Chapter 6 : Regulation and Function of the Envelope Stress Response Controlled by σ

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Regulation and Function of the Envelope Stress Response Controlled by σ, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap06-2.gif


This chapter discusses regulation and function of the σ envelope stress response. σ is regulated by its antisigma factor, RseA. The cytoplasmic fragment of RseA is degraded by ClpXP, an ATPdependent cytoplasmic protease, and active σ is released. This proteolytic cascade is activated by unassembled porins, which accumulate during appropriate envelope stress. Degradation of RseA by appropriate envelope stress releases σ that is active for transcription. Two issues remain to be resolved concerning the proposed mechanism of induction. First, the critical contact between DegS and the porin is made by the -1 position of the peptide, an amino acid that is not a critical determinant of induction ability. Second, whereas wild-type (wt) DegS is active only in the presence of added C-terminal peptides, DegSΔPDZ cleaves RseA on its own. The current validated σ regulon in K-12 is presented. It was recently shown that numerous proteins localized to the cytoplasmic membrane are controlled by σ , including two proteins essential for lipoprotein maturation: signal peptidase II and CutE. The porin signal allows the cell to use the σ response to respond to general envelope stress as well as specific problems in porin/LPS status. The core function of the regulon is to maintain porin and lipopolysaccharide (LPS) homeostasis so that the barrier function of the cell is intact. The signal transduction system and the transcriptional circuitry of the core regulon are set up to ensure that this function is performed efficiently.

Citation: Carol A. G, Virgil A. R, Irina L. G. 2007. Regulation and Function of the Envelope Stress Response Controlled by σ, p 107-121. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch6

Key Concept Ranking

Outer Membrane Proteins
Teichoic Acid Biosynthesis
Fatty Acid Biosynthesis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Regulon functions of the core and extended σ regulons. Stresses such as heat lead to the accumulation of unassembled OMPs in the periplasm; this leads to the sequential proteolysis of RseA, releasing free σ into the cytoplasm. σ then binds to RNA polymerase (E) and regulates the expression of target core and extended regulon members ( ). Core regulon members are highly conserved across 9 genomes and are primarily involved in the regulation of the σ response. σ upregulates functions required for the synthesis, assembly, and/or the insertion of both OMPs and LPS, as well as envelope-folding catalysts and chaperones. σ also upreg-ulates expression of itself; its negative regulator, RseA; the cytoplasmic proteases ClpX and Lon, thereby ensuring there is sufficient protease degradation of RseA-cyto; and σ. Note that ClpXP protease is also expressed from the σ regulon. σ downregulates OMP production from σ promoters, thereby reducing the accumulation of unassembled OMPs, which presumably limits the duration of the response. The extended regulon is less well conserved across related genomes and encodes many functions involved in pathogenesis.

Citation: Carol A. G, Virgil A. R, Irina L. G. 2007. Regulation and Function of the Envelope Stress Response Controlled by σ, p 107-121. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ades, S. E., 2004. Control of the alternative sigma factor sigmaE in Escherichia coli .Curr. Opin. Microbiol. 7:157162.
2. Ades, S. E.,, L. E. Connolly,, B. M. Alba, and, C. A. Gross. 1999. The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev. 13:24492461.
3. Akiyama, Y.,, K. Kanehara, and, K. Ito. 2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23:44344442.
4. Alba, B. M., and, C. A. Gross. 2004. Regulation of the Escherichia colisigma-dependent envelope stress response. Mol. Microbiol. 52:613619.
5. Alba, B. M.,, J. A. Leeds,, C. Onufryk,, C. Z. Lu, and, C. A. Gross. 2002. DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma(E)-dependent extracytoplasmic stress re-sponse .Genes Dev. 16 :21562168.
6. Alba, B. M.,, H. J. Zhong,, J. C. Pelayo, and, C. A. Gross. 2001. degS (hhoB) is an essential Es-cherichia coli gene whose indispensable function is to provide sigma (E) activity. Mol. Microbiol. 40:13231333.
7. Andrews, S. C., 1998. Iron storage in bacteria .Adv. Microb. Physiol. 40:281351.
8. Bang, I. S.,, J. G. Frye,, M. McClelland,, J. Velayud-han, and, F. C. Fang. 2005. Alternative sigma factor interactions in Salmonella: sigma and sigma promote antioxidant defences by enhancing sigma levels. Mol. Microbiol. 56:811823.
9. Bos, M. P.,, B. Tefsen,, J. Geurtsen, and, J. Tom-massen. 2004. Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface .Proc. Natl. Acad. Sci. USA 101:94179422.
10. Braun, M., and, T. J. Silhavy. 2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45:12891302.
11. Brown, M. S.,, J. Ye,, R. B. Rawson, and, J. L. Goldstein. 2000. Regulated intramembrane prote-olysis: a control mechanism conserved from bacteria to humans.Cell 100:391398.
12. Campbell, E. A.,, J. L. Tupy,, T. M. Gruber,, S. Wang,, M. M. Sharp,, C. A. Gross, and, S. A. Darst. 2003. Crystal structure of Escherichia coli sigmaE with the cytoplasmic domain of its anti-sigma RseA.Mol. Cell 11:10671078.
13. Carty, S. M.,, K. R. Sreekumar, and, C. R. Raetz. 1999. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J. Biol. Chem. 274:96779685.
14. Clausen, T.,, C. Southan, and, M. Ehrmann. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10:443455.
15. Collinet, B.,, H. Yuzawa,, T. Chen,, C. Herrera, and, D. Missiakas. 2000. RseB binding to the periplas-mic domain of RseA modulates the RseA:sigmaE interaction in the cytoplasm and the availability of sigma E. RNA polymerase. J. Biol. Chem. 275:3389833904.
16. Connolly, L.,, A. De Las Penas,, B. M. Alba, and, C. A. Gross. 1997. The response to extracyto-plasmic stress in Escherichia coli is controlled by partially overlapping pathways. Genes Dev. 11:20122021.
17. Cowan, S. W.,, R. M. Garavito,, J. N. Jansonius,, J. A. Jenkins,, R. Karlsson,, N. Konig,, E. F. Pai,, R. A. Pauptit,, P. J. Rizkallah,, J. P. Rosenbusch,, G. Rummel, and, T. Schirmer. 1995. The structure of OmpF porin in a tetragonal crystal form. Structure 3:10411050.
18. Craig, J. E.,, A. Nobbs, and, N. J. High. 2002. The extracytoplasmic sigma factor, final sigma(E), is required for intracellular survival of nontypeable Haemophilus influenzae in J774 macrophages. Infect. Immun. 70:708715.
19. Cronan, J. E., and, C. O. Rock. 1996. Biosynthesis of membrane lipids, p. 612636. In F. C. Neidhardt,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger(ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology vol., 1. ASM Press, Washington, D.C..
20. Crouch, M. L.,, L. A. Becker,, I. S. Bang,, H. Tan-abe,, A. J. Ouellette, and, F. C. Fang. 2005. The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimur-ium to anti-microbial peptides. Mol. Microbiol.56:789799.
21. Dartigalongue, C.,, D. Missiakas, and, S. Raina. 2001. Characterization of the Escherichia coli sigma E regulon.J. Biol. Chem. 276:2086620875.
22. de Cock, H.,, M. Pasveer,, J. Tommassen, and, E. Bouveret. 2001. Identification of phospholipids as new components that assist in the in vitro trimer-ization of a bacterial pore protein. Eur. J. Biochem. 268:865875.
23. De Cock, H.,, U. Schäfer,, M. Potgeter,, R. Demel,, M. Müller, and, J. Tommassen. 1999. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. Eur. J. Biochem. 259:96103.
24. De Las Penas, A.,, L. Connolly, and, C. A. Gross. 1997a. SigmaE is an essential sigma factor in Escherichia coli.J. Bacteriol. 179:68626864.
25. De Las Penas, A.,, L. Connolly, and, C. A. Gross. 1997b. The sigmaE-mediated response to extracy-toplasmic stress in Escherichia coli is transduced by RseA and RseB, two negative regulators of sigmaE. Mol. Microbiol. 24:373385.
26. Ehrmann, M., and, T. Clausen. 2004. Proteolysis as a regulatory mechanism. Annu. Rev. Genet. 38:709724.
27. El Ghachi, M.,, A. Bouhss,, D. Blanot, and, D. Mengin-Lecreulx. 2004. The bacA gene of Es-cherichia coli encodes an undecaprenyl pyrophos-phate phosphatase activity. J. Biol. Chem. 279:3010630113.
28. Erickson, J.W., and, C. A. Gross. 1989. Identification of the sigma E subunit of Escherichia coli RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. Genes Dev. 3:14621471.
29. Erickson, J. W.,, V. Vaughn,, W. A. Walter,, F. C. Neidhardt, and, C. A. Gross. 1987. Regulation of the promoters and transcripts of rpoH, the Esche-richia coli heat shock regulatory gene. Genes Dev. 1:419432.
30. Flynn, J. M.,, I. Levchenko,, R. T. Sauer, and, T. A. Baker. 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracyto-plasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev. 18:22922301.
31. Gentle, I. E.,, L. Burri, and, T. Lithgow. 2005. Molecular architecture and function of the Omp85 family of proteins. Mol. Microbiol. 58:12161225.
32. Grigorova, I. L.,, R. Chaba,, H. J. Zhong,, B. M. Alba,, V. Rhodius,, C. Herman, and, C. A. Gross. 2004. Fine-tuning of the Escherichia coli sigmaE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev. 18:26862697.
33. Gross, C.A., 1996. Function and regulation of the heat shock proteins, p. 13821399. In F. C. Neidhardt,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Maga-sanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, D.C.
34. Hengge-Aronis, R., 2002. Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373395, table of contents.
35. Humphreys, S.,, G. Rowley,, A. Stevenson,, W. J. Kenyon,, M. P. Spector, and, M. Roberts. 2003. Role of periplasmic peptidylprolyl isomerases in Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 71:53865388.
36. Humphreys, S.,, A. Stevenson,, A. Bacon,, A. B. Weinhardt, and, M. Roberts. 1999. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect. Immun. 67:15601568.
37. Kanehara, K.,, Y. Akiyama, and, K. Ito. 2001. Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli. Gene 281:7179.
38. Kanehara, K.,, K. Ito, and, Y. Akiyama. 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. Genes Dev. 16:21472155.
39. Kanehara, K.,, K. Ito, and, Y. Akiyama. 2003. YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J. 22:63896398.
40. Kenyon, W. J.,, D. G. Sayers,, S. Humphreys,, M. Roberts, and, M. P. Spector. 2002. The starvation-stress response of Salmonella enterica serovar Typhimurium requires sigma(E)-, but not CpxR-regulated extracytoplasmic functions. Microbiology 148(Pt 1):113–122.
41. Kenyon, W. J.,, S. M. Thomas,, E. Johnson,, M. J. Pallen, and, M. P. Spector. 2005. Shifts from glucose to certain secondary carbon-sources result in activation of the extracytoplasmic function sigma factor sigmaE in Salmonella enterica serovar Ty-phimurium. Microbiology 151(Pt 7):2373–2383.
42. Kloser, A.,, M. Laird,, M. Deng, and, R. Misra. 1998. Modulations in lipid A and phospholipid biosynthesis pathways influence outer membrane protein assembly in Escherichia coli K-12. Mol. Microbiol. 27:10031008.
43. Kovacikova, G., and, K. Skorupski. 2002. The alternative sigma factor sigma(E) plays an important role in intestinal survival and virulence in Vibrio cho-lerae. Infect. Immun. 70:53555362.
44. Lipinska, B.,, S. Sharma, and, C. Georgopoulos. 1988. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 16:1005310067.
45. Martin, D.W.,, M. J. Schurr,, H. Yu, and, V. Deretic. 1994. Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J. Bacteriol. 176:66886696.
46. Mecsas, J.,, P. E. Rouviere,, J. W. Erickson,, T. J. Donohue, and, C. A. Gross. 1993. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Genes Dev. 12B:26182628.
47. Missiakas, D.,, J. M. Betton, and, S. Raina. 1996. New components of protein folding in extracyto-plasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH .Mol. Microbiol. 21:871884.
48. Missiakas, D.,, M. P. Mayer,, M. Lemaire,, C. Geor-gopoulos, and, S. Raina. 1997. Modulation of the Escherichia coli sigmaE (RpoE) heat-shock transcription-factor activity by the RseA, RseB and RseC proteins. Mol. Microbiol. 24:355371.
49. Nikaido, H., 1996. Outer membrane, p. 2947. In F. C. Neidhardt,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, D.C.
50. Nikaido, H., 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593656.
51. Nonaka, G.,, M. Blankenschien,, C. Herman,, C. A. Gross, and, V. A. Rhodius. 2006. Regulon and promoter analysis of the E. coli heat-shock factor, σ32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20:17761789.
52. Onufryk, C.,, M. L. Crouch,, F. C. Fang, and, C. A. Gross. 2005. Characterization of six lipoproteins in the sigmaE regulon .J. Bacteriol. 187:45524561.
53. Pages, J. M.,, J. M. Bolla,, A. Bernadac, and, D. Fourel. 1990. Immunological approach of assembly and topology of OmpF, an outer membrane protein of Escherichia coli. Biochimie 72:169176.
54. Poole, L. B., 2005. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch. Biochem. Biophys. 433:240254.
55. Raetz, C. R., and, C. Whitfield. 2002. Lipopoly-saccharide endotoxins. Annu. Rev. Biochem. 71:635700.
56. Raetz, C. R. H., 1996. Structure and biosynthesis of lipid A in Escherichia coli, p. 10351063. In F. C. Neidhardt,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. ASM Press, Washington, D.C.
57. Raina, S.,, D. Missiakas, and, C. Georgopoulos. 1995. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 14:10431055.
58. Raivio, T. L., and, T. J. Silhavy. 2001. Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55:591624.
59. Redford, P.,, P. L. Roesch, and, R. A. Welch. 2003. DegS is necessary for virulence and is among extraintestinal Escherichia coli genes induced in murine peritonitis. Infect. Immun. 71:30883096.
60. Rezuchova, B.,, H. Miticka,, D. Homerova,, M. Roberts, and, J. Kormanec. 2003. New members of the Escherichia coli sigmaE regulon identified by a two-plasmid system. FEMS Micro-biol. Lett. 225:17.
61. Rhodius, V. A.,, W. C. Suh,, G. Nonaka,, J. West, and, C. A. Gross. 2006. Conserved and variable functions of the sigma(E) stress response in related genomes. PLoS Biol. 4:e24359.
62. Ried, G.,, I. Hindennach, and, U. Henning. 1990. Role of lipopolysaccharide in assembly of Es-cherichia coli outer membrane proteins OmpA, OmpC, and OmpF. J. Bacteriol. 172:60486053.
63. Rizzitello, A. E.,, J. R. Harper, and, T. J. Silhavy. 2001. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 183:67946800.
64. Rouviere, P. E.,, A. De Las Penas,, J. Mecsas,, C. Z. Lu,, K. E. Rudd, and, C. A. Gross. 1995. rpoE, the gene encoding the second heat-shock sigma factor, sigma E, in Escherichia coli. EMBO J. 14:10321042.
65. Rouviere, P. E., and, C. A. Gross. 1996. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins. Genes Dev. 10:31703182.
66. Tam, C., and, D. Missiakas. 2005. Changes in lipopolysaccharide structure induce the sigma(E)-dependent response of Escherichia coli. Mol. Microbiol. 55:14031412.
67. Testerman, T. L.,, A. Vazquez-Torres,, Y. Xu,, J. Jones-Carson,, S. J. Libby, and, F. C. Fang. 2002. The alternative sigma factor sigmaE controls an-tioxidant defences required for Salmonella virulence and stationary-phase survival. Mol. Microbiol. 43:771782.
68. Vorachek-Warren, M. K.,, S. M. Carty,, S. Lin,, R. J. Cotter, and, C. R. Raetz. 2002. An Escherichia coli mutant lacking the cold shock-induced palmi-toleoyltransferase of lipid A biosynthesis: absence of unsaturated acyl chains and antibiotic hyper-sensitivity at 12 degrees C. J. Biol. Chem. 277:1418614193.
69. Walsh, N. P.,, B. M. Alba,, B. Bose,, C. A. Gross, and, R. T. Sauer. 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:6171.
70. Wilken, C.,, K. Kitzing,, R. Kurzbauer,, M. Ehrmann, and, T. Clausen. 2004. Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117:483494.
71. Wu, T.,, J. Malinverni,, N. Ruiz,, S. Kim,, T. J. Silhavy, and, D. Kahne. 2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235245.
72. Yu, H.,, M. J. Schurr, and, V. Deretic. 1995. Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aerug-inosa.J. Bacteriol. 177:32593268.
73. Yura, T., and, K. Nakahigashi. 1999. Regulation of the heat-shock response. Curr. Opin. Microbiol. 2:153158.


Generic image for table

Functional classification of the σ regulon members in K-12

Citation: Carol A. G, Virgil A. R, Irina L. G. 2007. Regulation and Function of the Envelope Stress Response Controlled by σ, p 107-121. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch6
Generic image for table

Predicted core σ regulon members from

Citation: Carol A. G, Virgil A. R, Irina L. G. 2007. Regulation and Function of the Envelope Stress Response Controlled by σ, p 107-121. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error