1887

Chapter 20 : Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815790/9781555814557_Chap20-2.gif

Abstract:

Human coronaviruses (HCoVs) are endemic, and infections mainly occur in the winter and early spring. The most probable route of entry of HCoV appears to be the nasal mucosa, and horizontal transmission via small aerosols is possible, at least for HCoV-229E. Although HCoVs other than SARS-CoV are primarily associated with mild upper and lower respiratory tract disease, with the common cold the typical HCoV-induced pathology, HCoV was regularly associated with severe respiratory distress in newborns and recognized as an important trigger of acute asthma exacerbations. More recently, both previously (229E and OC43) and newly (NL63 and HKU1) described HCoVs have been associated with more severe acute lower respiratory tract infection, including pneumonia, in both infants and immunocompromised patients. Moreover, various reports have implicated the 229E and OC43 groups in other pathologies, such as myocardites and meningitis and severe diarrhea. Over the years, several reports have also suggested a possible link between the presence of HCoV within the human central nervous system (CNS) and various neurological disorders such as multiple sclerosis (MS), Parkinson’s disease (PD), and encephalitis. As for virus infections in general, the development of vaccines against HCoVs is the best way to prevent infection and disease. This chapter deals with recent advances in research and development on inhibitors that act at various steps of the virus replication cycle, from receptor binding to release of progeny infectious particles.

Citation: Talbot P, Jacomy H, Desforges M. 2008. Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, p 313-324. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch20

Key Concept Ranking

Upper Respiratory Tract Infections
0.59467244
Lower Respiratory Tract Infections
0.58120483
Severe Acute Respiratory Syndrome
0.516645
Tumor Necrosis Factor alpha
0.46790493
Theiler's Murine Encephalomyelitis
0.4013081
0.59467244
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Human monocytic cells are susceptible to productive HCoV-229E infection, are activated following infection, and could serve as a viral reservoir for access to the CNS. Infected monocytic cells are activated and can produce TNF-α, which can induce the up-regulation of the adhesion molecule ICAM-1 on endothelial cells forming the blood-brain barrier (BBB), facilitating adhesion and passage of monocytes into the CNS. Infected and activated monocytic cells can also produce MMP-9. This metalloproteinase can induce an increased permeabilization of the BBB, also facilitating the passage of leukocytes into the CNS. Infection may also induce an up-regulation of chemokine receptors at the cell surface, also facilitating the passage of leukocytes into the CNS.

Citation: Talbot P, Jacomy H, Desforges M. 2008. Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, p 313-324. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Neuroinvasive properties of HCoV-OC43 in mice. Fourteen-day-old C57BL/6 mice were infected intranasally with HCoV-OC43 (5,000 50% tissue culture infective doses [TCID]). Five animals were sacrificed every 24 h, and virus titers were measured in the CNS and lung. Infectious HCoV-OC43 was detectable in the brain as soon as 3 days postinfection and reached its maximum titer a few days later. Virus was also detected in the lungs. The detection limit of the assay was 10 TCID/g. Inhalation of virus led to a generalized infection of the CNS and 90% mortality from encephalitis, demonstrating the neuroinvasiveness and neurovirulence of HCoV-OC43.

Citation: Talbot P, Jacomy H, Desforges M. 2008. Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, p 313-324. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

HCoVs and the molecular mimicry hypothesis in human neuropathology. Following infection by an HCoV, viral peptides are presented by antigen-presenting cells (APC) to T cells (T) specific for viral or myelin antigens. T cells become activated (aT) and can up-regulate adhesion molecules, which will promote interaction with cells from the blood-brain barrier (BBB) and facilitate penetration into the CNS. These activated T cells can then interact with the CNS-resident APC, microglia, which can present peptides derived from myelin components that can be recognized by virus-specific T cells, or vice versa, on the basis of shared similar sequences or conformations. Such myelin-virus cross-reactive T cells may therefore generate an autoimmune response with possible downstream immunopathological consequences. Chemokine secretion by activated T cells increases leukocyte recruitment, with potential amplification of the immune response. Gamma interferon (IFN-γ) production by activated T cells can increase cytokine (TNF-α) and nitric oxide (NO) production by glial cells (astrocytes and microglia), with potential damage to neurons and myelin-producing oligodendrocytes. Activated T cells may also cause direct cytotoxicity to neurons or oligodendrocytes.

Citation: Talbot P, Jacomy H, Desforges M. 2008. Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, p 313-324. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Inflammatory response following intracerebral HCoV-OC43 inoculation. Immunohistological staining of the brains of 21-day-old HCoV-OC43-infected BALB/c mice. At 6 days postinfection, infected hippocampal neurons (stained in black) (A) and microglial activation (revealed by Mac-2 staining) (B) are evident in the same region, demonstrating the strong inflammatory reaction in infected regions.

Citation: Talbot P, Jacomy H, Desforges M. 2008. Pathogenesis of Human Coronaviruses Other than Severe Acute Respiratory Syndrome Coronavirus, p 313-324. In Perlman S, Gallagher T, Snijder E (ed), Nidoviruses. ASM Press, Washington, DC. doi: 10.1128/9781555815790.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815790.ch20
1. Almeida, J. D., and, D. A. Tyrrell. 1967. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J. Gen. Virol. 1:175178.
2. Anand, K.,, J. Ziebuhr,, P. Wadhwani,, J. R. Mesters,and, R. Hilgenfeld. 2003. Coronavirus main protease (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:17631767.
3. Anderson, J. R. 2001. The mechanisms of direct, virus-induced destruction of neurons. Curr. Top. Microbiol. Immunol. 253:1533.
4. Arbour,, N., G. Côté,, C. Lachance,, M. Tardieu,, N. R. Cashman,and, P. J. Talbot. 1999. Acute and persistent infection of human neural cell lines by human coronavirus OC43. J. Virol. 73:33383350.
5. Arbour, N.,, R. Day,, J. Newcombe,and, P. J. Talbot. 2000. Neuroinvasion by human respiratory coronaviruses and association with multiple sclerosis. J. Virol. 74:89138921.
6. Arbour, N.,, S. Ekandé,, G. Côté,, C. Lachance,, F. Chagnon,, M. Tardieu,, N. R. Cashman,and, P. J. Talbot. 1999. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J. Virol. 73:33263337.
7. Arden, K.,, M. D. Nissen,, T. P. Sloots, and, I. M. MacKay. 2005. New human coronavirus, HCoV-NL63, associated with severe lower respiratory tract disease in Australia. J. Med. Virol. 75:455462.
8. Barber, G. N. 2001. Host defense, viruses and apoptosis. Cell Death Differ. 8:113126.
9. Bastien, N.,, K. Anderson,, L. Hart,, P. Van Caeseele,, K. Brandt,, D. Milley,, T. Hatchette,, E. C. Weiss,and, Y. Li. 2005. Human coronavirus NL63 infection in Canada. J. Infect. Dis. 191:503506.
10. Bastien, N.,, J. L. Robinson,, A. Tse,, B. E. Lee,, L. Hart,and, Y. Li. 2005. Human coronavirus NL-63 infections in children: a 1-year study. J. Clin. Microbiol. 43:45674573.
11. Beaudette, F. R., and, C. B. Hudson. 1937. Cultivation of the virus of infectious bronchitis. J. Am. Vet. Med. Assoc. 90:5160.
12. Belay, E. D.,, D. D. Erdman,, L. J. Anderson,, T. C. Peret,, S. J. Schrag,, B. S. Fields,, J. C. Burns,and, L. B. Schonberger. 2005. Kawasaki disease and human coronavirus. J. Infect. Dis. 192:352353.
13. Bonavia, A.,, N. Arbour,, V. W. Yong,and, P. J. Talbot. 1997. Infection of primary cultures of human neural cells by human coronaviruses 229E and OC43. J. Virol. 71:800806.
14. Bosch, B. J.,, B. E. Martina,, R. Van Der Zee,, J. Lepault,, B. J. Haijema,, C. Versluis,, A. J. Heck,, R. De Groot,, A. D. Osterhaus,and, P. J. Rottier. 2004. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA 101:84558460.
15. Boucher, A.,, M. Desforges,, P. Duquette,and, P. J. Talbot. 2007. Long-term human coronavirus-myelin cross-reactive T-cell clones derived from multiple sclerosis patients. Clin. Immunol. 123:258267.
16. Brian, D. A., and, R. S. Baric. 2005. Coronavirus genome structure and replication. Curr. Top. Microbiol. Immunol. 287:130.
17. Burks, J. S.,, B. L. DeVald,, L. D. Jankovsky,and, J. C. Gerdes. 1980. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 209:933934.
18. Butler, N.,, L. Pewe,, K. Trandem,and, S. Perlman. 2006. Murine encephalitis caused by HCoV-OC43, a human corona-virus with broad species specificity, is partly immune-mediated. Virology 347:410421.
19. Cabirac, G. F.,, K. F. Soike,, J. Y. Zhang,, K. Hoel,, C. Butunoi,, G. Y. Cai,, S. Johnson,and, R. S. Murray. 1994. Entry of coronavirus into primate CNS following peripheral infection. Microb. Pathog. 16:349357.
20. Chibo, D., and C. Birch. 2006. Analysis of human coronavirus 229E spike and nucleoprotein genes demonstrates genetic drift between chronologically distinct strains. J. Gen. Virol. 87:12031208.
21. Chiu, S. S.,, K. H. Chan,, K. W. Chu,, S. W. Kwan,, Y. Guan,, L. L. Poon,and, J. S. Peiris. 2005. Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong, China. Clin. Infect. Dis. 40:17211729.
22. Collins, A. R. 2002. In vitro detection of apoptosis in monocytes/macrophages infected with human coronavirus. Clin. Diagn. Lab. Immunol. 9:13921395.
23. Cristallo, A.,, F. Gambaro,, G. Biamonti,, P. Ferrante,, M. Battaglia,and, P. M. Cereda. 1997. Human coronavirus polyadenylated RNA sequences in cerebrospinal fluid from multiple sclerosis patients. New Microbiol. 20:105114.
24. Desforges, M.,, T. C. Miletti,, M. Gagnon,and, P. J. Talbot. 2007. Activation of human monocytes after infection by human coronavirus 229E. Virus Res., in press. E-pub ahead of print: doi:10.1016/j.virusres.2007.06.016.
25. Drosten, C.,, S. Gunther,, W. Preiser,, S. van der Werf,, H. R. Brodt,, S. Becker,, H. Rabenau,, M. Panning,, L. Kolesnikova,, R. A. Fouchier,, A. Berger,, A. M. Burguiere,, J. Cinatl,, M. Eickmann,, N. Escriou,, K. Grywna,, S. Kramme,, J. C. Manuguerra,, S. Muller,, V. Rickerts,, M. Sturmer,, S. Vieth,, H. D. Klenk,, A. D. Osterhaus,, H. Schmitz,and, H. W. Doerr. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348:19671976.
26. Ebihara, T.,, R. Endo,, X. Ma,, N. Ishiguro,and, H. Kikuta. 2005. Detection of human coronavirus NL63 in young children with bronchiolitis. J. Med. Virol. 75:463465.
27. Ebihara, T.,, R. Endo,, X. Ma,, N. Ishiguro,and, H. Kikuta. 2005. Lack of association between New Haven coronavirus and Kawasaki disease. J. Infect. Dis. 192:351352.
28. Edwards, J. A.,, F. Denis,and, P. J. Talbot. 2000. Activation of glial cells by human coronavirus OC43 infection. J. Neuro-immunol. 108:7381.
29. El-Sahly, H. M.,, R. L. Atmar,, W. P. Glezen,and, S. B. Greenberg. 2000. Spectrum of clinical illness in hospitalized patients with “common cold” virus infections. Clin. Infect. Dis. 31:96100.
30. Esper, F.,, E. D. Shapiro,, C. Weibel,, D. Ferguson,, M. L. Landry,and, J. S. Kahn. 2005. Association between a novel human coronavirus and Kawasaki disease. J. Infect. Dis. 191:499502.
31. Esper, F.,, C. Weibel,, D. Ferguson,, M. L. Landry,and, J. S. Kahn. 2005. Evidence of a novel human coronavirus that is associated with respiratory tract disease in infants and young children. J. Infect. Dis. 191:492498.
32. Esper, F.,, C. Weibel,, D. Ferguson,, M. L. Landry,and, J. S. Kahn. 2006. Coronavirus HKU1 infection in the United States. Emerg. Infect. Dis. 12:775779.
33. Falsey, A. R.,, R. M. McCann,, W. J. Hall,, M. M. Criddle,, M. A. Formica,, D. Wycoff,and, J. E. Kolassa. 1997. The ‘common cold’ in frail older persons: impact of rhinovirus and coronavirus in a senior daycare center. J. Am. Geriatr. Soc. 45:706711.
34. Fazzini, E.,, J. Fleming,and, S. Fahn. 1992. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov. Disord. 7:153158.
35. Fishman, P. S.,, J. S. Gass,, P. T. Swoveland,, E. Lavi,, M. K. Highkin,and, S. Weiss. 1985. Infection of the basal ganglia by a murine coronavirus. Science 229:877879.
36. Fleming, J. O.,, A. K. El Zaatari,, W. Gilmore,, J. D. Berne,, J. S. Burks,, S. A. Stohlman,, W. W. Tourtelotte,and, L. P. Weiner. 1988. Antigenic assessment of coronaviruses isolated from patients with multiple sclerosis. Arch. Neurol. 45:629633.
37. Fouchier, R. A.,, N. G. Hartwig,, T. M. Bestebroer,, B. Niemeyer,, J. C. de Jong,, J. H. Simon,and, A. D. Osterhaus. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc. Natl. Acad. Sci. USA 101:62126216.
38. Fouchier, R. A.,, T. Kuiken,, M. Schutten,, G. van Amerongen,, G. J. van Doornum,, B. G. van der Hoogen,, M. Peiris,, W. Lim,, K. Stohr,, A. D. Osterhaus. 2003. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 423:240.
39. Gagneur, A.,, J. Sizun,, S. Vallet,, M. C. Legrand,, B. Picard,and, P. J. Talbot. 2002. Coronavirus-related nosocomial viral respiratory infections in a neonatal and paediatric intensive care unit: a prospective study. J. Hosp. Infect. 51:5964.
40. Gerna, G.,, G. Campanini,, F. Rovida,, E. Percivalle,, A. Sarasini,, A. Marchi,and, F. Baldanti. 2006. Genetic variability of human coronavirus OC43-, 229E-, and NL63-like strains and their association with lower respiratory tract infections of hospitalized infants and immunocompromised patients. J. Med. Virol. 78:938949.
41. Gerna, G.,, N. Passarini,, M. Battaglia,and, E. G. Rondanelli. 1985. Human enteric coronaviruses: antigenic relatedness to human coronavirus OC43 and possible etiologic role in viral gastroenteritis. J. Infect. Dis. 151:796803.
42. Gilden, D. H. 2005. Infectious causes of multiple sclerosis. Lancet Neurol. 4:195202.
43. Hamre, D., and J. J. Procknow. 1966. A new virus isolated from the human respiratory tract. Proc. Soc. Exp. Biol. Med. 121:190193.
44. Hofmann, H.,, K. Pyrc,, L. van der Hoek,, M. Geier,, B. Berkhout,and, S. Pohlmann. 2005. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 102:79887993.
45. Hovanec, D. L., and, T. D. Flanagan. 1983. Detection of antibodies to human coronaviruses 229E and OC43 in the sera of multiple sclerosis patients and normal subjects. Infect. Immun. 41:426429.
46. Jacomy, H.,, G. Fragoso,, G. Almazan,, W. E. Mushynski,and, P. J. Talbot. 2006. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 349:335346.
47. Jacomy, H., and P. J. Talbot. 2003. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology 315:2033.
48. Jeffers, S. A.,, S. M. Tusell,, L. Gillim-Ross,, E. M. Hemmila,, J. E. Achenbach,, G. J. Babcock,, W. D. Thomas,, Jr., L. B. Thackray,, M. D. Young,, R. J. Mason,, D. M. Ambrosino,, D. E. Wentworth,, J. C. Demartini,and, K. V. Holmes. 2004. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 101:1574815753.
49. Jelachich, M. L., and, H. L. Lipton. 1999. Restricted Theiler’s murine encephalomyelitis virus infection in murine macrophages induces apoptosis. J. Gen. Virol. 80:17011705.
50. Jia, H. P.,, D. C. Look,, L. Shi,, M. Hickey,, L. Pewe,, J. Netland,, M. Farzan,, C. Wohlford-Lenane,, S. Perlman, and, P. B. McCray, Jr. 2005. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol. 79:1461414621.
51. Johnson, R. T. 1985. Viral aspects of multiple sclerosis, p. 319336. In J. C. Koetsier (ed.), Handbook of Clinical Neurology Demyelinating Diseases. Elsevier, Amsterdam, The Netherlands.
52. Johnston, S. L.,, P. K. Pattemore,, G. Sanderson,, S. Smith,, F. Lampe,, L. Josephs,, P. Symington,, S. O’Toole,, S. H. Myint,, D. A. J. Tyrrell,and, S. T. Holgate. 1995. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. Br. Med. J. 310:12251228.
53. Kahn, J. S. 2006. The widening scope of coronaviruses. Curr. Opin. Pediatr. 18:4247.
54. Ksiazek, T. G.,, D. Erdman,, C. S. Goldsmith,, S. R. Zaki,, T. Peret,, S. Emery,, S. Tong,, C. Urbani,, J. A. Comer,, W. Lim,, P. E. Rollin,, S. F. Dowell,, A. E. Ling,, C. D. Humphrey,, W. J. Shieh,, J. Guarner,, C. D. Paddock,, P. Rota,, B. Fields,, J. DeRisi,, J. Y. Yang,, N. Cox,, J. M. Hughes,, J. W. LeDuc,, W. J. Bellini,, L. J. Anderson, and the SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:19531966.
55. Kunkel, F., and G. Herrler. 1993. Structural and functional analysis of the surface protein of human coronavirus OC43. Virology 195:195202.
56. Kurtzke, J. F. 1993. Epidemiologic evidence for multiple sclerosis as an infection. Clin. Microbiol. Rev. 6:382427.
57. Larson, H. E.,, S. E. Reed,and, D. A. J. Tyrell. 1980. Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J. Med. Virol. 5:221229.
58. Lassnig, C.,, C. M. Sanchez,, M. Egerbacher,, I. Walter,, S. Majer,, T. Kolbe,, P. Pallares,, L. Enjuanes,and, M. Muller. 2005. Development of a transgenic mouse model susceptible to human coronavirus 229E. Proc. Natl. Acad. Sci. USA 102:82758280.
59. Lee, B. E.,, J. L. Robinson,, V. Khurana,, X. L. Pang,, J. K. Preiksaitis,and, J. D. Fox. 2006. Enhanced identification of viral and atypical bacterial pathogens in lower respiratory tract samples with nucleic acid amplification tests. J. Med. Virol. 78:702710.
60. Li, W.,, M. J. Moore,, N. Vasilieva,, J. Sui,, S. K. Wong,, M. A. Berne,, M. Somasundaran,, J. L. Sullivan,, K. Luzuriaga,, T. C. Greenough,, H. Choe,and, M. Farzan. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS corona-virus. Nature 426:450454.
61. Lindner, H. A.,, N. Fotouhi-Ardakani,, V. Lytvyn,, P. Lachance,, T. Sulea, and, R. Ménard. 2005. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79:1519915208.
62. Liu, C.,, Y. Feng,, F. Gao,, Q. Zhang,and, M. Wang. 2006. Characterization of HCoV-229E fusion core: implications for structure basis of coronavirus membrane fusion. Biochem. Biophys. Res. Commun. 345:11081115.
63. Martyn, C. N. 1997. Infection of childhood and neurological diseases in adult life. Br. Med. Bull. 53:2439.
64. McIntosh, K.,, W. B. Becker,and, R. M. Chanock. 1967. Growth in suckling mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc. Natl. Acad. Sci. USA 58:22682273.
65. McMahon, E. J.,, S. L. Bailey,, C. Vanderlugt Castenada,, H. Waldner,and, S. D. Miller. 2005. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11:335339.
66. Moës, E.,, L. Vijgen,, E. Keyaerts,, K. Zlateva,, S. Li,, P. Maes,, K. Pyrc,, B. Berkhout,, L. van der Hoek, and, M. Van Ranst. 2005. A novel pancoronavirus RT-PCR assay: frequent detection of human coronavirus NL63 in children hospitalized with respiratory tract infections in Belgium. BMC Infect. Dis. 5:6.
67. Murray, R. S.,, B. Brown,, D. Brian,and, G. F. Cabirac. 1992. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Ann. Neurol. 31:525553.
68. Murray, R. S.,, G. Y. Cai,, K. Hoel,, J. Y. Zhang,, K. F. Soike,and, G. F. Cabirac. 1992. Coronavirus infects and causes demyelination in primate central nervous system. Virology 188:274284.
69. Murray, R. S.,, G. Y. Cai,, K. F. Soike,and, G. F. Cabirac. 1997. Further observations on coronavirus infection of primate CNS. J. Neurovirol. 3:7175.
70. Myint, S. H. 1995. Human coronavirus infections, p. 389401. In S. G. Siddell (ed.), The Coronaviridae. Plenum Press, New York, NY.
71. Nicholson, K. G.,, J. Kent,and, D. C. Ireland. 1993. Respiratory viruses and exacerbations of asthma in adults. Br. Med. J. 307:982986.
72. Olanow, C. W., and, W. G. Tatton. 1999. Etiology and pathogenesis of Parkinson’s disease. Annu. Rev. Neurosci. 22:123144.
73. Oldstone, M. B. A. 2005. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr. Top. Microbiol. Immunol. 296:117.
74. Patterson, S., and M. R. Macnaughton. 1982. Replication of human respiratory coronavirus strain 229E in human macrophages. J. Gen. Virol. 60:307314.
75. Pene, F.,, A. Merlat,, A. Vabret,, F. Rozenberg,, A. Buzyn,, F. Dreyfus,, A. Cariou,, F. Freymuth,and, P. Lebon. 2003. Coronavirus-229E-related pneumonia in immunocompromised patients. Clin. Infect. Dis. 37:929932.
76. Phillips, J. J.,, M. M. Chua,, E. Lavi,and, S. R. Weiss. 1999. Pathogenesis of chimeric MHV4/MHVA59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J. Virol. 73:77527760.
77. Pyrc, K.,, B. J. Bosch,, B. Berkhout,, M. F. Jebbink,, R. Dijkman,, P. Rottier, and, L. van der Hoek. 2006. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother. 50:20002008.
78. Resta, S.,, J. P. Luby,, C. R. Rosenfeld,and, J. D. Siegel. 1985. Isolation and propagation of a human enteric coronavirus. Science 229:978981.
79. Reuter, J. D.,, D. L. Gomez,, J. H. Wilson, and, A. N. van den Pol. 2004. Systemic immune deficiency necessary for cytomegalovirus invasion of the mature brain. J. Virol. 78:14731487.
80. Riski, H., and T. Hovi. 1980. Coronavirus infections of man associated with diseases other than the common cold. J. Med. Virol. 6:259265.
81. Salmi, A.,, B. Ziola,, T. Hovi,and, M. Reunanen. 1982. Antibodies to coronaviruses OC43 and 229E in multiple sclerosis patients. Neurology 32:292295.
82. Schlitt, B. P.,, M. Felrice,, M. L. Jelachich,and, H. L. Lipton. 2003. Apoptotic cells, including macrophages, are prominent in Theiler’s virus-induced inflammatory, demyelinating lesions. J. Virol. 77:43834388.
83. Seybert, A.,, C. C. Posthuma,, L. C. van Dinten,, E. J. Snijder,, A. E. Gorbalenya,and, J. Ziebuhr. 2005. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J. Virol. 79:696704.
84. Sibley, W. A.,, C. R. Bamford,and, K. Clark. 1985. Clinical viral infections and multiple sclerosis. Lancet i:13131315.
85. Sizun, J.,, D. Soupre,, J. D. Giroux,, D. Alix,, D. Parscau,, M. C. Legrand,, M. Demazure,and, C. Chastel. 1993. Nasal colonization with coronavirus and apnea of the premature newborn. Acta Paediatr. 82:238.
86. Sizun, J.,, D. Soupre,, M. C. Legrand,, J. D. Giroux,, S. Rubio,, J. M. Cauvin,, C. Chastel,, D. Alix,and, L. Deparscau. 1995. Neonatal nosocomial respiratory infection with coronavirus: a prospective study in a neonatal intensive care unit. Acta Paediatr. 84:617620.
87. Sizun, J., M., W. N. Yu,and, P. J. Talbot. 2000. Survival of human coronaviruses 229E and OC43 in suspension and after frying on surfaces: a possible source of hospital-acquired infections. J. Hosp. Infect. 46:5560.
88. Skowronski, D. M.,, C. Astell,, R. C. Brunham,, D. E. Low,, M. Petric,, R. Roper,, P. J. Talbot,, T. Tam,and, L. Babiuk 2005. Severe acute respiratory syndrome (SARS): a year in review. Annu. Rev. Med. 56:357381.
89. Sloots, T. P.,, P. McErlean,, D. J. Speicher,, K. E. Arden,, M. D. Nissen, and, I. M. MacKay. 2006. Evidence of human corona-virus HKU1 and human bocavirus in Australian children. J. Clin. Virol. 35:99102.
90. Stewart, J. N.,, S. Mounir,and, P. J. Talbot. 1992. Human coronavirus gene expression in the brains of multiple sclerosis patients. Virology 191:502505.
91. St.-Jean, J. R.,, M. Desforges,and, P. J. Talbot. 2006. Genetic evolution of human coronavirus OC43 in neural cell culture. Adv. Exp. Biol. Med. 581:499502.
92. St.-Jean, J. R.,, H. Jacomy,, M. Desforges,, A. Vabret,, F. Freymuth,and, P. J. Talbot. 2004. Human respiratory corona-virus OC43: genetic stability and neuroinvasion. J. Virol. 78:88248834.
93. Talbot, P. J.,, D. Arnold,and, J. P. Antel. 2001. Virus-induced autoimmune reactions in the nervous system. Curr. Top. Microbiol. Immunol. 253:247271.
94. Talbot, P. J.,and, P. Jouvenne. 1992. Neurotropic potential of coronaviruses. Med. Sci. 8:119125.
95. Talbot, P. J.,, J. S. Paquette,, C. Ciurli,, J. P. Antel,and, F. Ouellet. 1996. Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Ann. Neurol. 39:233240.
96. Tsui, J. K.,, D. B. Calne,, Y. Wang,, M. Schulzer,and, S. A. Marion. 1999. Occupational risk factors in Parkinson’s disease. Can. J. Public Health 90:334337.
97. Tyrrell, D. A. J.,, J. D. Almeida,, D. M. Berry, and, K. McIntosh. 1968. Coronaviruses. Nature 220:650.
98. Tyrrell, D. A.,, J. D. Almeida,, C. H. Cunningham,, W. R. Dowdle,, M. S. Hofstad,, K. McIntosh,, M. Tajima,, L. Y. Zakstelskaya,, B. C. Easterday,, A. Kapikian,and, R. W. Bingham. 1975. Coronaviridae. Intervirology 5:7682.
99. Tyrrell, D. A. J., and M. L. Bynoe. 1965. Cultivation of a novel type of common-cold virus in organ cultures. Br. Med. J. 1:14671470.
100. Vabret, A.,, J. Dina,, J. Gouarin,, J. Petitjean,, S. Corbet,and, F. Freymuth. 2006. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin. Infect. Dis. 42:634639.
101. Vabret, A.,, T. Mourez,, J. Dina,, L. van der Hoek,, S. Gouarin,, J. Petitjean,, J. Brouard,and, F. Freymuth. 2005. Human coronavirus NL63, France. Emerg. Infect. Dis. 11:12251229.
102. Vabret, A.,, T. Mourez,, S. Gouarin,, J. Petitjean,and, F. Freymuth. 2003. An outbreak of coronavirus OC43 respiratory infection in Normandy, France. Clin. Infect. Dis. 36:985989.
103. van der Hoek, L.,, K. Pyrc,, M. F. Jebbink,, W. VermeulenOost,, R. J. Berkhout,, K. C. Wolthers,, P. M. Wertheim-van Dillen,, J. Kaandorp,, J. Spaargaren,and, B. Berkhout. 2004. Identification of a new human coronavirus. Nat. Med. 10:368373.
104. van der Hoek, L.,, K. Sure,, G. Ihorst,, A. Stang,, K. Pyrc,, M. F. Jebbink,, G. Petersen,, J. Forster,, B. Berkhout,and, K. Uberla. 2005. Croup is associated with the novel coronavirus NL63. PLoS Med. 2:764770.
105. Vijgen, L.,, E. Keyaerts,, P. Lemey,, P. Maes,, K. Van Reeth,, H. Nauwynck,, M. Pensaert, and, M. Van Ranst. 2006. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human cornavirus OC43. J. Virol. 80:72707274.
106. Vijgen, L.,, E. Keyaerts,, P. Lemey,, E. Moës,, S. Li,, A. M. Vandamme, and, M. Van Ranst. 2005. Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology 337:8592.
107. Vijgen, L.,, E. Keyaerts,, E. Moes,, P. Maes,, G. Duson, and, M. Van Ranst. 2005. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43:54525456.
108. Vijgen, L.,, P. Lemey,, E. Keyaerts, and, M. Van Ranst. 2005. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79:15951604.
109. Wang, G.,, C. Deering,, M. Macke,, J. Shao,, R. Burns,, D. M. Blau,, K. V. Holmes,, B. L. Davidson,, S. Perlman, and, P. B. MacCray, Jr. 2000. Human coronavirus 229E infects polarized airway epithelia from the apical surface. J. Virol. 74:92349239.
110. Weiss, S. R. 1983. Coronaviruses SD and SK share extensive nucleotide homology with murine coronavirus MHV-A59, more than that shared between human and murine coronaviruses. Virology 126:669677.
111. Wentworth, D. E.,, D. B. Tresnan,, B. C. Turner,, I. R. Lerman,, B. Bullis,, E. M. Hemmila,, R. Levis,, L. H. Shapiro,and, K. V. Holmes. 2005. Cells of human aminopeptidase N (CD13) transgenic mice are infected by human coronavirus-229E in vitro, but not in vivo. Virology 335:185197.
112. Whitley, R. J., and, J. W. Gnann. 2002. Viral encephalitis: familiar infections and emerging pathogens. Lancet 359:507513.
113. Wilson, L.,, P. Gage,and, G. Ewart. 2006. Hexamethylene amiloride blocks E protein ion channels and inhibits corona-virus replication. Virology 353:294306.
114. Woo, P. C.,, S. K. Lau,, C. M. Chu,, K. H. Chan,, H. W. Tsoi,, Y. Huang,, B. H. Wong,, R. W. Poon,, J. J. Cai,, W. K. Luk,, L. L. Poon,, S. S. Wong,, Y. Guan,, J. S. Peiris,and, K. Y. Yuen. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79:884895.
115. Woo, P. C.,, S. K. Lau,, H. W. Tsoi,, Y. Huang,, R. W. Poon,, C. M. Chu,, R. A. Lee,, W. K. Luk,, G. K. Wong,, B. H. Wong,, V. C. Cheng,, B. S. Tang,, A. K. Wu,, R. W. Yung,, H. Chen,, Y. Guan,, K. H. Chan,and, K. Y. Yuen. 2005. Clinical and molecular epidemiological features of coronavirus HKU1-associated community-acquired pneumonia. J. Infect. Dis. 192:18981907.
116. Woo, P. C.,, S. K. P. Lau,, C. C. Y. Yip,, Y. Huang,, H.-W. Tsoi,, K.-H. Chan, and, K. Y. Yuen. 2006. Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1. J. Virol. 80:71367145.
117. Yang, H.,, W. Xie,, X. Xue,, K. Yang,, J. Ma,, W. Liang,, Q. Zhao,, Z. Zhou,, D. Pei,, J. Ziebuhr,, R. Hilgenfeld,, K. Y. Yuen,, L. Wong,, G. Gao,, S. Chen,, Z. Chen,, D. Ma,, M. Bartlam,and, Z. Rao. 2005. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol. 3:17421752.
118. Yeager, C. L.,, R. A. Ashmun,, R. K. Williams,, C. B. Cardellichio,, L. H. Shapiro,, A. T. Look,and, K. V. Holmes. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357:420422.
119. Yeh, E. A.,, A. Collins,, M. E. Cohen,, P. K. Duffner,and, H. Faden. 2004. Detection of coronavirus in the central nervous system of a child with acute disseminated encephalitis. Pediatrics 113:7376.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error