. Brierley. 2006. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244247.
89. Peti, W.,, M. A. Johnson,, T. Herrmann,, B. W. Neuman,, M. J. Buchmeier,, M. Nelson,, J. Joseph,, R. Page,, R. C. Stevens,, P. Kuhn, and, K. Wüthrich. 2005. Structural genomics of the severe acute respiratory syndrome coronavirus: nuclear magnetic resonance structure of the protein nsP7. J. Virol. 79:1290512913.
90. Piñon, J. D.,, R. R. Mayreddy,, J. D. Turner,, F. S. Khan,, P. J. Bonilla, and, S. R. Weiss. 1997. Efficient autoproteolytic processing of the MHV-A59 3C-like proteinase from the flanking hydrophobic domains requires membranes. Virology 230:309322.
91. Posthuma, C. C.,, D. D. Nedialkova,, J. C. Zevenhoven-Dobbe,, J. H. Blokhuis,, A. E. Gorbalenya, and, E. J. Snijder. 2006. Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. J. Virol. 80:16531661.
92. Prentice, E.,, J. McAuliffe,, X. Lu,, K. Subbarao, and, M. R. Denison. 2004. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J. Virol. 78:99779986.
93. Putics, Á.,, W. Filipowicz,, J. Hall,, A. E. Gorbalenya, and, J. Ziebuhr. 2005. ADP-ribose-1ʺ-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79:1272112731.
94. Putics, Á.,, A. E. Gorbalenya, and, J. Ziebuhr. 2006. Identification of protease and ADP-ribose 1Á-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J. Gen. Virol. 87:651656.
95. Ratia, K.,, K. S. Saikatendu,, B. D. Santarsiero,, N. Barretto,, S. C. Baker,, R. C. Stevens, and, A. D. Mesecar. 2006. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA 103:57175722.
96. Renzi, F.,, E. Caffarelli,, P. Laneve,, I. Bozzoni,, M. Brunori, and, B. Vallone. 2006. The structure of the endoribonuclease XendoU: from small nucleolar RNA processing to severe acute respiratory syndrome coronavirus replication. Proc. Natl. Acad. Sci. USA 103:1236512370.
97. Ricagno, S.,, M. P. Egloff,, R. Ulferts,, B. Coutard,, D. Nurizzo,, V. Campanacci,, C. Cambillau,, J. Ziebuhr, and, B. Canard. 2006. Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proc. Natl. Acad. Sci. USA 103:1189211897.
98. Saikatendu, K. S.,, J. S. Joseph,, V. Subramanian,, T. Clayton,, M. Griffith,, K. Moy,, J. Velasquez,, B. W. Neuman,, M. J. Buchmeier,, R. C. Stevens, and, P. Kuhn. 2005. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1ʺ-phosphate dephosphorylation by a conserved domain of nsP3. Structure 13:16651675.
99. Sawicki, S. G., and, D. L. Sawicki. 1986. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on corona-virus RNA synthesis. J. Virol. 57:328334.
100. Sawicki, S. G.,, D. L. Sawicki,, D. Younker,, Y. Meyer,, V. Thiel,, H. Stokes, and, S. G. Siddell. 2005. Functional and genetic analysis of coronavirus replicase-transcriptase proteins. PLoS Pathog. 1:e39.
101. Schelle, B.,, N. Karl,, B. Ludewig,, S. G. Siddell, and, V. Thiel. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79:66206630.
102. Schiller, J. J.,, A. Kanjanahaluethai, and, S. C. Baker. 1998. Processing of the coronavirus MHV-JHM polymerase poly-protein: identification of precursors and proteolytic products spanning 400 kilodaltons of ORF1a. Virology 242:288302.
103. Schütze, H.,, R. Ulferts,, B. Schelle,, S. Bayer,, H. Granzow,, B. Hoffmann,, T. C. Mettenleiter, and, J. Ziebuhr. 2006. Characterization of White bream virus reveals a novel genetic cluster of nidoviruses. J. Virol. 80:1159811609.
104. Schwarz, B.,, E. Routledge, and, S. G. Siddell. 1990. Murine coronavirus nonstructural protein ns2 is not essential for virus replication in transformed cells. J. Virol. 64:47844791.
105. Seipelt, J.,, A. Guarné,, E. Bergmann,, M. James,, W. Sommergruber,, I. Fita, and, T. Skern. 1999. The structures of picornaviral proteinases. Virus Res. 62:159168.
106. Seybert, A.,, A. Hegyi,, S. G. Siddell, and, J. Ziebuhr. 2000. The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5ˊ-to-3ˊ polarity. RNA 6:10561068.
107. Seybert, A.,, C. C. Posthuma,, L. C. van Dinten,, E. J. Snijder,, A. E. Gorbalenya, and, J. Ziebuhr. 2005. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J. Virol. 79:696704.
108. Seybert, A.,, L. C. van Dinten,, E. J. Snijder, and, J. Ziebuhr. 2000. Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J. Virol. 74:95869593.
109. Shi, J., and, J. Song. 2006. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J. 273:10351045.
110. Shi, J.,, Z. Wei, and, J. Song. 2004. Dissection study on the SARS 3C-like protease reveals the critical role of the extra domain in dimerization of the enzyme: defining the extra domain as a new target for design of highly-specific protease inhibitors. J. Biol. Chem. 279:2476524773.
111. Shi, S. T., and, M. M. Lai. 2005. Viral and cellular proteins involved in coronavirus replication. Curr. Top. Microbiol. Immunol. 287:95131.
112. Shull, N. P.,, S. L. Spinelli, and, E. M. Phizicky. 2005. A highly specific phosphatase that acts on ADP-ribose 1˝-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 33:650660.
113. Siddell, S. G.,, J. Ziebuhr, and, E. J. Snijder. 2005. Coronaviruses, toroviruses, and arteriviruses, p. 823856. In B. W., J. Mahy and, V. ter Meulen (ed.), Topley & Wilson’s Microbiology and Microbial Infections, 10th ed., Virology, vol. 1. Hodder Arnold, London, United Kingdom.
114. Snijder, E. J.,, P. J. Bredenbeek,, J. C. Dobbe,, V. Thiel,, J. Ziebuhr,, L. L. Poon,, Y. Guan,, M. Rozanov,, W. J. Spaan, and, A. E. Gorbalenya. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331:9911004.
115. Snijder, E. J.,, S. G. Siddell, and, A. E. Gorbalenya. 2005. The order Nidovirales, p. 390–404. In B. W., J. Mahy and, V. ter Meulen (ed.), Topley & Wilson’s Microbiology and Microbial Infections, 10th ed., Virology, vol. 1. Hodder Arnold, London, United Kingdom.
116. Snijder, E. J.,, Y. van der Meer,, J. Zevenhoven-Dobbe,, J. J. Onderwater,, J. van der Meulen,, H. K. Koerten, and, A. M. Mommaas. 2006. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol. 80:59275940.
117. Spaan, W. J. M.,, D. Brian,, D. Cavanagh,, R. J. de Groot,, L. Enjuanes,, A. E. Gorbalenya,, K. V. Holmes,, P. S. Masters,, P. Rottier,, F. Taguchi, and, P. Talbot. 2005. Family Coronaviridae, p. 947–964. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, CA.
118. Spaan, W. J. M.,, D. Cavanagh,, R. J. de Groot,, L. Enjuanes,, A. E. Gorbalenya,, E. J. Snijder, and, P. J. Walker. 2005. Order Nidovirales, p. 937–945. In C. M. Fauquet,, M. A. Mayo,, J. Maniloff,, U. Desselberger, and, L. A. Ball (ed.), Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, San Diego, CA.
119. Sperry, S. M.,, L. Kazi,, R. L. Graham,, R. S. Baric,, S. R. Weiss, and, M. R. Denison. 2005. Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. J. Virol. 79:33913400.
120. Strauss, J. H., and, E. G. Strauss. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58:491562.
121. Su, D.,, Z. Lou,, F. Sun,, Y. Zhai,, H. Yang,, R. Zhang,, A. Joachimiak,, X. C. Zhang,, M. Bartlam, and, Z. Rao. 2006. Dodecamer structure of severe acute respiratory syndrome coronavirus nonstructural protein nsp10. J. Virol. 80:79027908.
122. Sulea, T.,, H. A. Lindner,, E. O. Purisima, and, R. Ménard. 2005. Deubiquitination, a new function of the severe acute respiratory syndrome coronavirus papain-like protease? J. Virol. 79:45504551.
123. Sulea, T.,, H. A. Lindner,, E. O. Purisima, and, R. Ménard. 2006. Binding site-based classification of coronaviral papain-like proteases. Proteins 62:760775.
124. Sutton, G.,, E. Fry,, L. Carter,, S. Sainsbury,, T. Walter,, J. Nettleship,, N. Berrow,, R. Owens,, R. Gilbert,, A. Davidson,, S. Siddell,, L. L. Poon,, J. Diprose,, D. Alderton,, M. Walsh,, J. M. Grimes, and, D. I. Stuart. 2004. The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure 12:341353.
125. Tan, J.,, K. H. Verschueren,, K. Anand,, J. Shen,, M. Yang,, Y. Xu,, Z. Rao,, J. Bigalke,, B. Heisen,, J. R. Mesters,, K. Chen,, X. Shen,, H. Jiang, and, R. Hilgenfeld. 2005. pH-dependent conformational flexibility of the SARS-CoV main proteinase (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol. 354:2540.
126. Tanner, J. A.,, R. M. Watt,, Y. B. Chai,, L. Y. Lu,, M. C. Lin,, J. S. Peiris,, L. L. Poon,, H. F. Kung, and, J. D. Huang. 2003. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5ˊ to 3ˊ viral helicases. J. Biol. Chem. 278:3957839582.
127. ten Dam, E.,, M. Flint, and, M. D. Ryan. 1999. Virus-encoded proteinases of the Togaviridae. J. Gen. Virol. 80:18791888.
128. Thiel, V.,, K. A. Ivanov,, Á. Putics,, T. Hertzig,, B. Schelle,, S. Bayer,, B. Weissbrich,, E. J. Snijder,, H. Rabenau,, H. W. Doerr,, A. E. Gorbalenya, and, J. Ziebuhr. 2003. Mechanisms and enzymes involved in SARS coronavirus genome expression. J. Gen. Virol. 84:23052315.
129. Tibbles, K. W.,, I. Brierley,, D. Cavanagh, and, T. D. Brown. 1996. Characterization in vitro of an autocatalytic processing activity associated with the predicted 3C-like proteinase domain of the coronavirus avian infectious bronchitis virus. J. Virol. 70:19231930.
130. van der Meer, Y.,, E. J. Snijder,, J. C. Dobbe,, S. Schleich,, M. R. Denison,, W. J. Spaan, and, J. Krijnse Locker. 1999. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol. 73:76417657.
131. van Dinten, L. C.,, H. van Tol,, A. E. Gorbalenya, and, E. J. Snijder. 2000. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J. Virol. 74:52135223.
132. von Grotthuss, M.,, L. S. Wyrwicz, and, L. Rychlewski. 2003. mRNA cap-1 methyltransferase in the SARS genome. Cell 113:701702.
133. Wang, T., and, S. G. Sawicki. 2001. Mouse hepatitis virus minus-strand templates are unstable and turnover [sic] during viral replication. Adv. Exp. Med. Biol. 494:491497.
134. Xu, X.,, Y. Liu,, S. Weiss,, E. Arnold,, S. G. Sarafianos, and, J. Ding. 2003. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Nucleic Acids Res. 31:71177130.
135. Xu, X.,, Y. Zhai,, F. Sun,, Z. Lou,, D. Su,, Y. Xu,, R. Zhang,, A. Joachimiak,, X. C. Zhang,, M. Bartlam, and, Z. Rao. 2006. New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15. J. Virol. 80:79097917.
136. Yang, H.,, M. Bartlam, and, Z. Rao. 2006. Drug design targeting the main protease, the Achilles’ heel of coronaviruses. Curr. Pharm. Des. 12:45734590.
137. Yang, H.,, W. Xie,, X. Xue,, K. Yang,, J. Ma,, W. Liang,, Q. Zhao,, Z. Zhou,, D. Pei,, J. Ziebuhr,, R. Hilgenfeld,, K. Y. Yuen,, L. Wong,, G. Gao,, S. Chen,, Z. Chen,, D. Ma,, M. Bartlam, and, Z. Rao. 2005. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 3:e324.
138. Yang, H.,, M. Yang,, Y. Ding,, Y. Liu,, Z. Lou,, Z. Zhou,, L. Sun,, L. Mo,, S. Ye,, H. Pang,, G. F. Gao,, K. Anand,, M. Bartlam,, R. Hilgenfeld, and, Z. Rao. 2003. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA 100:1319013195.
139. Yin, J.,, E. M. Bergmann,, M. M. Cherney,, M. S. Lall,, R. P. Jain,, J. C. Vederas, and, M. N. James. 2005. Dual modes of modification of hepatitis A virus 3C protease by a serine-derived beta-lactone: selective crystallization and formation of a functional catalytic triad in the active site. J. Mol. Biol. 354:854871.
140. Zhai, Y.,, F. Sun,, X. Li,, H. Pang,, X. Xu,, M. Bartlam, and, Z. Rao. 2005. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 12:980986.
141. Zheng, K.,, G. Ma,, J. Zhou,, M. Zen,, W. Zhao,, Y. Jiang,, Q. Yu, and, J. Feng. 2007. Insight into the activity of SARS main protease: molecular dynamics study of dimeric and monomeric form of enzyme. Proteins 66:467479.
142. Ziebuhr, J. 2005. The coronavirus replicase. Curr. Top. Microbiol. Immunol. 287:5794.
143. Ziebuhr, J.,, J. Herold, and, S. G. Siddell. 1995. Characterization of a human coronavirus (strain 229E) 3C-like protein-ase activity. J. Virol. 69:43314338.
144. Ziebuhr, J.,, G. Heusipp, and, S. G. Siddell. 1997. Biosynthesis, purification, and characterization of the human coronavirus 229E 3C-like proteinase. J. Virol. 71:39923997.
145. Ziebuhr, J.,, B. Schelle,, N. Karl,, E. Minskaia,, S. Bayer,, S. G. Siddell,, A. E. Gorbalenya, and, V. Thiel. 2007. Human coronavirus 229E papain-like proteases have overlapping specificities but distinct functions in viral replication. J. Virol. 81:39223932.
146. Ziebuhr, J., and, S. G. Siddell. 1999. Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J. Virol. 73:177185.
147. Ziebuhr, J., and, E. J. Snijder. 2007. The coronavirus replicase gene: special enzymes for special viruses. In V. Thiel (ed.), Coronaviruses: Molecular Biology and Diseases.ˋ Horizon Scientific Press, Norwich, United Kingdom.
148. Ziebuhr, J.,, E. J. Snijder, and, A. E. Gorbalenya. 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81:853879.
149. Ziebuhr, J.,, V. Thiel, and, A. E. Gorbalenya. 2001. The auto-catalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J. Biol. Chem. 276:3322033232.
150. Zuo, Y., and, M. P. Deutscher. 2001. Exoribonuclease super-families: structural analysis and phylogenetic distribution. Nucleic Acids Res. 29:10171026.


Generic image for table
Table 1.

Characteristics of coronavirus replicase gene-encoded nsps

Citation: Ziebuhr J. 2008. Coronavirus Replicative Proteins, p 65-81. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error