Chapter 10 : Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap10-2.gif


The identification of a viral receptor can make a significant contribution to our understanding of viral pathogenesis and viral evolution, and to the development of vaccines and antiviral therapeutics. This chapter describes the shared cellular receptor for severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus NL63 (HCoVNL63). Identification of this receptor contributed to our understanding of the zoonotic transmission of SARS-CoV and of the distinctive entry mechanisms of both SARS-CoV and HCoV-NL63. These are discussed in the context of the structure of the SARS-CoV S protein receptor-binding domain (RBD) bound to this common receptor, angiotensin-converting enzyme 2 (ACE2). Functional studies of the viral receptor, described in the chapter, support a critical role for palm civets in transmitting virus to humans.

Citation: Li W, Choe H, Farzan M. 2008. Angiotensin-Converting Enzyme 2, the Cellular Receptor for Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63, p 147-156. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch10

Key Concept Ranking

Human immunodeficiency virus 1
Porcine epidemic diarrhea virus
Severe Acute Respiratory Syndrome
Acute Respiratory Distress Syndrome
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Arpin, N., and, P. J. Talbot. 1990. Molecular characterization of the 229E strain of human coronavirus. Adv. Exp. Med. Biol. 276:7380.
2. Babcock, G. J.,, D. J. Esshaki,, W. D. Thomas, Jr., and, D. M. Ambrosino. 2004. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J. Virol. 78:45524560.
3. Bonavia, A.,, B. D. Zelus,, D. E. Wentworth,, P. J. Talbot, and, K. V. Holmes. 2003. Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J. Virol. 77:25302538.
4. Bosch, B. J.,, R. van der Zee,, C. A. de Haan, and, P. J. Rottier. 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77:88018811.
5. Breslin, J. J.,, I. Mørk,, M. K. Smith,, L. K. Vogel,, E. M. Hemmila,, A. Bonavia,, P. J. Talbot,, H. Sjöström,, O. Norén, and, K. V. Holmes. 2003. Human coronavirus 229E: receptor binding domain and neutralization by soluble receptor at 37°C. J. Virol. 77:44354438.
6. Casais, R.,, B. Dove,, D. Cavanagh, and, P. Britton. 2003. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J. Virol. 77:90849089.
7. Chan, P. K.,, K. F. To,, A. W. Lo,, J. L. Cheung,, I. Chu,, F. W. Au,, J. H. Tong,, J. S. Tam,, J. J. Sung, and, H. K. Ng. 2004. Persistent infection of SARS coronavirus in colonic cells in vitro. J. Med. Virol. 74:17.
8. Chandran, K.,, N. J. Sullivan,, U. Felbor,, S. P. Whelan, and, J. M. Cunningham. 2005. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science 308:16431645. [Epub 14 April 2005.]
9. Chen, Z.,, L. Zhang,, C. Qin,, L. Ba,, C. E. Yi,, F. Zhang,, Q. Wei,, T. He,, W. Yu,, J. Yu,, H. Gao,, X. Tu,, A. Gettie,, M. Farzan,, K. Y. Yuen, and, D. D. Ho. 2005. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 79:26782688.
10. Cherry, J. D. 2004. The chronology of the 2002–2003 SARS mini pandemic. Paediatr. Respir. Rev. 5:262269.
11. Colman, P. M., and, M. C. Lawrence. 2003. The structural biology of type I viral membrane fusion. Nat. Rev. Mol. Cell Biol. 4:309319.
12. Crackower, M. A.,, R. Sarao,, G. Y. Oudit,, C. Yagil,, I. Kozieradzki,, S. E. Scanga,, A. J. Oliveira-dos-Santos,, J. da Costa,, L. Zhang,, Y. Pei,, J. Scholey,, C. M. Ferrario,, A. S. Manoukian,, M. C. Chappell,, P. H. Backx,, Y. Yagil, and, J. M. Penninger. 2002. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417:822828.
13. Delmas, B.,, J. Gelfi,, R. L’Haridon,, L. K. Vogel,, H. Sjostrom,, O. Noren, and, H. Laude. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357:417420.
14. Dimitrov, D. S. 2004. Virus entry: molecular mechanisms and biomedical applications. Nat. Rev. Microbiol. 2:109122.
15. Donoghue, M.,, F. Hsieh,, E. Baronas,, K. Godbout,, M. Gosselin,, N. Stagliano,, M. Donovan,, B. Woolf,, K. Robison,, R. Jeyaseelan,, R. E. Breitbart, and, S. Acton. 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87:E1E9.
16. Drosten, C.,, S. Gunther,, W. Preiser,, S. van der Werf,, H. R. Brodt,, S. Becker,, H. Rabenau,, M. Panning,, L. Kolesnikova,, R. A. Fouchier,, A. Berger,, A. M. Burguiere,, J. Cinatl,, M. Eickmann,, N. Escriou,, K. Grywna,, S. Kramme,, J. C. Manuguerra,, S. Muller,, V. Rickerts,, M. Sturmer,, S. Vieth,, H. D. Klenk,, A. D. Osterhaus,, H. Schmitz, and, H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:19671976.
17. Dveksler, G. S.,, M. N. Pensiero,, C. B. Cardellichio,, R. K. Williams,, G. S. Jiang,, K. V. Holmes, and, C. W. Dieffenbach. 1991. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 65:68816891.
18. Esper, F.,, C. Weibel,, D. Ferguson,, M. L. Landry, and, J. S. Kahn. 2005. Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J. Infect. Dis. 191:492498. [Epub 14 January 2005.]
19. Fleck, F. 2004. SARS virus returns to China as scientists race to find effective vaccine. Bull. W. H. O. 82:152153.
20. Fouchier, R. A.,, T. Kuiken,, M. Schutten,, G. van Amerongen,, G. J. van Doornum,, B. G. van den Hoogen,, M. Peiris,, W. Lim,, K. Stohr, and, A. D. Osterhaus. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423:240.
21. Gallagher, T. M., and, M. J. Buchmeier. 2001. Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371374.
22. Gibbs, A. J.,, M. J. Gibbs, and, J. S. Armstrong. 2004. The phylogeny of SARS coronavirus. Arch. Virol. 149:621624. [Epub 5 January 2004.]
23. Gonzalez, J. M.,, P. Gomez-Puertas,, D. Cavanagh,, A. E. Gorbalenya, and, L. Enjuanes. 2003. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch. Virol. 148:22072235.
24. Gorbalenya, A. E.,, E. J. Snijder, and, W. J. Spaan. 2004. Severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J. Virol. 78:78637866.
25. Gramberg, T.,, H. Hofmann,, P. Moller,, P. F. Lalor,, A. Marzi,, M. Geier,, M. Krumbiegel,, T. Winkler,, F. Kirchhoff,, D. H. Adams,, S. Becker,, J. Munch, and, S. Pohlmann. 2005. LSECtin interacts with filovirus glycoproteins and the spike protein of SARS coronavirus. Virology 340:224236.
26. Greenough, T. C.,, G. J. Babcock,, A. Roberts,, H. J. Hernandez,, W. D. Thomas, Jr.,, J. A. Coccia,, R. F. Graziano,, M. Srinivasan,, I. Lowy,, R. W. Finberg,, K. Subbarao,, L. Vogel,, M. Somasundaran,, K. Luzuriaga,, J. L. Sullivan, and, D. M. Ambrosino. 2005. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis. 191:507514. [Epub 14 January 2005.]
27. Guan, Y.,, B. J. Zheng,, Y. Q. He,, X. L. Liu,, Z. X. Zhuang,, C. L. Cheung,, S. W. Luo,, P. H. Li,, L. J. Zhang,, Y. J. Guan,, K. M. Butt,, K. L. Wong,, K. W. Chan,, W. Lim,, K. F. Shortridge,, K. Y. Yuen,, J. S. Peiris, and, L. L. Poon. 2003. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302:276278.
28. Haijema, B. J.,, H. Volders, and, P. J. M. Rottier. 2003. Switching species tropism: an effective way to manipulate the feline coronavirus genome. J. Virol. 77:45284538.
29. Hamming, I.,, W. Timens,, M. L. Bulthuis,, A. T. Lely,, G. J. Navis, and, H. van Goor. 2004. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203:631637.
30. Harmer, D.,, M. Gilbert,, R. Borman, and, K. L. Clark. 2002. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett. 532:107110.
31. He, J.-F.,, G.-W. Peng,, J. Min,, D.-W. Yu,, W.-J. Liang,, S.-Y. Zhang,, R.-H. Xu,, H.-Y. Zheng,, X.-W. Wu,, J. Xu,, Z.-H. Wang,, L. Fang,, X. Zhang,, H. Li,, X.-G. Yan,, J.-H. Lu,, Z.-H. Hu,, J.-C. Huang,, X. W. Wan, et al. 2004. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:16661669. [Epub 29 January 2004.]
32. He, Y.,, H. Lu,, P. Siddiqui,, Y. Zhou, and, S. Jiang. 2005. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J. Immunol. 174:49084915.
33. He, Y.,, Y. Zhou,, S. Liu,, Z. Kou,, W. Li,, M. Farzan, and, S. Jiang. 2004. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem. Biophys. Res. Commun. 324:773781.
34. He, Y.,, Y. Zhou,, H. Wu,, B. Luo,, J. Chen,, W. Li, and, S. Jiang. 2004. Identification of immunodominant sites on the spike protein of severe acute respiratory syndrome (SARS) coronavirus: implication for developing SARS diagnostics and vaccines. J. Immunol. 173:40504057.
35. Hofmann, H.,, K. Pyrc,, L. van der Hoek,, M. Geier,, B. Berkhout, and, S. Pohlmann. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102:79887993.
36. Hofmann, H.,, G. Simmons,, A. J. Rennekamp,, C. Chaipan,, T. Gramberg,, E. Heck,, M. Geier,, A. Wegele,, A. Marzi,, P. Bates, and, S. Pohlmann. 2006. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J. Virol. 80:86398652.
37. Holmes, E. C., and, A. Rambaut. 2004. Viral evolution and the emergence of SARS coronavirus. Philos. Trans. R. Soc. Lond. B 359:10591065.
38. Huang, I. C.,, B. J. Bosch,, F. Li,, W. Li,, K. H. Lee,, S. Ghiran,, N. Vasilieva,, T. S. Dermody,, S. C. Harrison,, P. R. Dormitzer,, M. Farzan,, P. J. Rottier, and, H. Choe. 2006. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 281:31983203.
39. Huang, I. C.,, B. J. Bosch,, W. Li,, M. Farzan,, P. M. Rottier, and, H. Choe. 2006. SARS-CoV, but not HCoV-NL63, utilizes cathepsins to infect cells: viral entry. Adv. Exp. Med. Biol. 581:335338.
40. Imai, Y.,, K. Kuba,, S. Rao,, Y. Huan,, F. Guo,, B. Guan,, P. Yang,, R. Sarao,, T. Wada,, H. Leong-Poi,, M. A. Crackower,, A. Fukamizu,, C. C. Hui,, L. Hein,, S. Uhlig,, A. S. Slutsky,, C. Jiang, and, J. M. Penninger. 2005. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436:112116.
41. Jackwood, M. W.,, D. A. Hilt,, S. A. Callison,, C. W. Lee,, H. Plaza, and, E. Wade. 2001. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis. 45:366372.
42. Jeffers, S. A.,, S. M. Tusell,, L. Gillim-Ross,, E. M. Hemmila,, J. E. Achenbach,, G. J. Babcock,, W. D. Thomas, Jr.,, L. B. Thackray,, M. D. Young,, R. J. Mason,, D. M. Ambrosino,, D. E. Wentworth,, J. C. Demartini, and, K. V. Holmes. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 101:1574815753.
43. Kan, B.,, M. Wang,, H. Jing,, H. Xu,, X. Jiang,, M. Yan,, W. Liang,, H. Zheng,, K. Wan,, Q. Liu,, B. Cui,, Y. Xu,, E. Zhang,, H. Wang,, J. Ye,, G. Li,, M. Li,, Z. Cui,, X. Qi,, K. Chen,, L. Du,, K. Gao,, Y.-T. Zhao,, X.-Z. Zou,, Y.-J. Feng,, Y.-F. Gao,, R. Hai,, D. Yu,, Y. Guan, and, J. Xu. 2005. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol. 79:1189211900.
44. Ksiazek, T. G.,, D. Erdman,, C. S. Goldsmith,, S. R. Zaki,, T. Peret,, S. Emery,, S. Tong,, C. Urbani,, J. A. Comer,, W. Lim,, P. E. Rollin,, S. F. Dowell,, A. E. Ling,, C. D. Humphrey,, W. J. Shieh,, J. Guarner,, C. D. Paddock,, P. Rota,, B. Fields,, J. DeRisi,, J. Y. Yang,, N. Cox,, J. M. Hughes,, J. W. LeDuc,, W. J. Bellini, and, L. J. Anderson. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:19531966.
45. Kuba, K.,, Y. Imai,, S. Rao,, H. Gao,, F. Guo,, B. Guan,, Y. Huan,, P. Yang,, Y. Zhang,, W. Deng,, L. Bao,, B. Zhang,, G. Liu,, Z. Wang,, M. Chappell,, Y. Liu,, D. Zheng,, A. Leibbrandt,, T. Wada,, A. S. Slutsky,, D. Liu,, C. Qin,, C. Jiang, and, J. M. Penninger. 2005. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 11:875879.
46. Kubo, H.,, Y. K. Yamada, and, F. Taguchi. 1994. Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino acids of the murine coronavirus spike protein. J. Virol. 68:54035410.
47. Kuiken, T.,, R. A. Fouchier,, M. Schutten,, G. F. Rimmelzwaan,, G. van Amerongen,, D. van Riel,, J. D. Laman,, T. de Jong,, G. van Doornum,, W. Lim,, A. E. Ling,, P. K. Chan,, J. S. Tam,, M. C. Zambon,, R. Gopal,, C. Drosten,, S. van der Werf,, N. Escriou,, J. C. Manuguerra,, K. Stohr,, J. S. Peiris, and, A. D. Osterhaus. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362:263270.
48. Kuo, L.,, G. J. Godeke,, M. J. Raamsman,, P. S. Masters, and, P. J. Rottier. 2000. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J. Virol. 74:13931406.
49. Lai, M. M., and, D. Cavanagh. 1997. The molecular biology of coronaviruses. Adv. Virus Res. 48:1100.
50. Lau, S. K.,, P. C. Woo,, K. S. Li,, Y. Huang,, H. W. Tsoi,, B. H. Wong,, S. S. Wong,, S. Y. Leung,, K. H. Chan, and, K. Y. Yuen. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102:1404014045. [Epub 16 September 2005.]
51. Lee, N.,, D. Hui,, A. Wu,, P. Chan,, P. Cameron,, G. M. Joynt,, A. Ahuja,, M. Y. Yung,, C. B. Leung,, K. F. To,, S. F. Lui,, C. C. Szeto,, S. Chung, and, J. J. Sung. 2003. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348:19861994.
52. Leparc-Goffart, I.,, S. T. Hingley,, M. M. Chua,, J. Phillips,, E. Lavi, and, S. R. Weiss. 1998. Targeted recombination within the spike gene of murine coronavirus mouse hepatitis virus-A59: Q159 is a determinant of hepatotropism. J. Virol. 72:96289636.
53. Li, F.,, W. Li,, M. Farzan, and, S. C. Harrison. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 309:18641868.
54. Li, W.,, T. C. Greenough,, M. J. Moore,, N. Vasilieva,, M. Somasundaran,, J. L. Sullivan,, M. Farzan, and, H. Choe. 2004. Efficient replication of severe acute respiratory syndrome coronavirus in mouse cells is limited by murine angiotensin-converting enzyme 2. J. Virol. 78:1142911433.
55. Li, W.,, M. J. Moore,, N. Vasilieva,, J. Sui,, S. K. Wong,, M. A. Berne,, M. Somasundaran,, J. L. Sullivan,, C. Luzeriaga,, T. C. Greenough,, H. Choe, and, M. Farzan. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450454.
56. Li, W.,, Z. Shi,, M. Yu,, W. Ren,, C. Smith,, J. H. Epstein,, H. Wang,, G. Crameri,, Z. Hu,, H. Zhang,, J. Zhang,, J. McEachern,, H. Field,, P. Daszak,, B. T. Eaton,, S. Zhang, and, L. F. Wang. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676679.
57. Li, W.,, S.-K. Wong,, F. Li,, J. H. Kuhn,, I.-C. Huang,, H. Choe, and, M. Farzan. 2006. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol. 80:42114219.
58. Li, W.,, C. Zhang,, J. Sui,, J. H. Kuhn,, M. J. Moore,, S. Luo,, S. K. Wong,, I. C. Huang,, K. Xu,, N. Vasilieva,, A. Murakami,, Y. He,, W. A. Marasco,, Y. Guan,, H. Choe, and, M. Farzan. 2005. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE 2. EMBO J. 24:16341643.
59. Liang, G.,, Q. Chen,, J. Xu,, Y. Liu,, W. Lim,, J. S. Peiris,, L. J. Anderson,, L. Ruan,, H. Li,, B. Kan,, B. Di,, P. Cheng,, K. H. Chan,, D. D. Erdman,, S. Gu,, X. Yan,, W. Liang,, D. Zhou,, L. Haynes,, S. Duan,, X. Zhang,, H. Zheng,, Y. Gao,, S. Tong,, D. Li,, L. Fang,, P. Qin, and, W. Xu. 2004. Laboratory diagnosis of four recent sporadic cases of community-acquired SARS, Guangdong Province, China. Emerg. Infect. Dis. 10:17741781.
60. Lim, P. L.,, A. Kurup,, G. Gopalakrishna,, K. P. Chan,, C. W. Wong,, L. C. Ng,, S. Y. Se-Thoe,, L. Oon,, X. Bai,, L. W. Stanton,, Y. Ruan,, L. D. Miller,, V. B. Vega,, L. James,, P. L. Ooi,, C. S. Kai,, S. J. Olsen,, B. Ang, and, Y. S. Leo. 2004. Laboratory-acquired severe acute respiratory syndrome. N. Engl. J. Med. 350:17401745.
61. Liu, B. H.,, D. L. Wu,, D. W. Zhan,, E. D. Qin,, Q. Y. Zhu,, C. E. Wang,, Q. W. Meng,, W. M. Peng,, X. N. Yin,, Y. H. Yang,, Y. T. Guan,, W. G. Han,, C. W. Li,, Y. G. Liu,, M. P. Wang,, Q. G. Liu,, H. Y. Shi, and, Z. F. Ding. 2004. Study on the animal model for severe acute respiratory syndrome. Wei Sheng Wu Xue Bao 44:711716. (In Mandarin Chinese.)
62. Marra, M. A.,, S. J. M. Jones,, C. R. Astell,, R. A. Holt,, A. Brooks-Wilson,, Y. S. N. Butterfield,, J. Khattra,, J. K. Asano,, S. A. Barber,, S. Y. Chan,, A. Cloutier,, S. M. Coughlin,, D. Freeman,, N. Girn,, O. L. Griffith,, S. R. Leach,, M. Mayo,, H. McDonald,, S. B. Montgomery,, P. K. Pandoh,, A. S. Petrescu,, A. G. Robertson,, J. E. Schein,, A. Siddiqui,, D. E. Smailus,, J. M. Stott,, G. S. Yang,, F. Plummer,, A. Andonov,, H. Artsob,, N. Bastien,, K. Bernard,, T. F. Booth,, D. Bowness,, M. Czub,, M. Drebot,, L. Fernando,, R. Flick,, M. Garbutt,, M. Gray,, A. Grolla,, S. Jones,, H. Feldmann,, A. Meyers,, A. Kabani,, Y. Li,, S. Normand,, U. Stroher,, G. A. Tipples,, S. Tyler,, R. Vogrig,, D. Ward,, B. Watson,, R. C. Brunham,, M. Krajden,, M. Petric,, D. M. Skowronski,, C. Upton, and, R. L. Roper. 2003. The genome sequence of the SARS-associated coronavirus. Science 300:13991404.
63. Martina, B. E.,, B. L. Haagmans,, T. Kuiken,, R. A. Fouchier,, G. F. Rimmelzwaan,, G. Van Amerongen,, J. S. Peiris,, W. Lim, and, A. D. Osterhaus. 2003. Virology: SARS virus infection of cats and ferrets. Nature 425:915.
64. Marzi, A.,, T. Gramberg,, G. Simmons,, P. Moller,, A. J. Rennekamp,, M. Krumbiegel,, M. Geier,, J. Eisemann,, N. Turza,, B. Saunier,, A. Steinkasserer,, S. Becker,, P. Bates,, H. Hofmann, and, S. Pohlmann. 2004. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J. Virol. 78:1209012095.
65. Matsuyama, S.,, M. Ujike,, S. Morikawa,, M. Tashiro, and, F. Taguchi. 2005. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. USA 102:1254312547.
66. McCray, P. B.,, Jr., L. Pewe,, C. Wohlford-Lenane,, M. Hickey,, L. Manzel,, L. Shi,, J. Netland,, H. P. Jia,, C. Halabi,, C. D. Sigmund,, D. K. Meyerholz,, P. Kirby,, D. C. Look, and, S. Perlman. 2007. Lethal Infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J. Virol. 81:813821.
67. McIntosh, K. 2005. Coronaviruses in the limelight. J. Infect. Dis. 191:489491. [Epub 14 January 2005.]
68. Moore, M. J.,, T. Dorfman,, W. Li,, S. K. Wong,, Y. Li,, J. H. Kuhn,, J. Coderre,, N. Vasilieva,, Z. Han,, T. C. Greenough,, M. Farzan, and, H. Choe. 2004. Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J. Virol. 78:1062810635.
69. Normile, D. 2004. Infectious diseases. Mounting lab accidents raise SARS fears. Science 304:659661.
70. Osterhaus, A. D.,, R. A. Fouchier, and, T. Kuiken. 2004. The aetiology of SARS: Koch’s postulates fulfilled. Philos. Trans. R. Soc. Lond. B 359:10811082.
71. Peiris, J. S.,, S. T. Lai,, L. L. Poon,, Y. Guan,, L. Y. Yam,, W. Lim,, J. Nicholls,, W. K. Yee,, W. W. Yan,, M. T. Cheung,, V. C. Cheng,, K. H. Chan,, D. N. Tsang,, R. W. Yung,, T. K. Ng, and, K. Y. Yuen. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361:13191325.
72. Phillips, J. J.,, M. M. Chua,, E. Lavi, and, S. R. Weiss. 1999. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J. Virol. 73:77527760.
73. Poon, L. L.,, D. K. Chu,, K. H. Chan,, O. K. Wong,, T. M. Ellis,, Y. H. Leung,, S. K. Lau,, P. C. Woo,, K. Y. Suen,, K. Y. Yuen,, Y. Guan, and, J. S. Peiris. 2005. Identification of a novel coronavirus in bats. J. Virol. 79:20012009.
74. Qin, C.,, J. Wang,, Q. Wei,, M. She,, W. A. Marasco,, H. Jiang,, X. Tu,, H. Zhu,, L. Ren,, H. Gao,, L. Guo,, L. Huang,, R. Yang,, Z. Cong,, Y. Wang,, Y. Liu,, Y. Sun,, S. Duan,, J. Qu,, L. Chen,, W. Tong,, L. Ruan,, P. Liu,, H. Zhang,, J. Zhang,, D. Liu,, Q. Liu,, T. Hong, and, W. He. 2005. An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J. Pathol. 206:251259.
75. Qu, X. X.,, P. Hao,, X. J. Song,, S. M. Jiang,, Y. X. Liu,, P. G. Wang,, X. Rao,, H. D. Song,, S. Y. Wang,, Y. Zuo,, A. H. Zheng,, M. Luo,, H. L. Wang,, F. Deng,, H. Z. Wang,, Z. H. Hu,, M. X. Ding,, G. P. Zhao, and, H. K. Deng. 2005. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J. Biol. Chem. 280:2958829595.
76. Roberts, A.,, L. Vogel,, J. Guarner,, N. Hayes,, B. Murphy,, S. Zaki, and, K. Subbarao. 2005. Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J. Virol. 79:503511.
77. Rota, P. A.,, M. S. Oberste,, S. S. Monroe,, W. A. Nix,, R. Campagnoli,, J. P. Icenogle,, S. Penaranda,, B. Bankamp,, K. Maher,, M.-H. Chen,, S. Tong,, A. Tamin,, L. Lowe,, M. Frace,, J. L. DeRisi,, Q. Chen,, D. Wang,, D. D. Erdman,, T. C. T. Peret,, C. Burns,, T. G. Ksiazek,, P. E. Rollin,, A. Sanchez,, S. Liffick,, B. Holloway,, J. Limor,, K. McCaustland,, M. Olsen-Rasmussen,, R. Fouchier,, S. Gunther,, A. D., M. E. Osterhaus,, C. Drosten,, M. A. Pallansch,, L. J. Anderson, and, W. J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:13941399.
78. Rowe, T.,, G. Gao,, R. J. Hogan,, R. G. Crystal,, T. G. Voss,, R. L. Grant,, P. Bell,, G. P. Kobinger,, N. A. Wivel, and, J. M. Wilson. 2004. Macaque model for severe acute respiratory syndrome. J. Virol. 78:1140111404.
79. Sanchez, C. M.,, A. Izeta,, J. M. Sanchez-Morgado,, S. Alonso,, I. Sola,, M. Balasch,, J. Plana-Duran, and, L. Enjuanes. 1999. Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J. Virol. 73:76077618.
80. Schickli, J. H.,, L. B. Thackray,, S. G. Sawicki, and, K. V. Holmes. 2004. The N-terminal region of the murine coronavirus spike glycoprotein is associated with the extended host range of viruses from persistently infected murine cells. J. Virol. 78:90739083.
81. Schultze, B., and, G. Herrler. 1992. Bovine coronavirus uses N-acetyl-9-O-acetylneuraminic acid as a receptor determinant to initiate the infection of cultured cells. J. Gen. Virol. 73 (Pt. 4):901906.
82. Simmons, G.,, D. N. Gosalia,, A. J. Rennekamp,, J. D. Reeves,, S. L. Diamond, and, P. Bates. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 102:1187611881.
83. Song, H. D.,, C. C. Tu,, G. W. Zhang,, S. Y. Wang,, K. Zheng,, L. C. Lei,, Q. X. Chen,, Y. W. Gao,, H. Q. Zhou,, H. Xiang,, H. J. Zheng,, S. W. Chern,, F. Cheng,, C. M. Pan,, H. Xuan,, S. J. Chen,, H. M. Luo,, D. H. Zhou,, Y. F. Liu,, J. F. He,, P. Z. Qin,, L. H. Li,, Y. Q. Ren,, W. J. Liang,, Y. D. Yu,, L. Anderson,, M. Wang,, R. H. Xu,, X. W. Wu,, H. Y. Zheng,, J. D. Chen,, G. Liang,, Y. Gao,, M. Liao,, L. Fang,, L. Y. Jiang,, H. Li,, F. Chen,, B. Di,, L. J. He,, J. Y. Lin,, S. Tong,, X. Kong,, L. Du,, P. Hao,, H. Tang,, A. Bernini,, X. J. Yu,, O. Spiga,, Z. M. Guo,, H. Y. Pan,, W. Z. He,, J. C. Manuguerra,, A. Fontanet,, A. Danchin,, N. Niccolai,, Y. X. Li,, C. I. Wu, and, G. P. Zhao. 2005. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA 102:24302435. [Epub 4 February 2005.]
84. Sturman, L. S., and, K. V. Holmes. 1984. Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90K subunits and activates cell fusion. Adv. Exp. Med. Biol. 173:2535.
85. Sturman, L. S.,, C. S. Ricard, and, K. V. Holmes. 1985. Proteolytic cleavage of the E2 glycoprotein of murine corona-virus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 56:904911.
86. Subbarao, K.,, J. McAuliffe,, L. Vogel,, G. Fahle,, S. Fischer,, K. Tatti,, M. Packard,, W. J. Shieh,, S. Zaki, and, B. Murphy. 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78:35723577.
87. Sui, J.,, W. Li,, A. Murakami,, A. Tamin,, L. J. Matthews,, S. K. Wong,, M. J. Moore,, A. St-Clair Tallarico,, M. Olurinde,, H. Choe,, L. J. Anderson,, W. J. Bellini,, M. Farzan, and, W. A. Marasco. 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc. Natl. Acad. Sci. USA 101:25362541.
88. Sui, J.,, W. Li,, A. Roberts,, L. J. Matthews,, A. Murakami,, L. Vogel,, S. K. Wong,, K. Subbarao,, M. Farzan, and, W. A. Marasco. 2005. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J. Virol. 79:5900–5906.
89. Tipnis, S. R.,, N. M. Hooper,, R. Hyde,, E. Karran,, G. Christie,and, A. J. Turner. 2000. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275:3323833243.
90. Traggiai, E.,, S. Becker,, K. Subbarao,, L. Kolesnikova,, Y. Uematsu,, M. R. Gismondo,, B. R. Murphy,, R. Rappuoli, and, A. Lanzavecchia. 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10:871875.
91. Tsai, J. C.,, B. D. Zelus,, K. V. Holmes, and, S. R. Weiss. 2003. The N-terminal domain of the murine coronavirus spike glycoprotein determines the CEACAM1 receptor specificity of the virus strain. J. Virol. 77:841850.
92. Tu, C.,, G. Crameri,, X. Kong,, J. Chen,, Y. Sun,, M. Yu,, H. Xiang,, X. Xia,, S. Liu,, T. Ren,, Y. Yu,, B. T. Eaton,, H. Xuan, and, L. F. Wang. 2004. Antibodies to SARS coronavirus in civets. Emerg. Infect. Dis. 10:22442248.
93. van den Brink, E. N.,, J. Ter Meulen,, F. Cox,, M. A. Jongeneelen,, A. Thijsse,, M. Throsby,, W. E. Marissen,, P. M. Rood,, A. B. Bakker,, H. R. Gelderblom,, B. E. Martina,, A. D. Osterhaus,, W. Preiser,, H. W. Doerr,, J. de Kruif, and, J. Goudsmit. 2005. Molecular and biological characterization of human monoclonal antibodies binding to the spike and nucleocapsid proteins of severe acute respiratory syndrome coronavirus. J. Virol. 79:16351644.
94. van der Hoek, L.,, K. Pyrc,, M. F. Jebbink,, W. Vermeulen-Oost,, R. J. Berkhout,, K. C. Wolthers,, P. M. Wertheim-van Dillen,, J. Kaandorp,, J. Spaargaren, and, B. Berkhout. 2004. Identification of a new human coronavirus. Nat. Med. 10:368373.
95. Vickers, C.,, P. Hales,, V. Kaushik,, L. Dick,, J. Gavin,, J. Tang,, K. Godbout,, T. Parsons,, E. Baronas,, F. Hsieh,, S. Acton,, M. Patane,, A. Nichols, and, P. Tummino. 2002. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 277:1483814843.
96. Wang, M.,, H. Q. Jing,, H. F. Xu,, X. G. Jiang,, B. Kan,, Q. Y. Liu,, K. L. Wan,, B. Y. Cui,, H. Zheng,, Z. G. Cui,, M. Y. Yan,, W. L. Liang,, H. X. Wang,, X. B. Qi,, Z. J. Li,, M. C. Li,, K. Chen,, E. M. Zhang,, S. Y. Zhang,, R. Hai,, D. Z. Yu, and, J. G. Xu. 2005. Surveillance on severe acute respiratory syndrome associated coronavirus in animals at a live animal market of Guangzhou in 2004. Zhonghua Liu Xing Bing Xue Za Zhi 26:8487. (In Mandarin Chinese.)
97. Wang, S.,, T. H. Chou,, P. V. Sakhatskyy,, S. Huang,, J. M. Lawrence,, H. Cao,, X. Huang, and, S. Lu. 2005. Identification of two neutralizing regions on the severe acute respiratory syndrome coronavirus spike glycoprotein produced from the mammalian expression system. J. Virol. 79:19061910.
98. Wentworth, D. E.,, L. Gillim-Ross,, N. Espina, and, K. A. Bernard. 2004. Mice susceptible to SARS coronavirus. Emerg. Infect. Dis. 10:12931296.
99. Williams, R. K.,, G. S. Jiang, and, K. V. Holmes. 1991. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Natl. Acad. Sci. USA 88:55335536.
100. Wong, S. K.,, W. Li,, M. J. Moore,, H. Choe, and, M. Farzan. 2004. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J. Biol. Chem. 279:31973201. [Epub 11 December 2003.]
101. Wu, D.,, C. Tu,, C. Xin,, H. Xuan,, Q. Meng,, Y. Liu,, Y. Yu,, Y. Guan,, Y. Jiang,, X. Yin,, G. Crameri,, M. Wang,, C. Li,, S. Liu,, M. Liao,, L. Feng,, H. Xiang,, J. Sun,, J. Chen,, Y. Sun,, S. Gu,, N. Liu,, D. Fu,, B. T. Eaton,, L. F. Wang, and, X. Kong. 2005. Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates. J. Virol. 79:26202625.
102. Xiao, X.,, S. Chakraborti,, A. S. Dimitrov,, K. Gramatikoff, and, D. S. Dimitrov. 2003. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res. Commun. 312:11591164.
103. Yang, Z. Y.,, Y. Huang,, L. Ganesh,, K. Leung,, W. P. Kong,, O. Schwartz,, K. Subbarao, and, G. J. Nabel. 2004. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J. Virol. 78:56425650.
104. Yang, Z. Y.,, H. C. Werner,, W. P. Kong,, K. Leung,, E. Traggiai,, A. Lanzavecchia, and, G. J. Nabel. 2005. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc. Natl. Acad. Sci. USA 102:797801. [Epub 10 January 2005.]
105. Yeager, C. L.,, R. A. Ashmun,, R. K. Williams,, C. B. Cardellichio,, L. H. Shapiro,, A. T. Look, and, K. V. Holmes. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420422.
106. Yu, I. T.,, Y. Li,, T. W. Wong,, W. Tam,, A. T. Chan,, J. H. Lee,, D. Y. Leung, and, T. Ho. 2004. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N. Engl. J. Med. 350:17311739.
107. Zhong, N. 2004. Management and prevention of SARS in China. Philos. Trans. R. Soc. Lond. B 359:11151116.
108. Zhong, N.,, Y. Ding,, Y. Mao,, Q. Wang,, G. Wang,, D. Wang,, Y. Cong,, Q. Li,, Y. Liu,, L. Ruan,, B. Chen,, X. Du,, Y. Yang,, Z. Zhang,, X. Zhang,, J. Lin,, J. Zheng,, Q. Zhu,, D. Ni,, X. Xi,, G. Zeng,, D. Ma,, C. Wang,, W. Wang,, B. Wang,, J. Wang,, D. Liu,, X. Li,, X. Liu,, J. Chen,, R. Chen,, F. Min,, P. Yang,, Y. Zhang,, H. Luo,, Z. Lang,, Y. Hu,, A. Ni,, W. Cao,, J. Lei,, S. Wang,, Y. Wang,, X. Tong,, W. Liu,, M. Zhu,, W. Chen,, X. Xhen,, L. Lin,, Y. Luo,, J. Zhong,, W. Weng,, S. Peng,, Z. Pan,, R. Wang,, J. Zuo,, B. Liu,, N. Zhang,, J. Zhang,, B. Zhang,, L. Chen,, P. Zhou,, L. Jiang,, E. Chao,, L. Guo,, X. Tan, and, J. Pan. 2003. Consensus for the management of severe acute respiratory syndrome. Chin. Med. J. (Engl. Ed.) 116:16031635.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error