1887

Chapter 6 : The Arterivirus Replicase

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Arterivirus Replicase, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap06-2.gif

Abstract:

This chapter focuses on the arterivirus proteins that are involved in genome replication and subgenomic RNA (sgRNA) synthesis. These proteins, which are collectively referred to as “replicase/transcriptase” or—for simplicity—just “replicase,” are encoded by open reading frames 1a and 1b (ORF1a and ORF1b) of the arterivirus genome. Comparative sequence analysis of the various prototypic arterivirus genomes, and comparison with more distantly related nidoviruses, led to the identification of a number of conserved domains within the replicase. The arterivirus replicase gene covers approximately 75% of the genome. The chapter provides overviews of ORF1a- and ORF1b-encoded conserved domains. Translation of ORF1b requires a –1 ribosomal frameshift in the region just upstream of the ORF1a termination codon, resulting in the C-terminal extension of pp1a to give pp1ab. Proteolytic processing plays an important role during the arterivirus life cycle and presumably is a way to control the temporal and spatial release of replicase subunits. The proteolytic processing of the replicase polyproteins controls expression (in time and space) of the various replicase processing intermediates and end products. The chapter also talks about the properties of replicase subunits, and the arterivirus replication/transcription complex.

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6

Key Concept Ranking

Porcine reproductive and respiratory syndrome virus
0.63240474
0.63240474
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Schematic representation of the replicases of the arteriviruses EAV, SHFV, LDV, and PRRSV. Sequences are aligned on the ribosomal frameshift site (RFS), and nsp numbers are shown above each sequence. The (putative) PCPα, PCPβ, PCPγ, and CP cleavage sites are indicated with open triangles, and the 3CLSP cleavage sites are indicated with black triangles. Conserved domains are indicated with black and gray boxes. ZF, putative zinc finger; C/H, cysteine/histidine-rich clusters; TM, predicted transmembrane regions; P, protease domain; Z, ZBD; N, NendoU. The diagram was based on the EAV Bucyrus strain (Swiss-Prot accession no. P19811) ( ), SHFV strain LVR 42-0 (Q68772), the LDV P strain (Q83017) ( ), and PRRSV strain VR-2332 (Q9WJB2) ( ).

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

RNA sequence of the ORF1a/1b ribosomal frameshift region and the predicted frameshift-regulating RNA pseudo-knot structure. The proposed slippery sequence is indicated with a gray box; the ORF1a stop codon (bold) is underlined. The structures were adapted from or modeled based on references , and . The SHFV structure was modeled using sequence data from GenBank accession no. AF180391.

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Proteolytic processing of arterivirus pp1ab polyproteins. Cleavages that only occur as part of the minor pathway ( ) are indicated in italics. The P1 and P1’ residues of the C-terminal cleavage site of each nsp are indicated in single-letter amino acid code; for SHFV, PRRSV, and LDV, these are predicted sites based on comparative sequence analysis. Cleavage sites for various nsp1 PCP domains are unknown and therefore indicated with a question mark. The data and numbering relate to the EAV Bucyrus strain (Swiss-Prot accession no. P19811), SHFV (Q68772), the PRRSV Lelystad strain (Q04561), and the LDV P strain (Q83017).

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Proteolytic processing of EAV replicase pp1a via the major and minor pathways, of which the former depends on an interaction between nsp2 and nsp3-8 ( ). The proteases involved in processing are indicated with a white P in a black box. Sites cleaved by PCPβ and by CP are indicated by open triangles. Cleavages mediated by the 3CLSP nsp4 are indicated by black triangles. TM indicates predicted transmembrane domains.

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Alignment of the putative nsp1 zinc finger and PCP domains of arteriviruses. Conserved residues are shown in black. Residues 75 and 50% conserved are indicated in dark and light gray, respectively. Numbers refer to the amino acid position in the pp1ab sequence. (A) Conserved Cys (or His) residues in the putative zinc finger domain that might be involved in metal ion coordination are indicated with asterisks. Active-site Cys and His residues in the PCPα (B) and PCPβ (C) domains are indicated with pound signs. The missing catalytic Cys in EAV PCPα is indicated with an “X” above the sequence. SHFV contains an additional PCPγ domain, which could be aligned with the PCPβ domains of the other arteriviruses. Alignments were generated and edited with MAFFT ( ) and the GeneDoc software, using sequence data from the PRRSV Lelystad strain (Swiss-Prot accession no. Q04561) and the sequences of other arteriviruses as indicated in the legend to Fig. 1 .

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Nuclear and perinuclear localization of nsp1 in EAV-infected cells. Shown is immunofluorescence staining of EAV-infected BHK-21 cells, 8 h after infection. Nuclei were stained with Hoechst 33528 (A), and nsp1 was detected using a rabbit polyclonal antiserum (B).

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Multiple alignment of the arterivirus nsp2 CP domain. The Cys and His residues of the catalytic dyad are indicated with pound signs. Conserved Cys residues that are required for activity in EAV are indicated with asterisks. Numbers refer to the amino acid position in the pp1ab sequence. For further details, see the legend to Fig. 5 .

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Multiple alignment of the 3CSLP (main protease) domain of arterivirus nsp4 proteins. The conserved residues of the catalytic triad are indicated with pound signs. Residues predicted to be involved in substrate recognition are indicated with asterisks. Numbers refer to the amino acid position in the pp1ab sequence. For further details, see the legend to Fig. 5 .

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Structural model of EAV nsp4, the main protease. The N- and C-terminal β-barrels and the C-terminal extension are indicated above the model. Catalytic triad residues (thick black sticks) are indicated with white text in a black box. Residues involved in substrate recognition (thin black sticks) are indicated by black text. Numbers refer to the amino acid position in the nsp4 subunit. The ribbon model was prepared with Pymol (Delano Scientific) and PDB entry 1MBM.

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Multiple alignment of arterivirus nsp10 domains. (A) Putative ZBD. Conserved Cys and His residues are indicated with asterisks. The Ser in the putative hinge region is boxed (hatched) (B) The NTPase/HEL domain. The NTP-binding motif is underlined, and residues that are conserved in type 1 superfamily HELs are indicated with asterisks. For further details, see the legend to Fig. 5 .

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815790.ch06
1. Allende, R.,, T. L. Lewis,, Z. Lu,, D. L. Rock,, G. F. Kutish,, A. Ali,, A. R. Doster, and, F. A. Osorio. 1999. North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J. Gen. Virol. 80:307315.
2. Almazan, F.,, C. Galan, and, L. Enjuanes. 2004. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78:1268312688.
3. Barrette-Ng, I. H.,, K. K. Ng,, B. L. Mark,, D. Van Aken,, M. M. Cherney,, C. Garen,, Y. Kolodenko,, A. E. Gorbalenya,, E. J. Snijder, and, M. N. James. 2002. Structure of arterivirus nsp4. The smallest chymotrypsin-like proteinase with an alpha/beta C-terminal extension and alternate conformations of the oxy-anion hole. J. Biol. Chem. 277:3996039966.
4. Bautista, E. M.,, K. S. Faaberg,, D. Mickelson, and, E. D. McGruder. 2002. Functional properties of the predicted helicase of porcine reproductive and respiratory syndrome virus. Virology 298:258270.
5. Bazan, J. F., and, R. J. Fletterick. 1988. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc. Natl. Acad. Sci. USA 85:78727876.
6. Beerens, N.,, B. Selisko,, S. Ricagno,, I. Imbert,, A. L. van der Zanden,, E. J. Snijder, and, B. Canard. 2007. De novo initiation of RNA synthesis by the arterivirus RNA-dependent RNA polymerase. J. Virol. 81:83848395.
7. Bhardwaj, K.,, L. Guarino, and, C. C. Kao. 2004. The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J. Virol. 78:1221812224.
8. Bredenbeek, P. J.,, C. J. Pachuk,, A. F. Noten,, J. Charite,, W. Luytjes,, S. R. Weiss, and, W. J. Spaan. 1990. The primary structure and expression of the second open reading frame of the polymerase gene of the coronavirus MHV-A59; a highly conserved polymerase is expressed by an efficient ribosomal frameshifting mechanism. Nucleic Acids Res. 18:18251832.
9. Brierley, I.,, M. E. Boursnell,, M. M. Binns,, B. Bilimoria,, V. C. Blok,, T. D. Brown, and, S. C. Inglis. 1987. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 6:37793785.
10. Broadhurst, M. K.,, R. S. Lee,, S. Hawkins, and, T. T. Wheeler. 2005. The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. Biochim. Biophys. Acta 1681:126133.
11. Callebaut, I., and, J. P. Mornon. 1997. The human EBNA-2 coactivator p100: multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem. J. 321:125132.
12. Caudy, A. A.,, R. F. Ketting,, S. M. Hammond,, A. M. Denli,, A. M. Bathoorn,, B. B. Tops,, J. M. Silva,, M. M. Myers,, G. J. Hannon, and, R. H. Plasterk. 2003. A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411414.
13. Cheng, A.,, W. Zhang,, Y. Xie,, W. Jiang,, E. Arnold,, S. G. Sarafianos, and, J. Ding. 2005. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Virology 335:165176.
14. Choi, H. K.,, L. Tong,, W. Minor,, P. Dumas,, U. Boege,, M. G. Rossmann, and, G. Wengler. 1991. Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354:3743.
15. den Boon, J. A. 1996. Equine Arteritis Virus. Replication and Transcription of a Coronaviruslike Virus. Ph.D. Thesis. Leiden University, Leiden, The Netherlands.
16. den Boon, J. A.,, K. S. Faaberg,, J. J. Meulenberg,, A. L. Wassenaar,, P. G. Plagemann,, A. E. Gorbalenya, and, E. J. Snijder. 1995. Processing and evolution of the N-terminal region of the arterivirus replicase ORF1a protein: identification of two papainlike cysteine proteases. J. Virol. 69:45004505.
17. den Boon, J. A.,, E. J. Snijder,, E. D. Chirnside,, A. A. de Vries,, M. C. Horzinek, and, W. J. Spaan. 1991. Equine arteritis virus is not a togavirus but belongs to the coronaviruslike superfamily. J. Virol. 65:29102920.
18. Faaberg, K. S., and, P. G. Plagemann. 1996. Membrane association of the C-terminal half of the open reading frame 1a protein of lactate dehydrogenase-elevating virus. Arch. Virol. 141:13371348.
19. Godeny, E. K.,, L. Chen,, S. N. Kumar,, S. L. Methven,, E. V. Koonin, and, M. A. Brinton. 1993. Complete genomic sequence and phylogenetic analysis of the lactate dehydrogenase-elevating virus (LDV). Virology 194:585596.
20. Gorbalenya, A. E.,, V. M. Blinov,, A. P. Donchenko, and, E. V. Koonin. 1989. An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. J. Mol. Evol. 28:256268.
21. Gorbalenya, A. E.,, A. P. Donchenko,, V. M. Blinov, and, E. V. Koonin. 1989. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 243:103114.
22. Gorbalenya, A. E.,, L. Enjuanes,, J. Ziebuhr, and, E. J. Snijder. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res. 117:1737.
23. Gorbalenya, A. E.,, E. V. Koonin,, A. P. Donchenko, and, V. M. Blinov. 1989. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res. 17:48474861.
24. Gorbalenya, A. E.,, E. V. Koonin, and, M. M. Lai. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett. 288:201205.
25. Han, J.,, Y. Wang, and, K. S. Faaberg. 2006. Complete genome analysis of RFLP 184 isolates of porcine reproductive and respiratory syndrome virus. Virus Res. 122:175182.
26. Ivanov, K. A.,, T. Hertzig,, M. Rozanov,, S. Bayer,, V. Thiel,, A. E. Gorbalenya, and, J. Ziebuhr. 2004. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101:1269412699.
27. Kadare, G., and, A. L. Haenni. 1997. Virus-encoded RNA heli-cases. J. Virol. 71:25832590.
28. Kamer, G., and, P. Argos. 1984. Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res. 12:72697282.
29. Katoh, K.,, K. Misawa,, K. Kuma, and, T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:30593066.
30. Koonin, E. V. 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J. Gen. Virol. 72(Pt. 9):21972206.
31. Laity, J. H.,, B. M. Lee, and, P. E. Wright. 2001. Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11:3946.
32. Laneve, P.,, F. Altieri,, M. E. Fiori,, A. Scaloni,, I. Bozzoni, and, E. Caffarelli. 2003. Purification, cloning, and characterization of XendoU, a novel endoribonuclease involved in processing of intron-encoded small nucleolar RNAs in Xenopus laevis. J. Biol. Chem. 278:1302613032.
33. Makarova, K. S.,, L. Aravind, and, E. V. Koonin. 2000. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25:5052.
34. Meulenberg, J. J.,, M. M. Hulst,, E. J. de Meijer,, P. L. Moonen,, A. den Besten,, E. P. De Kluyver,, G. Wensvoort, and, R. J. Moormann. 1993. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology 192:6272.
35. Molenkamp, R.,, H. van Tol,, B. C. Rozier,, Y. van der Meer,, W. J. Spaan, and, E. J. Snijder. 2000. The arterivirus replicase is the only viral protein required for genome replication and subgenomic mRNA transcription. J. Gen. Virol. 81:24912496.
36. Nelsen, C. J.,, M. P. Murtaugh, and, K. S. Faaberg. 1999. Porcine reproductive and respiratory syndrome virus comparison: divergent evolution on two continents. J. Virol. 73:270280.
37. Oleksiewicz, M. B.,, E. J. Snijder, and, P. Normann. 2004. Phage display of the equine arteritis virus nsp1 ZF domain and examination of its metal interactions. J. Virol. Methods 119:159169.
38. O’Reilly, E. K., and, C. C. Kao. 1998. Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Virology 252:287303.
39. Palmer, G. A.,, L. Kuo,, Z. Chen,, K. S. Faaberg, and, P. G. Plagemann. 1995. Sequence of the genome of lactate dehydrogenase-elevating virus: heterogenicity between strains P and C. Virology 209:637642.
40. Paukku, K.,, J. Yang, and, O. Silvennoinen. 2003. Tudor and nuclease-like domains containing protein p100 function as coactivators for signal transducer and activator of transcription 5. Mol. Endocrinol. 17:18051814.
41. Pedersen, K. W.,, Y. van der Meer,, N. Roos, and, E. J. Snijder. 1999. Open reading frame 1a-encoded subunits of the arteri-virus replicase induce endoplasmic reticulum-derived double-membrane vesicles which carry the viral replication complex. J. Virol. 73:20162026.
42. Poch, O.,, I. Sauvaget,, M. Delarue, and, N. Tordo. 1989. Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J. 8:38673874.
43. Pol, J. M.,, F. Wagenaar, and, J. E. Reus. 1997. Comparative morphogenesis of three PRRS virus strains. Vet. Microbiol. 55:203208.
44. Posthuma, C. C.,, D. D. Nedialkova,, J. C. Zevenhoven-Dobbe,, J. H. Blokhuis,, A. E. Gorbalenya, and, E. J. Snijder. 2006. Site-directed mutagenesis of the nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. J. Virol. 80:16531661.
45. Ricagno, S.,, M. P. Egloff,, R. Ulferts,, B. Coutard,, D. Nurizzo,, V. Campanacci,, C. Cambillau,, J. Ziebuhr, and, B. Canard. 2006. Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proc. Natl. Acad. Sci. USA 103:1189211897.
46. Ritzi, D. M.,, M. Holth,, M. S. Smith,, W. J. Swart,, W. A. Cafruny,, G. W. Plagemann, and, J. A. Stueckemann. 1982. Replication of lactate dehydrogenase-elevating virus in macrophages. 1. Evidence for cytocidal replication. J. Gen. Virol. 59:245262.
47. Schechter, I., and, A. Berger. 1967. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27:157162.
48. Schelle, B.,, N. Karl,, B. Ludewig,, S. G. Siddell, and, V. Thiel. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79:66206630.
49. Selenko, P.,, R. Sprangers,, G. Stier,, D. Buhler,, U. Fischer, and, M. Sattler. 2001. SMN tudor domain structure and its interaction with the Sm proteins. Nat. Struct. Biol. 8:2731.
50. Seybert, A.,, C. C. Posthuma,, L. C. van Dinten,, E. J. Snijder,, A. E. Gorbalenya, and, J. Ziebuhr. 2005. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J. Virol. 79:696704.
51. Seybert, A.,, L. C. van Dinten,, E. J. Snijder, and, J. Ziebuhr. 2000. Biochemical characterization of the equine arteritis virus helicase suggests a close functional relationship between arterivirus and coronavirus helicases. J. Virol. 74:95869593.
52. Snijder, E. J.,, P. J. Bredenbeek,, J. C. Dobbe,, V. Thiel,, J. Ziebuhr,, L. L. Poon,, Y. Guan,, M. Rozanov,, W. J. Spaan, and, A. E. Gorbalenya. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331:9911004.
53. Snijder, E. J.,, H. van Tol,, N. Roos, and, K. W. Pedersen. 2001. Non-structural proteins 2 and 3 interact to modify host cell membranes during the formation of the arterivirus replication complex. J. Gen. Virol. 82:985994.
54. Snijder, E. J.,, A. L. Wassenaar, and, W. J. Spaan. 1992. The 5ˊ end of the equine arteritis virus replicase gene encodes a papain-like cysteine protease. J. Virol. 66:70407048.
55. Snijder, E. J.,, A. L. Wassenaar, and, W. J. Spaan. 1994. Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J. Virol. 68:57555764.
56. Snijder, E. J.,, A. L. Wassenaar,, W. J. Spaan, and, A. E. Gorbalenya. 1995. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J. Biol. Chem. 270:1667116676.
57. Snijder, E. J.,, A. L. Wassenaar,, L. C. van Dinten,, W. J. Spaan, and, A. E. Gorbalenya. 1996. The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J. Biol. Chem. 271:48644871.
58. Su, M. C.,, C. T. Chang,, C. H. Chu,, C. H. Tsai, and, K. Y. Chang. 2005. An atypical RNA pseudoknot stimulator and an upstream attenuation signal for —1 ribosomal frameshifting of SARS coronavirus. Nucleic Acids Res. 33:42654275.
59. Sulea, T.,, H. A. Lindner, and, R. Menard. 2006. Structural aspects of recently discovered viral deubiquitinating activities. Biol. Chem. 387:853862.
60. Tijms, M. A., and, E. J. Snijder. 2003. Equine arteritis virus non-structural protein 1, an essential factor for viral subgenomic mRNA synthesis, interacts with the cellular transcription co-factor p100. J. Gen. Virol. 84:23172322.
61. Tijms, M. A.,, Y. van der Meer, and, E. J. Snijder. 2002. Nuclear localization of non-structural protein 1 and nucleocapsid protein of equine arteritis virus. J. Gen. Virol. 83:795800.
62. Tijms, M. A.,, L. C. van Dinten,, A. E. Gorbalenya, and, E. J. Snijder. 2001. A zinc finger-containing papain-like protease couples subgenomic mRNA synthesis to genome translation in a positive-stranded RNA virus. Proc. Natl. Acad. Sci. USA 98:18891894.
63. Tong, X.,, R. Drapkin,, R. Yalamanchili,, G. Mosialos, and, E. Kieff. 1995. The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell. Biol. 15:47354744.
64. Valineva, T.,, J. Yang,, R. Palovuori, and, O. Silvennoinen. 2005. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J. Biol. Chem. 280:1498914996.
65. Van Aken, D.,, W. E. Benckhuijsen,, J. W. Drijfhout,, A. L. Wassenaar,, A. E. Gorbalenya, and, E. J. Snijder. 2006. Expression, purification, and in vitro activity of an arterivirus main proteinase. Virus Res. 120:97106.
66. Van Aken, D.,, E. J. Snijder, and, A. E. Gorbalenya. 2006. Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. J. Virol. 80:34283437.
67. Van Aken, D.,, J. Zevenhoven-Dobbe,, A. E. Gorbalenya, and, E. J. Snijder. 2006. Proteolytic maturation of replicase poly-protein pp1a by the nsp4 main proteinase is essential for equine arteritis virus replication and includes internal cleavage of nsp7. J. Gen. Virol. 87:34733482.
68. van der Meer, Y.,, H. van Tol,, J. K. Locker, and, E. J. Snijder. 1998. ORF1a-encoded replicase subunits are involved in the membrane association of the arterivirus replication complex. J. Virol. 72:66896698.
69. van Dijk, A. A.,, E. V. Makeyev, and, D. H. Bamford. 2004. Initiation of viral RNA-dependent RNA polymerization. J. Gen. Virol. 85:10771093.
70. van Dinten, L. C.,, J. A. den. Boon,, A. L. Wassenaar,, W. J. Spaan, and, E. J. Snijder. 1997. An infectious arterivirus cDNA clone: identification of a replicase point mutation that abolishes discontinuous mRNA transcription. Proc. Natl. Acad. Sci. USA 94:991996.
71. van Dinten, L. C.,, S. Rensen,, A. E. Gorbalenya, and, E. J. Snijder. 1999. Proteolytic processing of the open reading frame 1b-encoded part of arterivirus replicase is mediated by nsp4 serine protease and is essential for virus replication. J. Virol. 73:20272037.
72. van Dinten, L. C.,, H. van Tol,, A. E. Gorbalenya, and, E. J. Snijder. 2000. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J. Virol. 74:52135223.
73. van Dinten, L. C.,, A. L. Wassenaar,, A. E. Gorbalenya,, W. J. Spaan, and, E. J. Snijder. 1996. Processing of the equine arteritis virus replicase ORF1b protein: identification of cleavage products containing the putative viral polymerase and helicase domains. J. Virol. 70:66256633.
74. van Marle, G.,, L. C. van Dinten,, W. J. Spaan,, W. Luytjes, and, E. J. Snijder. 1999. Characterization of an equine arteritis virus replicase mutant defective in subgenomic mRNA synthesis. J. Virol. 73:52745281.
75. Wassenaar, A. L.,, W. J. Spaan,, A. E. Gorbalenya, and, E. J. Snijder. 1997. Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J. Virol. 71:93139322.
76. Wood, O.,, N. Tauraso, and, H. Liebhaber. 1970. Electron microscopic study of tissue cultures infected with simian haemorrhagic fever virus. J. Gen. Virol. 7:129136.
77. Xu, X.,, Y. Zhai,, F. Sun,, Z. Lou,, D. Su,, Y. Xu,, R. Zhang,, A. Joachimiak,, X. C. Zhang,, M. Bartlam, and, Z. Rao. 2006. New antiviral target revealed by the hexameric structure of mouse hepatitis virus nonstructural protein nsp15. J. Virol. 80:79097917.
78. Yang, J.,, S. Aittomaki,, M. Pesu,, K. Carter,, J. Saarinen,, N. Kalkkinen,, E. Kieff, and, O. Silvennoinen. 2002. Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21:49504958.
79. Ziebuhr, J.,, E. J. Snijder, and, A. E. Gorbalenya. 2000. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81:853879.

Tables

Generic image for table
Table 1.

Comparison of arterivirus replicase gene features

Citation: van Hemert M, Snijder E. 2008. The Arterivirus Replicase, p 83-101. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error