Chapter 4 : Structure, Function, and Transport of Lipoproteins in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Structure, Function, and Transport of Lipoproteins in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap04-2.gif


In , lipoproteins are anchored to the periplasmic side of either the inner or outer membrane depending on the lipoprotein-sorting signal. Some gram-negative bacteria are known to possess lipoproteins on the outer surface of their outer membranes. The author and coresearchers therefore determined their N-terminal sequences and found that these three proteins are processed to nonlipidated mature forms, indicating that the three genes do not encode lipoproteins. Only two lipoproteins, LolB and YfiO, were essential as reported. They overproduced each of the 90 lipoproteins and examined the level of degP expression. To discuss the molecular mechanisms underlying lipoprotein sorting, one must understand the functions of the Lol pathway mediating the inner to outer membrane transport of lipoproteins. LolCDE and MsbA are two essential ABC transporters that appear to be involved in the biogenesis of the envelope. To evaluate lipoprotein-sorting signals, the LolA-dependent release of lipoproteins from spheroplasts was examined. Therefore, LolCDE only recognizes an N-terminal Cys possessing three acyl chains, the sole common structure of lipoproteins. The Lol avoidance mechanism is required for the localization of PulA of on the outer surface of the outer membrane. , the Lyme disease spirochete, has been reported to possess more than 100 lipoproteins, some of which are on the outer surface of the outer membrane and cause an immunoresponse of host cells.

Citation: Tokuda H, Matsuyama S, Tanaka-Masuda K. 2007. Structure, Function, and Transport of Lipoproteins in , p 67-79. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch4

Key Concept Ranking

Two-Component Signal Transduction Systems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Biogenesis of lipoproteins. Lipoprotein precursors have a consensus sequence, -L-(A/S)-(G/A)-C-, called a lipobox (broken squares), around a signal cleavage site. X represents a residue other than Asp. Lgt, phosphatidylglycerol:prolipoprotein diacylglyceryl-transferase; LspA, prolipoprotein signal peptidase (also called Spase II); Lnt, phospholipid: apolipoprotein transacylase. A Lol pathway discussed later mediates the outer membrane localization of lipoproteins in a manner dependent on sorting signals.

Citation: Tokuda H, Matsuyama S, Tanaka-Masuda K. 2007. Structure, Function, and Transport of Lipoproteins in , p 67-79. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Sorting and outer membrane localization of lipoproteins through the Lol pathway. “In” and “Out” represent inner membrane-specific and outer membrane-specific lipoproteins, respectively. An ABC transporter, LolCDE, releases outer membrane-specific lipoproteins from the inner membrane, causing the formation of a complex between the released lipoproteins and the periplasmic molecular chaperone LolA. When this complex interacts with outer membrane receptor LolB, the lipoproteins are transferred from LolA to LolB and then localized to the outer membrane. The inner membrane retention signal Asp at position 2 inhibits the recognition of lipoproteins by LolCDE, thereby causing their retention in the inner membrane. Phosphatidylethanolamine plays an important role in the Lol avoidance function of Asp at position 2.

Citation: Tokuda H, Matsuyama S, Tanaka-Masuda K. 2007. Structure, Function, and Transport of Lipoproteins in , p 67-79. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alba, B. M., and, C. A. Gross. 2004. Regulation of the Escherichia coli sigma–dependent envelope stress response. Mol. Microbiol. 52:613619.
2. Booth, P. J.,, R. H. Templer,, W. Meijberg,, S. J. Allen,, A. R. Curran, and, M. Lorch., 2001. In vitro studies of membrane protein folding. Crit. Rev. Biochem. Mol. Biol. 36:501603.
3. Brokx, S. J.,, M. Ellison,, T. Locke,, D. Bottorff,, L. Frost, and, J. H. Weiner. 2004. Genome–wide analysis of lipoprotein expression in Escherichia coli MG1655. J. Bacteriol. 186:32543258.
4. Chalker, A. F.,, H. W. Minehart,, N. J. Hughes,, K. K. Koretke,, M. A. Lonetto,, K. K. Brinkman,, P. V. Warren,, A. Lupas,, M. J. Stanhope,, J. R. Brown, and, P. S. Hoffman. 2001. Systematic identification of selective essential genes in Heli–cobacter pylori by genome prioritization and allelic replacement mutagenesis.J. Bacteriol. 183:12591268.
5. Curnow, P.,, M. Lorch,, K. Charalambous, and, P. J. Booth. 2004. The reconstitution and activity of the small multidrug transporter EmrE is modulated by non–bilayer lipid composition.J. Mol. Biol. 343:213222.
6. Danese, P. N., and, T. J. Silhavy. 1997. The sigma(E) and the Cpx signal transduction systems control the synthesis of periplasmic protein–folding enzymes in Escherichia coli. Genes Dev. 11:11831193.
7. Danese, P. N.,, W. B. Snyder,, C. L. Cosma,, L. J. B. Davis, and, T. J. Silhavy. 1995. The Cpx two–component signal transduction pathway of Es–cherichia coli regulates transcription of the gene specifying the stress–inducible periplasmic protease, DegP. Genes Dev. 9:387398.
8. Doerrler, W. T.,, M. C. Reedy, and, C. R. Raetz. 2001. An Escherichia coli mutant defective in lipid export. J. Biol. Chem. 276:1146111464.
9. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sut–ton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidman, et al., 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580586.
10. Fukuda, A.,, S. Matsuyama,, T. Hara,, J. Nakayama,, H. Nagasawa, and, H. Tokuda. 2002. Amino–acylation of the N–terminal cysteine is essential for Lol–dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals.J. Biol. Chem. 277:4351243518.
11. Genevrois, S.,, L. Steeghs,, P. Roholl,, J.–J. Letes–son, and, P. van der Ley. 2003. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22:1780 1789.
12. Gennity, J. M., and, M. Inouye. 1991. The protein sequence responsible for lipoprotein membrane localization in Escherichia coli exhibits remarkable specificity. J. Biol. Chem. 266:1645816464.
13. Gruner, S., 1985. Intrinsic curvature hypothesis for biomembrane composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. USA 82:36653669.
14. Haake, D. A., 2000. Spirochaetal lipoproteins and pathogenesis. Microbiology 146(Pt 7):14911504.
15. Hara, T.,, S. Matsuyama, and, H. Tokuda. 2003. Mechanism underlying the inner membrane retention of E. coli lipoproteins caused by Lol avoidance signals. J. Biol. Chem. 278:4040840414.
16. Hayashi, S., and, H. C. Wu. 1990. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22:451471.
17. Higgins, C. F.,, I. D. Hiles,, G. P. Salmond,, D. R. Gill,, J. A. Downie,, I. J. Evans,, I. B. Holland,, L. Gray,, S. D. Buckel,, A. W. Bell, and, M. A. Hermodsen. 1986. A family of related ATP–binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448450.
18. Inukai, M.,, R. Enokita,, A. Torikata,, M. Nakahara,, S. Iwado, and, M. Arai. 1978. Globomycin, a new peptide antibiotic with spheroplast–forming activity. I. Taxonomy of producing organisms and fermentation.J. Antibiot. (Tokyo) 31:410420.
19. Juncker, A. S.,, H. Willenbrock,, von G. Heijne,, S. Brunak,, H. Nielsen, and, A. Krogh. 2003. Prediction of lipoprotein signal peptides in Gram–negative bacteria. Protein Sci. 12:16521662.
20. Linton, K. J., and, C. F. Higgins. 1998. The Es–cherichia coli ATP–binding cassette (ABC) proteins. Mol. Microbiol. 28:513.
21. Locher, K. P.,, A. T. Lee, and, D. C. Rees. 2002. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296:10911098.
22. Ma, D.,, D. N. Cook,, M. Alberti,, N. G. Pon,, H. Nikaido, and, J. E. Hearst. 1993. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli. J. Bacteriol. 175:62996313.
23. Masuda, K.,, S. Matsuyama, and, H. Tokuda. 2002. Elucidation of the function of lipoprotein–sorting signals that determine membrane localization. Proc. Natl. Acad. Sci. USA 99:73907395.
24. Matsuyama, S.,, T. Tajima,and, H. Tokuda. 1995. A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J. 14:33653372.
25. Matsuyama, S.,, N. Yokota, and, H. Tokuda. 1997. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)–dependent localization of lipoproteins to the outer membrane of Escherichia coli EMBO J. 16:69476955.
26. Mikhail, B.,, J. Sun,, H. R. Kaback, and, W. Dowhan. 1996. A phospholipid acts as a chaperone in assembly of a membrane transport protein.J. Biol. Chem. 271:1161511618.
27. Miyadai, H.,, K. Tanaka–Masuda,, S. Matsuyama, and, H. Tokuda. 2004. Effects of lipoprotein overproduction on the induction of DegP (HtrA) involved in the quality control of Escherichia coli periplasm. J. Biol. Chem. 279:3980739813.
28. Mizushima, S., 1987. Assembly of membrane proteins, p., 163185. In M. Inouye (ed.), Bacterial Outer Membranes as Model Systems. John Wiley & Sons, New York, N.Y.
29. Muhlradt, P. F., and, J. R. Golecki. 1975. Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bi–layer of Salmonella typhimurium. Eur.J. Biochem. 51:343352.
30. Narita, S.,, K. Kanamaru,, S. Matsuyama, and, H. Tokuda. 2003. A mutation in the membrane sub–unit of an ABC transporter LolCDE complex causing outer membrane localization of lipoproteins against their inner membrane–specific signals. Mol. Microbiol. 49:167177.
31. Narita, S.,, K. Tanaka,, S. Matsuyama, and, H. Tokuda. 2002. Disruption of lolCDE encoding an ATP–binding–cassette transporter is lethal for Es–cherichia coli and prevents the release of lipoproteins from the inner membrane. J. Bacteriol. 184:14171422.
32. Navarre, W.W.,, S. Daefler, and, O. Schneewind. 1996. Cell wall sorting of lipoproteins in Staphylo–coccus aureus. J. Bacteriol. 178:441446.
33. Onufryk, C.,, M. L. Crouch,, F. C. Fang, and, C. A. Gross. 2005. Characterization of six lipoproteins in the sigmaE regulon J. Bacteriol. 187:45524561.
34. Paulsen, I. T.,, M. K. Sliwinski, and, M. H. Saier, Jr., 1998. Microbial genome analyses: global comparisons of transport capabilities based on phylo–genies, bioenergetics and substrate specificities. J. Mol. Biol. 277:573592.
35. Pugsley, A. P., 1993. The complete general secretory pathway in Gram–negative bacteria. Microbiol. Rev. 57:50108.
36. Rietveld, A. G.,, J. A. Killian,, W. Dowhan, and, B. de Kruijff. 1993. Polymorphic regulation of membrane phospholipid composition in Escherichia coli. J. Biol. Chem. 268:1242712433.
37. Robichon, C.,, M. Bonhivers, and, A. P. Pugsley. 2003. An intramolecular disulphide bond reduces the efficacy of a lipoprotein plasma membrane sorting signal. Mol. Microbiol. 49:11451154.
38. Sankaran, K., and, H. C. Wu. 1994. Lipid modification of bacterial prolipoprotein. Transfer of diacyl–glyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269:1970119706.
39. Scragg, I. G.,, D. Kwiatkowski,, V. Vidal,, A. Reason,, T. Paxton,, M. Panico,, A. Dell, and, H. Morris. 2000. Structural characterization of the inflammatory moiety of a variable major lipoprotein of Borrelia recurrentis. J. Biol. Chem. 275:937941.
40. Seydel, A.,, P. Gounon, and, A. P. Pugsley. 1999. Testing the ‘+2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol. Microbiol. 34:810821.
41. Smith, P. C.,, N. Karpowich,, L. Millen,, J. E. Moody,, J. Rosen,, P. J. Thomas, and, J. F. Hunt. 2002. ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol. Cell. 10:139149.
42. Snyder, W. B.,, L. J. B. Davis,, P. N. Danese,, C. L. Cosma, and, T. J. Silhavy. 1995. Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J. Bacteriol. 177:42164223.
43. Tajima, T.,, N. Yokota,, S. Matsuyama, and, H. Tokuda. 1998. Genetic analyses of the in vivo function of LolA, a periplasmic chaperone involved in the outer membrane localization of Escherichia coli lipoproteins. FEBS Lett. 439:5154.
44. Takeda, K.,, H. Miyatake,, N. Yokota,, S. Mat–suyama,, H. Tokuda, and, K. Miki. 2003. Crystal structures of bacterial lipoprotein localization factors, LolA and LolB. EMBO J. 22:31993209.
45. Tanaka, K.,, S. Matsuyama, and, H. Tokuda. 2001. Deletion of lolB encoding an outer membrane lipoprotein is lethal for Escherichia coli and causes the accumulation of lipoprotein localization intermediates in the periplasm.J. Bacteriol. 183:65386542.
46. Taniguchi, N.,, S. Matsuyama, and, H. Tokuda. 2005. Mechanisms underlying energy–independent transfer of lipoproteins from LolA to LolB, which have similar unclosed β–barrel structures. J. Biol. Chem. 280:3448134488.
47. Terada, M.,, T. Kuroda,, S. Matsuyama, and, H. Tokuda. 2001. Lipoprotein sorting signals evaluated as the LolA–dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 276:4769047694.
48. Tjalsma, H.,, V. P. Kontinen,, Z. Pragai,, H. Wu,, R. Meima,, G. Venema,, S. Bron,, M. Sarvas, and, J. M. van Dijl. 1999. The role of lipoprotein processing by signal peptidase II in the Gram–positive eubacterium Bacillus subtilis. J. Biol. Chem. 274:16981707.
49. van der Does, C.,, J. Swaving,, van W. Klompen–burg, and, A. J. Driessen. 2000. Non–bilayer lipids stimulate the activity of the reconstituted bacterial protein translocase. J. Biol. Chem. 275:24722478.
50. von Heijne, G., 1996. Principles of membrane protein assembly and structure. Prog. Biophys. Mol. Biol. 66:113139.
51. Voulhoux, R.,, M. P. Bos,, J. Geurtsen,, M. Mols, and, J. Tommassen. 2003. Role of a highly conserved bacterial protein in outer membrane protein assembly. Science 299:262265.
52. Wada, R.,, S. Matsuyama, and, H. Tokuda. 2004. Targeted mutagenesis of five conserved tryptophan residues of LolB involved in membrane localization of Escherichia coli lipoproteins. Biochem. Biophys. Res. Commun. 323:10691074.
53. Wu, T.,, J. Malinverni,, N. Ruiz,, S. Kim,, T. J. Sil–havy, and, D. Kahne. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235245.
54. Yakushi, T.,, K. Masuda,, S. Narita,, S. Matsuyama, and, H. Tokuda. 2000. A new ABC transporter mediating the detachment of lipid–modified proteins from membranes. Nat. Cell Biol. 2:212218.
55. Yakushi, T.,, T. Tajima,, S. Matsuyama, and, H. Tokuda. 1997. Lethality of the covalent linkage between mislocalized major outer membrane lipo–protein and the peptidoglycan of Escherichia coli. J. Bacteriol. 179:28572862.
56. Yakushi, T.,, N. Yokota,, S. Matsuyama, and, H. Tokuda. 1998. LolA–dependent release of a lipid–modified protein from the inner membrane of Es–cherichia coli requires nucleotide triphosphate. J. Biol. Chem. 273:3257632581.
57. Yamaguchi, K.,, F. Yu, and, M. Inouye. 1988. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53:423432.
58. Yokota, N.,, T. Kuroda,, S. Matsuyama, and, H. Tokuda. 1999. Characterization of the LolA–LolB system as the general lipoprotein localization mechanism on Escherichia coli. J. Biol. Chem. 274:30995 30999.
59. Zhou, Z.,, K. A. White,, A. Polissi,, C. Georgopou–los, and, C. R. Raetz. 1998. Function of Es–cherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273:1246612475.


Generic image for table

Biochemically confirmed lipoproteins in

Citation: Tokuda H, Matsuyama S, Tanaka-Masuda K. 2007. Structure, Function, and Transport of Lipoproteins in , p 67-79. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error