1887

Chapter 12 : Coronavirus Structural Proteins and Virus Assembly

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Coronavirus Structural Proteins and Virus Assembly, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap12-2.gif

Abstract:

This chapter reviews the processing, targeting, and assembly of the coronavirus structural proteins, and the release of assembled virions from infected cells. Both virus-like particles (VLPs) and virus assembly are sensitive to deletion and changes of the two C-terminal residues. The most striking difference between the crippled viruses and recovered viruses that grew similarly to the wild-type virus was the positions of four hydrophilic polar residues along one face of the predicted β-helix. It is interesting that when key charged residues are modified, these independently give rise to overlapping second-site suppressor or adaptive changes in the same region of M protein. Results from these studies strongly argue that M-N interactions are complex, indicating that more than just the single R227 and D440-D441 charges are important. In coronaviruses that induce syncytia, cellular alternations may also significantly impact virus release. Polarized epithelial cells are the first cells infected during coronavirus infection. The apical or basolateral localization of the virus receptor determines the site of coronavirus entry in polarized epithelial cells. In respiratory epithelial cells, severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus strain 229E preferentially enter and are exocytosed from the apical surface. Rapid progress in this area of coronavirus research is expected. The emergence of SARS-CoV sparked tremendous interest in and recognition of coronaviruses as intriguing for their molecular and cellular biology and as significant pathogens.

Citation: Hogue B, Machamer C. 2008. Coronavirus Structural Proteins and Virus Assembly, p 179-200. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch12

Key Concept Ranking

Severe Acute Respiratory Syndrome
0.46216178
Semliki forest virus
0.40542135
0.46216178
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Coronavirus structure and intracellular assembly site. (A) Electron micrograph of purified IBV particle after negative staining (left). Bar, 50 nm. Virion schematic showing the major structural proteins (right). Note that some coronaviruses contain additional E proteins (e.g., HE in some group 2 viruses and several accessory proteins in SARS-CoV). (B) Schematic of virus assembly in cells (left). The E proteins are synthesized in the ER and transported to the ERGIC/Golgi complex. Independent targeting signals and interactions with the other E proteins allow accumulation in the ERGIC, and after interaction with the nucleocapsid, virions bud into the lumen of the ERGIC. They are released from infected cells by exocytosis. The right panel is an electron micrograph of Vero cells infected with IBV, showing a Golgi region with budded virions inside (arrows). Bar, 500 nm.

Citation: Hogue B, Machamer C. 2008. Coronavirus Structural Proteins and Virus Assembly, p 179-200. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Coronavirus N-protein phosphorylation. A schematic illustrating the three-domain model for coronavirus N proteins with A and B spacer domains ( ) is shown at the top. The relative positions of the phosphorylated sites identified on intracellular N protein from TGEV-infected cells ( ) and MHV-infected cells ( ) and IBV N protein expressed alone ( ) are shown below. The positions of the RNA-binding domain that includes the SR region ( ) and putative dimerization domain ( ) are indicated for MHV. The positions of the SR regions are indicated for TGEV and IBV.

Citation: Hogue B, Machamer C. 2008. Coronavirus Structural Proteins and Virus Assembly, p 179-200. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Topology of coronavirus E proteins. Two topologies are shown for M and E proteins, as supported by evidence discussed in the text. Small triangles represent glycosylation but are not meant to indicate the number or type of oligosaccharides, which differ in the proteins from different coronaviruses. S proteins and some E proteins are palmitoylated on their cytoplasmic tails (indicated by the squiggly line).

Citation: Hogue B, Machamer C. 2008. Coronavirus Structural Proteins and Virus Assembly, p 179-200. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Potential roles for the E protein transmembrane domain in release of infectious virus. (A) Electron micrographs of Vero cells infected for 14 h with IBV or IBV containing an E protein with a heterologous transmembrane domain (IBV-EG3). Typical pleomorphic transport intermediates are present in cells infected with wild-type IBV, but large spherical vacuoles containing virions and degraded material are prominent in cells infected with IBV-EG3. Bars, 500 nm. (B) Results from mutations in the E protein transmembrane domain suggest that this domain could promote maturation of virions in late Golgi or post-Golgi compartments (a), promote formation of virus containing transport intermediates (b), promote fusion of transport intermediates with the plasma membrane (c), or prevent fusion of transport intermediates with lysosomes (d). The three last roles could be as a nonstructural protein. Ion channel activity or other interactions of the E protein transmembrane domain could be involved.

Citation: Hogue B, Machamer C. 2008. Coronavirus Structural Proteins and Virus Assembly, p 179-200. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815790.ch12
1. Almazan, F.,, C. Galan, and, L. Enjuanes. 2004. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol. 78:1268312688.
2. Appenzeller-Herzog, C., and, H. P. Hauri. 2006. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J. Cell Sci. 119:21732183.
3. Arbely, E.,, Z. Khattari,, G. Brotons,, M. Akkawi,, T. Salditt, and, I. T. Arkin. 2004. A highly unusual palindromic transmembrane helical hairpin formed by SARS coronavirus E protein. J. Mol. Biol. 341:769779.
4. Armstrong, J., and, S. Patel. 1991. The Golgi sorting domain of coronavirus E1 protein. J. Cell Sci. 98(Pt. 4):567575.
5. Armstrong, J.,, S. Patel, and, P. Riddle. 1990. Lysosomal sorting mutants of coronavirus E1 protein, a Golgi membrane protein. J. Cell Sci. 95(Pt. 2):191197.
6. Baric, R. S.,, G. W. Nelson,, J. O. Fleming,, R. J. Deans,, J. G. Keck,, N. Casteel, and, S. A. Stohlman. 1988. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J. Virol. 62:42804287.
7. Baudoux, P.,, C. Carrat,, L. Besnardeau,, B. Charley, and, H. Laude. 1998. Coronavirus pseudoparticles formed with recombinant M and E proteins induce alpha interferon synthesis by leukocytes. J. Virol. 72:86368643.
8. Bonifacino, J. S., and, L. M. Traub. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72:395447.
9. Bos, E. C.,, L. Heijnen,, W. Luytjes, and, W. J. Spaan. 1995. Mutational analysis of the murine coronavirus spike protein: effect on cell-to-cell fusion. Virology 214:453463.
10. Bos, E. C.,, W. Luytjes,, H. V. van der Meulen,, H. K. Koerten, and, W. J. Spaan. 1996. The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218:5260.
11. Bosch, B. J.,, C. A. de Haan,, S. L. Smits, and, P. J. Rottier. 2005. Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology 334:306318.
12. Bost, A. G.,, E. Prentice, and, M. R. Denison. 2001. Mouse hepatitis virus replicase protein complexes are translocated to sites of M protein accumulation in the ERGIC at late times of infection. Virology 285:2129.
13. Bretscher, M. S., and, S. Munro. 1993. Cholesterol and the Golgi apparatus. Science 261:12801281.
14. Calvo, E.,, D. Escors,, J. A. Lopez,, J. M. Gonzalez,, A. Alvarez,, E. Arza, and, L. Enjuanes. 2005. Phosphorylation and sub-cellular localization of transmissible gastroenteritis virus nucleocapsid protein in infected cells. J. Gen. Virol. 86:22552267.
15. Casais, R.,, V. Thiel,, S. G. Siddell,, D. Cavanagh, and, P. Britton. 2001. Reverse genetics system for the avian coronavirus infectious bronchitis virus. J. Virol. 75:1235912369.
16. Cavanagh, D. 1983. Coronavirus IBV: structural characterization of the spike protein. J. Gen. Virol. 64(Pt. 12):25772583.
17. Cavanagh, D., and, P. J. Davis. 1988. Evolution of avian coronavirus IBV: sequence of the matrix glycoprotein gene and intergenic region of several serotypes. J. Gen. Virol. 69(Pt. 3):621629.
18. Chang, C. K.,, S. C. Sue,, T. H. Yu,, C. M. Hsieh,, C. K. Tsai,, Y. C. Chiang,, S. J. Lee,, H. H. Hsiao,, W. J. Wu,, C. F. Chang, and, T. H. Huang. 2005. The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS Lett. 579:56635668.
19. Chang, C. K.,, S. C. Sue,, T. H. Yu,, C. M. Hsieh,, C. K. Tsai,, Y. C. Chiang,, S. J. Lee,, H. H. Hsiao,, W. J. Wu,, W. L. Chang,, C. H. Lin, and, T. H. Huang. 2006. Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 13:5972.
20. Chang, K. W.,, Y. Sheng, and, J. L. Gombold. 2000. Coronavirus-induced membrane fusion requires the cysteine-rich domain in the spike protein. Virology 269:212224.
21. Chang, R. Y., and, D. A. Brian. 1996. cis requirement for N-specific protein sequence in bovine coronavirus defective interfering RNA replication. J. Virol. 70:22012207.
22. Chen, H.,, A. Gill,, B. K. Dove,, S. R. Emmett,, C. F. Kemp,, M. A. Ritchie,, M. Dee, and, J. A. Hiscox. 2005. Mass spectroscopic characterization of the coronavirus infectious bronchitis virus nucleoprotein and elucidation of the role of phosphorylation in RNA binding by using surface plasmon resonance. J. Virol. 79:11641179.
23. Chen, H.,, T. Wurm,, P. Britton,, G. Brooks, and, J. A. Hiscox. 2002. Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 76:52335250.
24. Cluett, E. B.,, E. Kuismanen, and, C. E. Machamer. 1997. Heterogeneous distribution of the unusual phospholipid semilysobisphosphatidic acid through the Golgi complex. Mol. Biol. Cell. 8:22332240.
25. Colley, K. J. 1997. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7:113.
26. Cologna, R., and, B. G. Hogue. 2000. Identification of a bovine coronavirus packaging signal. J. Virol. 74:580583.
27. Cologna, R.,, J. F. Spagnolo, and, B. G. Hogue. 2000. Identification of nucleocapsid binding sites within coronavirus-defective genomes. Virology 277:235249.
28. Compton, S. R.,, D. B. Rogers,, K. V. Holmes,, D. Fertsch,, J. Remenick, and, J. J. McGowan. 1987. In vitro replication of mouse hepatitis virus strain A59. J. Virol. 61:18141820.
29. Corse, E., and, C. E. Machamer. 2000. Infectious bronchitis virus E protein is targeted to the Golgi complex and directs release of virus-like particles. J. Virol. 74:43194326.
30. Corse, E., and, C. E. Machamer. 2001. Infectious bronchitis virus envelope protein targeting: implications for virus assembly. Adv. Exp. Med. Biol. 494:571576.
31. Corse, E., and, C. E. Machamer. 2002. The cytoplasmic tail of infectious bronchitis virus E protein directs Golgi targeting. J. Virol. 76:12731284.
32. Corse, E., and, C. E. Machamer. 2003. The cytoplasmic tails of infectious bronchitis virus E and M proteins mediate their interaction. Virology 312:2534.
33. Curtis, K. M.,, B. Yount, and, R. S. Baric. 2002. Heterologous gene expression from transmissible gastroenteritis virus replicon particles. J. Virol. 76:14221434.
34. Dalton, K.,, R. Casais,, K. Shaw,, K. Stirrups,, S. Evans,, P. Britton,, T. D. K. Brown, and, D. Cavanagh. 2001. cis-Acting sequences required for coronavirus infectious bronchitis virus defective-RNA replication and packaging. J. Virol. 75:125133.
35. Davies, H. A.,, R. R. Dourmashkin, and, M. R. Macnaughton. 1981. Ribonucleoprotein of avian infectious bronchitis virus. J. Gen. Virol. 53:6774.
36. DeDiego, M. L.,, E. Álvarez,, F. Almazán,, M. T. Rejas,, E. Lamirande,, A. Roberts,, W. J. Shieh,, S. R. Zaki,, K. Subbarao, and, L. Enjuanes. 2007. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J. Virol. 81:17011713.
37. de Haan, C. A.,, M. de Wit,, L. Kuo,, C. Montalto-Morrison,, B. L. Haagmans,, S. R. Weiss,, P. S. Masters, and, P. J. Rottier. 2003. The glycosylation status of the murine hepatitis corona-virus M protein affects the interferogenic capacity of the virus in vitro and its ability to replicate in the liver but not the brain. Virology 312:395406.
38. de Haan, C. A.,, L. Kuo,, P. S. Masters,, H. Vennema, and, P. J. Rottier. 1998. Coronavirus particle assembly: primary structure requirements of the membrane protein. J. Virol. 72:68386850.
39. de Haan, C. A., and, P. J. Rottier. 2005. Molecular interactions in the assembly of coronaviruses. Adv. Virus Res. 64:165230.
40. de Haan, C. A.,, M. Smeets,, F. Vernooij,, H. Vennema, and, P. J. Rottier. 1999. Mapping of the coronavirus membrane protein domains involved in interaction with the spike protein. J. Virol. 73:74417452.
41. de Haan, C. A.,, K. Stadler,, G. J. Godeke,, B. J. Bosch, and, P. J. Rottier. 2004. Cleavage inhibition of the murine coronavirus spike protein by a furin-like enzyme affects cell-cell but not virus-cell fusion. J. Virol. 78:60486054.
42. de Haan, C. A.,, H. Vennema, and, P. J. Rottier. 2000. Assembly of the coronavirus envelope: homotypic interactions between the M proteins. J. Virol. 74:49674978.
43. Delmas, B., and, H. Laude. 1990. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol. 64:53675375.
44. Denison, M. R.,, W. J. Spaan,, Y. van der Meer,, C. A. Gibson,, A. C. Sims,, E. Prentice, and, X. T. Lu. 1999. The putative helicase of the coronavirus mouse hepatitis virus is processed from the replicase gene polyprotein and localizes in complexes that are active in viral RNA synthesis. J. Virol. 73:68626871.
45. Doms, R. W.,, R. A. Lamb,, J. K. Rose, and, A. Helenius. 1993. Folding and assembly of viral membrane proteins. Virology 193:545562.
46. Dove, B. K.,, J. H. You,, M. L. Reed,, S. R. Emmett,, G. Brooks, and, J. A. Hiscox. 2006. Changes in nucleolar morphology and proteins during infection with the coronavirus infectious bronchitis virus. Cell. Microbiol. 8:11471157.
47. Escors, D.,, E. Camafeita,, J. Ortego,, H. Laude, and, L. Enjuanes. 2001. Organization of two transmissible gastroenteritis coronavirus membrane protein topologies within the virion and core. J. Virol. 75:1222812240.
48. Escors, D.,, A. Izeta,, C. Capiscol, and, L. Enjuanes. 2003. Transmissible gastroenteritis coronavirus packaging signal is located at the 5’ end of the virus genome. J. Virol. 77:78907902.
49. Escors, D.,, J. Ortego, and, L. Enjuanes. 2001. The membrane M protein of the transmissible gastroenteritis coronavirus binds to the internal core through the carboxy-terminus. Adv. Exp. Med. Biol. 494:589593.
50. Escors, D.,, J. Ortego,, H. Laude, and, L. Enjuanes. 2001. The membrane M protein carboxy terminus binds to transmissible gastroenteritis coronavirus core and contributes to core stability. J. Virol. 75:13121324.
51. Fan, H.,, A. Ooi,, Y. W. Tan,, S. Wang,, S. Fang,, D. X. Liu, and, J. Lescar. 2005. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure 13:18591868.
52. Fan, Z.,, Y. Zhuo,, X. Tan,, Z. Zhou,, J. Yuan,, B. Qiang,, J. Yan,, X. Peng, and, G. F. Gao. 2006. SARS-CoV nucleocapsid protein binds to hUbc9, a ubiquitin conjugating enzyme of the sumoylation system. J. Med. Virol. 78:13651373.
53. Fang, X.,, L. B. Ye,, Y. Zhang,, B. Li,, S. Li,, L. Kong,, Y. Wang,, H. Zheng,, W. Wang, and, Z. Wu. 2006. Nucleocapsid amino acids 211 to 254, in particular, tetrad glutamines, are essential for the interaction between the nucleocapsid and membrane proteins of SARS-associated coronavirus. J. Microbiol. 44:577580.
54. Fielding, B. C.,, Y. J. Tan,, S. Shuo,, T. H. Tan,, E. E. Ooi,, S. G. Lim,, W. Hong, and, P. Y. Goh. 2004. Characterization of a unique group-specific protein (U122) of the severe acute respiratory syndrome coronavirus. J. Virol. 78:73117318.
55. Fischer, F.,, C. F. Stegen,, P. S. Masters, and, W. A. Samsonoff. 1998. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J. Virol. 72:78857894.
56. Fosmire, J. A.,, K. Hwang, and, S. Makino. 1992. Identification and characterization of a coronavirus packaging signal. J. Virol. 66:35223530.
57. Gallagher, T. M., and, M. J. Buchmeier. 2001. Coronavirus spike proteins in viral entry and pathogenesis. Virology 279:371374.
58. Gallagher, T. M.,, S. E. Parker, and, M. J. Buchmeier. 1990. Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J. Virol. 64:731741.
59. Garwes, D. J.,, D. H. Pocock, and, B. V. Pike. 1976. Isolation of subviral components from transmissible gastroenteritis virus. J. Gen. Virol. 32:283294.
60. Gonzalez, M. E., and, L. Carrasco. 2003. Viroporins. FEBS Lett. 552:2834.
61. Griffiths, G., and, P. Rottier. 1992. Cell biology of viruses that assemble along the biosynthetic pathway. Semin. Cell Biol. 3:367381.
62. He, R.,, F. Dobie,, M. Ballantine,, A. Leeson,, Y. Li,, N. Bastien,, T. Cutts,, A. Andonov,, J. Cao,, T. F. Booth,, F. A. Plummer,, S. Tyler,, L. Baker, and, X. Li. 2004. Analysis of multimerization of the SARS coronavirus nucleocapsid protein. Biochem. Biophys. Res. Commun. 316:476483.
63. He, R.,, A. Leeson,, M. Ballantine,, A. Andonov,, L. Baker,, F. Dobie,, Y. Li,, N. Bastien,, H. Feldmann,, U. Strocher,, S. Theriault,, T. Cutts,, J. Cao,, T. F. Booth,, F. A. Plummer,, S. Tyler, and, X. Li. 2004. Characterization of protein-protein interactions between the nucleocapsid protein and membrane protein of the SARS coronavirus. Virus Res. 105:121125.
64. Hirschberg, K.,, C. M. Miller,, J. Ellenberg,, J. F. Presley,, E. D. Siggia,, R. D. Phair, and, J. Lippincott-Schwartz. 1998. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J. Cell Biol. 143:14851503.
65. Hiscox, J. A.,, T. Wurm,, L. Wilson,, P. Britton,, D. Cavanagh, and, G. Brooks. 2001. The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. J. Virol. 75:506512.
66. Hofmann, M. A.,, P. B. Sethna, and, D. A. Brian. 1990. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. J. Virol. 64:41084114.
67. Hogue, B. G.,, T. E. Kienzle, and, D. A. Brian. 1989. Synthesis and processing of the bovine enteric coronavirus haemagglutinin protein. J. Gen. Virol. 70(Pt. 2):345352.
68. Holmes, K. V.,, E. W. Doller, and, L. S. Sturman. 1981. Tunicamycin resistant glycosylation of coronavirus glycoprotein: demonstration of a novel type of viral glycoprotein. Virology 115:334344.
69. Hsieh, P. K.,, S. C. Chang,, C. C. Huang,, T. T. Lee,, C. W. Hsiao,, Y. H. Kou,, I. Y. Chen,, C. K. Chang,, T. H. Huang, and, M. F. Chang. 2005. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79:1384813855.
70. Huang, C.,, N. Ito,, C. T. Tseng, and, S. Makino. 2006. Severe acute respiratory syndrome coronavirus 7a accessory protein is a viral structural protein. J. Virol. 80:72877294.
71. Huang, I. C.,, B. J. Bosch,, F. Li,, W. Li,, K. H. Lee,, S. Ghiran,, N. Vasilieva,, T. S. Dermody,, S. C. Harrison,, P. R. Dormitzer,, M. Farzan,, P. J. Rottier, and, H. Choe. 2006. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J. Biol. Chem. 281:31983203.
72. Huang, Q.,, L. Yu,, A. M. Petros,, A. Gunasekera,, Z. Liu,, N. Xu,, P. Hajduk,, J. Mack,, S. W. Fesik, and, E. T. Olejniczak. 2004. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 43:60596063.
73. Huang, Y.,, Z. Y. Yang,, W. P. Kong, and, G. J. Nabel. 2004. Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: implications for assembly and vaccine production. J. Virol. 78:1255712565.
74. Hurst, K. R.,, L. Kuo,, C. A. Koetzner,, R. Ye,, B. Hsue, and, P. S. Masters. 2005. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J. Virol. 79:1328513297.
75. Ito, N.,, E. C. Mossel,, K. Narayanan,, V. L. Popov,, C. Huang,, T. Inoue,, C. J. Peters, and, S. Makino. 2005. Severe acute respiratory syndrome coronavirus 3a protein is a viral structural protein. J. Virol. 79:31823186.
76. Jacobs, L.,, B. A. van der Zeijst, and, M. C. Horzinek. 1986. Characterization and translation of transmissible gastroenteritis virus mRNAs. J. Virol. 57:10101015.
77. Jayaram, H.,, H. Fan,, B. R. Bowman,, A. Ooi,, J. Jayaram,, E. W. Collisson,, J. Lescar, and, B. V. Prasad. 2006. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J. Virol. 80:66126620.
78. Jia, H. P.,, D. C. Look,, L. Shi,, M. Hickey,, L. Pewe,, J. Netland,, M. Farzan,, C. Wohlford-Lenane,, S. Perlman, and, P. B. McCray, Jr. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79:1461414621.
79. Kapke, P. A.,, F. Y. Tung,, B. G. Hogue,, D. A. Brian,, R. D. Woods, and, R. Wesley. 1988. The amino-terminal signal peptide on the porcine transmissible gastroenteritis coronavirus matrix protein is not an absolute requirement for membrane translocation and glycosylation. Virology 165:367376.
80. Kazi, L.,, A. Lissenberg,, R. Watson,, R. J. de Groot, and, S. R. Weiss. 2005. Expression of hemagglutinin esterase protein from recombinant mouse hepatitis virus enhances neurovirulence. J. Virol. 79:1506415073.
81. Khattari, Z.,, G. Brotons,, M. Akkawi,, E. Arbely,, I. T. Arkin, and, T. Salditt. 2006. SARS coronavirus E protein in phospholipid bilayers: an x-ray study. Biophys J. 90:20382050.
82. Klumperman, J.,, J. K. Locker,, A. Meijer,, M. C. Horzinek,, H. J. Geuze, and, P. J. Rottier. 1994. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding. J. Virol. 68:65236534.
83. Koch, J., and, R. Tampe. 2006. The macromolecular peptide-loading complex in MHC class I-dependent antigen presentation. Cell. Mol. Life. Sci. 63:653662.
84. Kopecky-Bromberg, S. A.,, L. Martinez-Sobrido,, M. Frieman,, R. A. Baric, and, P. Palese. 2007. Severe acute respiratory syndrome coronavirus 3b, open reading frame (ORF) 3b, ORF6, and nucleocapsid proteins function as interferon antagonists. J. Virol. 81:548557.
85. Kopecky-Bromberg, S. A.,, L. Martinez-Sobrido, and, P. Palese. 2006. 7a protein of severe acute respiratory syndrome coronavirus inhibits cellular protein synthesis and activates p38 mitogen-activated protein kinase. J. Virol. 80:785793.
86. Kuo, L.,, K. R. Hurst, and, P. S. Masters. 2007. Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function. J. Virol. 81:22492262.
87. Kuo, L., and, P. S. Masters. 2002. Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J. Virol. 76:49874999.
88. Kuo, L., and, P. S. Masters. 2003. The small envelope protein E is not essential for murine coronavirus replication. J. Virol. 77:45974608.
89. Lancer, J. A., and, C. R. Howard. 1980. The disruption of infectious bronchitis virus (IBV-41 strain) with Triton X-100 detergent. J. Virol. Methods 1:121131.
90. Laude, H., and, P. S. Masters. 1995. The coronavirus nucleocapsid protein, p. 141163. In S. G. Siddell (ed.), The Coronaviridae. Plenum, New York, NY.
91. Laude, H.,, D. Rasschaert, and, J. C. Huet. 1987. Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. J. Gen. Virol. 68(Pt. 6):16871693.
92. Lavi, E.,, Q. Wang,, S. R. Weiss, and, N. K. Gonatas. 1996. Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus. Virology 221:325334.
93. Law, P. T.,, C. H. Wong,, T. C. Au,, C. P. Chuck,, S. K. Kong,, P. K. Chan,, K. F. To,, A. W. Lo,, J. Y. Chan,, Y. K. Suen,, H. Y. Chan,, K. P. Fung,, M. M. Waye,, J. J. Sung,, Y. M. Lo, and, S. K. Tsui. 2005. The 3a protein of severe acute respiratory syndrome-associated coronavirus induces apoptosis in Vero E6 cells. J. Gen. Virol. 86:19211930.
94. Lewicki, D. N., and, T. M. Gallagher. 2002. Quaternary structure of coronavirus spikes in complex with carcinoembryonic antigen-related cell adhesion molecule cellular receptors. J. Biol. Chem. 277:1972719734.
95. Li, F.,, M. Berardi,, W. Li,, M. Farzan,, P. R. Dormitzer, and, S. C. Harrison. 2006. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 80:67946800.
96. Li, F. Q.,, H. Xiao,, J. P. Tam, and, D. X. Liu. 2005. Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus. FEBS Lett. 579:23872396.
97. Liao, Y.,, J. Lescar,, J. P. Tam, and, D. X. Liu. 2004. Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability. Biochem. Biophys. Res. Commun. 325:374380.
98. Liao, Y.,, Q. Yuan,, J. Torres,, J. P. Tam, and, D. X. Liu. 2006. Biochemical and functional characterization of the membrane association and membrane permeabilizing activity of the severe acute respiratory syndrome coronavirus envelope protein. Virology 349:264275.
99. Lim, K. P., and, D. X. Liu. 2001. The missing link in corona-virus assembly. Retention of the avian coronavirus infectious bronchitis virus envelope protein in the pre-Golgi compartments and physical interaction between the envelope and membrane proteins. J. Biol. Chem. 276:1751517523.
100. Lissenberg, A.,, M. M. Vrolijk,, A. L. van Vliet,, M. A. Langereis,, J. D. de Groot-Mijnes,, P. J. Rottier, and, R. J. de Groot. 2005. Luxury at a cost? Recombinant mouse hepatitis viruses expressing the accessory hemagglutinin esterase protein display reduced fitness in vitro. J. Virol. 79:1505415063.
101. Liu, D. X., and, S. C. Inglis. 1991. Association of the infectious bronchitis virus 3c protein with the virion envelope. Virology 185:911917.
102. Locker, J. K.,, J. Klumperman,, V. Oorschot,, M. C. Horzinek,, H. J. Geuze, and, P. J. Rottier. 1994. The cytoplasmic tail of mouse hepatitis virus M protein is essential but not sufficient for its retention in the Golgi complex. J. Biol. Chem. 269:2826328269.
103. Locker, J. K.,, D. J. Opstelten,, M. Ericsson,, M. C. Horzinek, and, P. J. Rottier. 1995. Oligomerization of a trans-Golgi/ trans-Golgi network retained protein occurs in the Golgi complex and may be part of its retention. J. Biol. Chem. 270:88158821.
104. Lontok, E.,, E. Corse, and, C. E. Machamer. 2004. Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site. J. Virol. 78:59135922.
105. Lopez, L. A.,, A. Jones,, W. D. Arndt, and, B. G. Hogue. 2006. Subcellular localization of SARS-CoV structural proteins. Adv. Exp. Med. Biol. 581:297300.
106. Lu, W.,, B. J. Zheng,, K. Xu,, W. Schwarz,, L. Du,, C. K. Wong,, J. Chen,, S. Duan,, V. Deubel, and, B. Sun. 2006. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc. Natl. Acad. Sci. USA 103:1254012545.
107. Luini, A.,, A. Ragnini-Wilson,, R. S. Polishchuck, and, M. A. De Matteis. 2005. Large pleiomorphic traffic intermediates in the secretory pathway. Curr. Opin. Cell. Biol. 17:353361.
108. Machamer, C. E.,, M. G. Grim,, A. Esquela,, S. W. Chung,, M. Rolls,, K. Ryan, and, A. M. Swift. 1993. Retention of a cis Golgi protein requires polar residues on one face of a predicted alpha-helix in the transmembrane domain. Mol. Biol. Cell 4:695704.
109. Machamer, C. E.,, S. A. Mentone,, J. K. Rose, and, M. G. Farquhar. 1990. The E1 glycoprotein of an avian coronavirus is targeted to the cis Golgi complex. Proc. Natl. Acad. Sci. USA 87:69446948.
110. Machamer, C. E., and, J. K. Rose. 1987. A specific transmembrane domain of a coronavirus E1 glycoprotein is required for its retention in the Golgi region. J. Cell Biol 105:12051214.
111. Machamer, C. E., and, S. Youn. 2006. The transmembrane domain of the infectious bronchitis virus E protein is required for efficient virus release. Adv. Exp. Med. Bio.l 581:193198.
112. Macneughton, M. R., and, H. A. Davies. 1978. Ribonucleoprotein-like structures from coronavirus particles. J. Gen. Virol. 39:545549.
113. Madan, V.,, J. Garcia Mde,, M. A. Sanz, and, L. Carrasco. 2005. Viroporin activity of murine hepatitis virus E protein. FEBS Lett. 579:36073612.
114. Maeda, J.,, A. Maeda, and, S. Makino. 1999. Release of coronavirus E protein in membrane vesicles from virus-infected cells and E protein-expressing cells. Virology 263:265272.
115. Maeda, J.,, J. F. Repass,, A. Maeda, and, S. Makino. 2001. Membrane topology of coronavirus E protein. Virology 281:163169.
116. Makino, S.,, K. Yokomori, and, M. M. Lai. 1990. Analysis of efficiently packaged defective interfering RNAs of murine coronavirus: localization of a possible RNA-packaging signal. J. Virol. 64:60456053.
117. Masters, P. S. 1992. Localization of an RNA-binding domain in the nucleocapsid protein of the coronavirus mouse hepatitis virus. Arch. Virol. 125:141160.
118. Masters, P. S. 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66:193292.
119. McBride, C. E.,, J. Li, and, C. E. Machamer. 2007. The cytoplasmic tail of the severe acute respiratory syndrome corona-virus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J. Virol. 81:24182428.
120. Mitra, K.,, I. Ubarretxena-Belandia,, T. Taguchi,, G. Warren, and, D. M. Engelman. 2004. Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc. Natl. Acad. Sci. USA 101:40834088.
121. Molenkamp, R., and, W. J. Spaan. 1997. Identification of a specific interaction between the coronavirus mouse hepatitis virus A59 nucleocapsid protein and packaging signal. Virology 239:7886.
122. Mortola, E., and, P. Roy. 2004. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576:174178.
123. Munro, S. 1995. An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J. 14:46954704.
124. Nal, B.,, C. Chan,, F. Kien,, L. Siu,, J. Tse,, K. Chu,, J. Kam,, I. Staropoli,, B. Crescenzo-Chaigne,, N. Escriou,, S. van der Werf,, K. Y. Yuen, and, R. Altmeyer. 2005. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J. Gen. Virol. 86:14231434.
125. Narayanan, K.,, K. H. Kim, and, S. Makino. 2003. Characterization of N protein self-association in coronavirus ribonucleoprotein complexes. Virus Res. 98:131140.
126. Narayanan, K.,, A. Maeda,, J. Maeda, and, S. Makino. 2000. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J. Virol. 74:81278134.
127. Narayanan, K., and, S. Makino. 2001. Cooperation of an RNA packaging signal and a viral envelope protein in coronavirus RNA packaging. J. Virol. 75:90599067.
128. Nelson, C. A.,, A. Pekosz,, C. A. Lee,, M. S. Diamond, and, D. H. Fremont. 2005. Structure and intracellular targeting of the SARS-coronavirus Orf7a accessory protein. Structure 13:7585.
129. Nelson, G. W.,, S. A. Stohlman, and, S. M. Tahara. 2000. High affinity interaction between nucleocapsid protein and leader/intergenic sequence of mouse hepatitis virus RNA. J. Gen. Virol. 81:181188.
130. Nelson, W. J., and, C. Yeaman. 2001. Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends Cell Biol. 11:483486.
131. Nguyen, V. P., and, B. G. Hogue. 1997. Protein interactions during coronavirus assembly. J. Virol. 71:92789284.
132. Niemann, H.,, G. Heisterberg-Moutsis,, R. Geyer,, H. D. Klenk, and, M. Wirth. 1984. Glycoprotein E1 of MHV-A59: structure of the O-linked carbohydrates and construction of full length recombinant cDNA clones. Adv. Exp. Med. Biol. 173:201213.
133. Oostra, M.,, C. A. M. de Haan,, R. J. de Groot, and, P. J. M. Rottier. 2006. Glycosylation of the severe acute respiratory syndrome coronavirus triple-spanning membrane proteins 3a and M. J. Virol. 80:23262336.
134. Opstelten, D. J.,, P. de Groote,, M. C. Horzinek,, H. Vennema, and, P. J. Rottier. 1993. Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J. Virol. 67:73947401.
135. Opstelten, D. J.,, M. J. Raamsman,, K. Wolfs,, M. C. Horzinek, and, P. J. Rottier. 1995. Envelope glycoprotein interactions in coronavirus assembly. J. Cell Biol. 131:339349.
136. Ortego, J.,, D. Escors,, H. Laude, and, L. Enjuanes. 2002. Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome. J. Virol. 76:1151811529.
137. Parker, M. M., and, P. S. Masters. 1990. Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179:463468.
138. Polishchuk, E. V.,, A. Di Pentima,, A. Luini, and, R. S. Polishchuk. 2003. Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol. Biol. Cell 14:44704485.
139. Polishchuk, R. S.,, E. V. Polishchuk,, P. Marra,, S. Alberti,, R. Buccione,, A. Luini, and, A. A. Mironov. 2000. Correlative light-electron microscopy reveals the tubular-saccular ultra-structure of carriers operating between Golgi apparatus and plasma membrane. J. Cell Biol. 148:4558.
140. Pornillos, O.,, J. E. Garrus, and, W. I. Sundquist. 2002. Mechanisms of enveloped RNA virus budding. Trends Cell Biol. 12:569579.
141. Raamsman, M. J.,, J. K. Locker,, A. de Hooge,, A. A. de Vries,, G. Griffiths,, H. Vennema, and, P. J. Rottier. 2000. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. J. Virol. 74:23332342.
142. Risco, C.,, I. M. Anton,, L. Enjuanes, and, J. L. Carrascosa. 1996. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. J. Virol. 70:47734777.
143. Risco, C.,, I. M. Anton,, C. Sune,, A. M. Pedregosa,, J. M. Martin-Alonso,, F. Parra,, J. L. Carrascosa, and, L. Enjuanes. 1995. Membrane protein molecules of transmissible gastroenteritis coronavirus also expose the carboxy-terminal region on the external surface of the virion. J. Virol. 69:52695277.
144. Robbins, S. G.,, M. F. Frana,, J. J. McGowan,, J. F. Boyle, and, K. V. Holmes. 1986. RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology 150:402410.
145. Rönnholm, R. 1992. Localization to the Golgi complex of Uukuniemi virus glycoproteins G1 and G2 expressed from cloned cDNAs. J. Virol. 66:45254531.
146. Rossen, J. W.,, C. P. Bekker,, G. J. Strous,, M. C. Horzinek,, G. S. Dveksler,, K. V. Holmes, and, P. J. Rottier. 1996. A murine and a porcine coronavirus are released from opposite surfaces of the same epithelial cells. Virology 224:345351.
147. Rossen, J. W.,, C. P. Bekker,, W. F. Voorhout,, G. J. Strous,, A. van der Ende, and, P. J. Rottier. 1994. Entry and release of transmissible gastroenteritis coronavirus are restricted to apical surfaces of polarized epithelial cells. J. Virol. 68:79667973.
148. Rossen, J. W.,, R. de Beer,, G. J. Godeke,, M. J. Raamsman,, M. C. Horzinek,, H. Vennema, and, P. J. Rottier. 1998. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells. J. Virol. 72:497503.
149. Rossen, J. W.,, G. J. Strous,, M. C. Horzinek, and, P. J. Rottier. 1997. Mouse hepatitis virus strain A59 is released from opposite sides of different epithelial cell types. J. Gen. Virol. 78(Pt. 1):6169.
150. Rossen, J. W.,, W. F. Voorhout,, M. C. Horzinek,, A. van der Ende,, G. J. Strous, and, P. J. Rottier. 1995. MHV-A59 enters polarized murine epithelial cells through the apical surface but is released basolaterally. Virology 210:5466.
151. Rottier, P. J.,, M. C. Horzinek, and, B. A. van der Zeijst. 1981. Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. J. Virol. 40:350357.
152. Rottier, P. J., and, J. K. Rose. 1987. Coronavirus E1 glycoprotein expressed from cloned cDNA localizes in the Golgi region. J. Virol. 61:20422045.
153. Rottier, P. J.,, G. W. Welling,, S. Welling-Wester,, H. G. Niesters,, J. A. Lenstra, and, B. A. Van der Zeijst. 1986. Predicted membrane topology of the coronavirus protein E1. Biochemistry25:13351339.
154. Rowland, R. R.,, V. Chauhan,, Y. Fang,, A. Pekosz,, M. Kerrigan, and, M. D. Burton. 2005. Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in Vero cells. J. Virol. 79:1150711512.
155. Salanueva, I. J.,, J. L. Carrascosa, and, C. Risco. 1999. Structural maturation of the transmissible gastroenteritis coronavirus. J. Virol. 73:79527964.
156. Schaecher, S. R.,, J. M. Mackenzie, and, A. Pekosz. 2006. The ORF7b protein of severe acute respiratory syndrome corona-virus (SARS-CoV) is expressed in virus-infected cells and incorporated into SARS-CoV particles. J. Virol. 81:718731.
157. Schelle, B.,, N. Karl,, B. Ludewig,, S. G. Siddell, and, V. Thiel. 2005. Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol. 79:66206630.
158. Schwegmann-Wessels, C.,, M. Al-Falah,, D. Escors,, Z. Wang,, G. Zimmer,, H. Deng,, L. Enjuanes,, H. Y. Naim, and, G. Herrler. 2004. A novel sorting signal for intracellular localization is present in the S protein of a porcine coronavirus but absent from severe acute respiratory syndrome-associated coronavirus. J. Biol. Chem. 279:4366143666.
159. Sethna, P. B.,, M. A. Hofmann, and, D. A. Brian. 1991. Minus-strand copies of replicating coronavirus mRNAs contain antileaders. J. Virol. 65:320325.
160. Sethna, P. B.,, S. L. Hung, and, D. A. Brian. 1989. Coronavirus subgenomic minus-strand RNAs and the potential for mRNA replicons. Proc. Natl. Acad. Sci. USA 86:56265630.
161. Shen, S.,, P. S. Lin,, Y. C. Chao,, A. Zhang,, X. Yang,, S. G. Lim,, W. Hong, and, Y. J. Tan. 2005. The severe acute respiratory syndrome coronavirus 3a is a novel structural protein. Biochem. Biophys. Res. Commun. 330:286292.
162. Simmons, G.,, D. N. Gosalia,, A. J. Rennekamp,, J. D. Reeves,, S. L. Diamond, and, P. Bates. 2005. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA 102:1187611881.
163. Sims, A. C.,, J. Ostermann, and, M. R. Denison. 2000. Mouse hepatitis virus replicase proteins associate with two distinct populations of intracellular membranes. J. Virol. 74:56475654.
164. Smits, S. L.,, G. J. Gerwig,, A. L. van Vliet,, A. Lissenberg,, P. Briza,, J. P. Kamerling,, R. Vlasak, and, R. J. de Groot. 2005. Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. J. Biol. Chem. 280:69336941.
165. Stern, D. F., and, B. M. Sefton. 1982. Coronavirus proteins: structure and function of the oligosaccharides of the avian infectious bronchitis virus glycoproteins. J. Virol. 44:804812.
166. Stohlman, S. A.,, R. S. Baric,, G. N. Nelson,, L. H. Soe,, L. M. Welter, and, R. J. Deans. 1988. Specific interaction between coronavirus leader RNA and nucleocapsid protein. J. Virol. 62:42884295.
167. Sturman, L. S.,, K. V. Holmes, and, J. Behnke. 1980. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J. Virol. 33:449462.
168. Sturman, L. S.,, C. S. Ricard, and, K. V. Holmes. 1985. Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J. Virol. 56:904911.
169. Surjit, M.,, R. Kumar,, R. N. Mishra,, M. K. Reddy,, V. T. Chow, and, S. K. Lal. 2005. The severe acute respiratory syndrome coronavirus nucleocapsid protein is phosphorylated and localizes in the cytoplasm by 14–3-3-mediated translocation. J. Virol. 79:1147611486.
170. Swift, A. M., and, C. E. Machamer. 1991. A Golgi retention signal in a membrane-spanning domain of coronavirus E1 protein. J. Cell Biol. 115:1930.
171. Tahara, S. M.,, T. A. Dietlin,, C. C. Bergmann,, G. W. Nelson,, S. Kyuwa,, R. P. Anthony, and, S. A. Stohlman. 1994. Coronavirus translational regulation: leader affects mRNA efficiency. Virology 202:621630.
172. Tan, Y. J.,, B. C. Fielding,, P. Y. Goh,, S. Shen,, T. H. Tan,, S. G. Lim, and, W. Hong. 2004. Overexpression of 7a, a protein specifically encoded by the severe acute respiratory syndrome coronavirus, induces apoptosis via a caspase-dependent pathway. J. Virol. 78:1404314047.
173. Tan, Y. J.,, E. Teng,, S. Shen,, T. H. Tan,, P. Y. Goh,, B. C. Fielding,, E. E. Ooi,, H. C. Tan,, S. G. Lim, and, W. Hong. 2004. A novel severe acute respiratory syndrome coronavirus protein, U274, is transported to the cell surface and undergoes endocytosis. J. Virol. 78:67236734.
174. Tan, Y. J.,, P. Y. Tham,, D. Z. Chan,, C. F. Chou,, S. Shen,, B. C. Fielding,, T. H. Tan,, S. G. Lim, and, W. Hong. 2005. The severe acute respiratory syndrome coronavirus 3a protein up-regulates expression of fibrinogen in lung epithelial cells. J. Virol. 79:1008310087.
175. Teasdale, R. D., and, M. R. Jackson. 1996. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 12:2754.
176. Thorp, E. B.,, J. A. Boscarino,, H. L. Logan,, J. T. Goletz, and, T. M. Gallagher. 2006. Palmitoylations on murine coronavirus spike proteins are essential for virion assembly and infectivity. J. Virol. 80:12801289.
177. Timani, K. A.,, Q. Liao,, L. Ye,, Y. Zeng,, J. Liu,, Y. Zheng,, X. Yang,, K. Lingbao,, J. Gao, and, Y. Zhu. 2005. Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Res. 114:2334.
178. Toomre, D.,, P. Keller,, J. White,, J. C. Olivo, and, K. Simons. 1999. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J. Cell Sci. 112(Pt. 1):2133.
179. Tooze, J.,, S. Tooze, and, G. Warren. 1984. Replication of coronavirus MHV-A59 in sac— cells: determination of the first site of budding of progeny virions. Eur. J. Cell Biol. 33:281293.
180. Tooze, J., and, S. A. Tooze. 1985. Infection of AtT20 murine pituitary tumour cells by mouse hepatitis virus strain A59: virus budding is restricted to the Golgi region. Eur. J. Cell Biol. 37:203212.
181. Tooze, J.,, S. A. Tooze, and, S. D. Fuller. 1987. Sorting of progeny coronavirus from condensed secretory proteins at the exit from the trans-Golgi network of AtT20 cells. J. Cell Biol. 105:12151226.
182. Torres, J.,, J. Wang,, K. Parthasarathy, and, D. X. Liu. 2005. The transmembrane oligomers of coronavirus protein E. Biophys. J. 88:12831290.
183. Traub, L. M. 2005. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Biochim. Biophys. Acta 1744:415437.
184. Tseng, C. T.,, J. Tseng,, L. Perrone,, M. Worthy,, V. Popov, and, C. J. Peters. 2005. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells. J. Virol. 79:94709479.
185. van Berlo, M. F.,, W. J. van den Brink,, M. C. Horzinek, and, B. A. van der Zeijst. 1987. Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells. Brief report. Arch. Virol. 95:123128.
186. van der Meer, Y.,, E. J. Snijder,, J. C. Dobbe,, S. Schleich,, M. R. Denison,, W. J. Spaan, and, J. K. Locker. 1999. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol. 73:76417657.
187. van Genderen, I. L.,, G. J. Godeke,, P. J. Rottier, and, G. van Meer. 1995. The phospholipid composition of enveloped viruses depends on the intracellular membrane through which they bud. Biochem. Soc. Trans. 23:523526.
188. Vennema, H.,, G. J. Godeke,, J. W. Rossen,, W. F. Voorhout,, M. C. Horzinek,, D. J. Opstelten, and, P. J. Rottier. 1996. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15:20202028.
189. Vennema, H.,, R. Rijnbrand,, L. Heijnen,, M. C. Horzinek, and, W. J. Spaan. 1991. Enhancement of the vaccinia virus/ phage T7 RNA polymerase expression system using encephalomyocarditis virus 5’ -untranslated region sequences. Gene 108:201209.
190. Verma, S.,, V. Bednar,, A. Blount, and, B. G. Hogue. 2006. Identification of functionally important negatively charged residues in the carboxy end of mouse hepatitis coronavirus A59 nucleocapsid protein. J. Virol. 80:43444355.
191. Verma, S.,, L. A. Lopez,, V. Bednar, and, B. G. Hogue. 2007. Importance of the penultimate positive charge in mouse hepatitis coronavirus A59 membrane protein. J. Virol. 81:53395348.
192. Wang, G.,, C. Deering,, M. Macke,, J. Shao,, R. Burns,, D. M. Blau,, K. V. Holmes,, B. L. Davidson,, S. Perlman, and, P. B. McCray, Jr. 2000. Human coronavirus 229E infects polarized airway epithelia from the apical surface. J. Virol. 74:92349239.
193. Wege, H.,, K. Nagashima, and, V. ter Meulen. 1979. Structural polypeptides of the murine coronavirus JHM. J. Gen. Virol. 42:3747.
194. Weiss, S. R., and, S. Navas-Martin. 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev. 69:635664.
195. Weisz, O. A.,, A. M. Swift, and, C. E. Machamer. 1993. Oligomerization of a membrane protein correlates with its retention in the Golgi complex. J. Cell Biol. 122:11851196.
196. White, T. C.,, Z. Yi, and, B. G. Hogue. 2007. Identification of mouse hepatitis coronavirus A59 nucleocapsid protein phosphorylation sites. Virus Res. 126:139148.
197. Wilson, L.,, P. Gage, and, G. Ewart. 2006. Hexamethylene amiloride blocks E protein ion channels and inhibits corona-virus replication. Virology 353:294306.
198. Wilson, L.,, C. McKinlay,, P. Gage, and, G. Ewart. 2004. SARS coronavirus E protein forms cation-selective ion channels. Virology 330:322331.
199. Wurm, T.,, H. Chen,, T. Hodgson,, P. Britton,, G. Brooks, and, J. A. Hiscox. 2001. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J. Virol. 75:93459356.
200. Yamada, Y. K.,, M. Yabe,, T. Ohtsuki, and, F. Taguchi. 2000. Unique N-linked glycosylation of murine coronavirus MHV-2 membrane protein at the conserved O-linked glycosylation site. Virus Res. 66:149154.
201. Ye, R.,, C. Montalto-Morrison, and, P. S. Masters. 2004. Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J. Virol. 78:99049917.
202. Ye, Y.,, K. Hauns,, J. O. Langland,, B. L. Jacobs, and, B. G. Hogue. 2006. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J. Virol. 81:25542563.
203. Ye, Y., and, B. G. Hogue. 2007. Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. J. Virol. 81:35973607.
204. You, J.,, B. K. Dove,, L. Enjuanes,, M. L. DeDiego,, E. Alvarez,, G. Howell,, P. Heinen,, M. Zambon, and, J. A. Hiscox. 2005. Subcellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Gen. Virol. 86:33033310.
205. Youn, S.,, E. W. Collisson, and, C. E. Machamer. 2005. Contribution of trafficking signals in the cytoplasmic tail of the infectious bronchitis virus spike protein to virus infection. J. Virol. 79:1320913217.
206. Yount, B.,, K. M. Curtis, and, R. S. Baric. 2000. Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J. Virol. 74:1060010611.
207. Yount, B.,, R. S. Roberts,, A. C. Sims,, D. Deming,, M. B. Frieman,, J. Sparks,, M. R. Denison,, N. Davis, and, R. S. Baric. 2005. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J. Virol. 79:1490914922.
208. Yu, I. M.,, M. L. Oldham,, J. Zhang, and, J. Chen. 2006. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. J. Biol. Chem. 281:1713417139.
209. Yu, X.,, W. Bi,, S. R. Weiss, and, J. L. Leibowitz. 1994. Mouse hepatitis virus gene 5b protein is a new virion envelope protein. Virology 202:10181023.
210. Yuan, Q.,, Y. Liao,, J. Torres,, J. P. Tam, and, D. X. Liu. 2006. Biochemical evidence for the presence of mixed membrane topologies of the severe acute respiratory syndrome corona-virus envelope protein expressed in mammalian cells. FEBS Lett. 580:31923200.
211. Yuan, X.,, J. Li,, Y. Shan,, Z. Yang,, Z. Zhao,, B. Chen,, Z. Yao,, B. Dong,, S. Wang,, J. Chen, and, Y. Cong. 2005. Subcellular localization and membrane association of SARS-CoV 3a protein. Virus Res. 109:191202.
212. Yuan, X.,, J. Wu,, Y. Shan,, Z. Yao,, B. Dong,, B. Chen,, Z. Zhao,, S. Wang,, J. Chen, and, Y. Cong. 2006. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 346:7485.
213. Zhao, X.,, K. Shaw, and, D. Cavanagh. 1993. Presence of subgenomic mRNAs in virions of coronavirus IBV. Virology 196:172178.
214. Zhou, M., and, E. W. Collisson. 2000. The amino and carboxyl domains of the infectious bronchitis virus nucleocapsid protein interact with 3’ genomic RNA. Virus Res. 67:3139.
215. Zúñiga, S.,, I. Sola,, J. L. Moreno,, P. Sabella,, J. Plana-Durán, and, L. Enjuanes. 2007. Coronavirus nucleocapsid protein is an RNA chaperone. Virology 357:215227.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error