Chapter 8 : Periplasmic Chaperones and Peptidyl-Prolyl Isomerases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Periplasmic Chaperones and Peptidyl-Prolyl Isomerases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap08-2.gif


The cellular functions of molecular chaperones include protecting newly synthesized polypeptides from misfolding or aggregation, and promoting disaggregation and refolding of stress-denaturated proteins. It was debated whether periplasmic chaperones might exist that could associate with newly exported polypeptides emerging at the translocation sites to assist their folding process, as cytoplasmic chaperones do with newly synthesized polypeptides emerging from the ribosomes. Many molecular chaperones, evolutionarily conserved from humans to bacteria, were initially identified because they are induced in response to stress conditions leading to the accumulation of intracellular nonnative proteins. Although not historically classified as molecular chaperones, enzymes that catalyze two potentially rate-limiting folding reactions, or folding catalysts, are abundant in the periplasm. Two different global searches for periplasmic chaperones suggested an important role of Skp in the folding pathway of outer membrane proteins. First, Skp was retained on an affinity column with Sepharose-bound OmpF, and second, by genetic screening, mutations in the gene were isolated based on their increased σactivity. Peptidyl-prolyl isomerases (PPIases) are ubiquitous and highly conserved enzymes that catalyze prolyl isomerization, an intrinsically slow and potentially rate-limiting reaction during in vitro protein refolding. In addition to protein disulfide isomerases and proteases, the periplasm contains at least five distinct protein-folding factors, including the nonessential molecular chaperone Skp, and four PPIases (Pipe, FepA, Sure, and Paid) that are individually, but not collectively, dispensable for viability in .

Citation: Jean-Michel B. 2007. Periplasmic Chaperones and Peptidyl-Prolyl Isomerases, p 141-149. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch8

Key Concept Ranking

Outer Membrane Proteins
Integral Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Alba, B. M., and, C. A. Gross. 2004. Regulation of the Escherichia coli σE-dependent envelope stress response. Mol. Microbiol. 52:613619.
2. Arie, J. -P.,, N. Sassoon, and, J.-M. Betton. 2001. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39:199210.
3. Behrens, S.,, R. Maier,, H. de Cock,, F. X. Schmid, and, C. A. Gross. 2001. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20: 285294.
4. Bitto, E., and, D. B. McKay. 2002. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10:14891498.
5. Bitto, E., and, D. B. McKay. 2003. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278:4931649322.
6. Bitto, E., and, D. B. McKay. 2004. Binding of phage-display selected peptides to the periplasmic chaperone protein SurA mimics binding of unfolded outer membrane proteins. FEBS Lett. 568:9498.
7. Bothmann, H., and, A. Plückthun. 1998. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotech-nol. 16:376380.
8. Bothmann, H., and, A. Plückthun. 2000. The periplasmic Escherichia coli peptidyl-prolyl cis/trans isomerase FkpA. I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275:1710017105.
9. Bukau, B., 1999. Molecular Chaperones and Folding Catalysts: Regulation, Cellular Function and Mechanisms. Harwood Academic Publishers, Amsterdam, The Netherlands.
10. Bulieris, P. V.,, S. Behrens,, O. Holst, and, J. H. Kleinschmidt. 2003. Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide.J. Biol. Chem. 278:90929099.
11. Chen, J.,, J. -L. Song,, S. Zhang,, Y. Wang,, D. -F. Cui, and, C. C. Wang. 1999. Chaperone activity of DsbC.J. Biol. Chem. 274:1960119605.
12. Chen, R., and, U. Henning. 1996. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19:12871294.
13. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. S. Pinkner,, S. J. Hultgren, and, G. Waksman. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285:10611066.
14. Clubb, R. T.,, S. B. Ferguson,, C. T. Walsh, and, G. Wagner. 1994. Three-dimensional solution structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33:27612772.
15. Danese, P. N., and, T. J. Silhavy. 1998. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu. Rev. Genet. 32:5994.
16. Dartigalongue, C., and, S. Raina. 1998. A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17:39683980.
17. Duguay, A. R., and, T. J. Silhavy. 2004. Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694:121134.
18. Eckert, B.,, A. Martin,, J. Balbach, and, F. X. Schmid. 2005. Prolyl isomerization as a molecular timer in phage infection. Nat. Struct. Mol. Biol. 12:619623.
19. Ellis, R. J., and, F. -U. Hartl. 1999. Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol. 9:102110.
20. Ferbitz, L.,, T. Maier,, H. Patzelt,, B. Bukau,, E. Deuerling, and, N. Ban. 2004. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Nature 431:590596.
21. Fischer, G., and, T. Aumuller. 2003. Regulation of peptide bond cis/trans isomerization by enzyme catalysis and its implication in physiological processes. Rev. Physiol. Biochem. Pharmacol. 148:105150.
22. Fischer, G.,, H. Bang, and, C. Mech. 1984. Determination of enzymatic catalysis for the cis-trans iso-merization of peptide binding in proline-containing peptides. Biomed. Biochim. Acta 43:11011111.
23. Harms, N.,, G. Koningstein,, W. Dontje,, M. Müller,, B. Oudega,, J. Luirink, and, H. de Cock. 2001. The early interaction of the outer membrane protein PhoE with the periplasmic chaperone Skp occurs at the cytoplasmic membrane.J. Biol. Chem. 276:1880418811.
24. Hennecke, G.,, J. Nolte,, R. Volkmer-Engert,, J. Schneider-Mergener, and, S. Behrens. 2005. The periplasmic chaperone SurA exploits two features characteristics of integral outer membrane proteins for selective substrate recognition. J. Biol. Chem. 280:2354023548.
25. Holk, A., and, K. Kleppe. 1988. Cloning and sequencing of the gene for the DNA-binding 17K protein of Escherichia coli. Gene 67:117124.
26. Horne, S. M., and, K. D.Young. 1995 Escherichia coli and other species of the Enterobacteriaceae encode a protein similar to the Mip-like FK506-binding protein. Arch. Microbiol. 163:357365.
27. Kleerebezem, M.,, M. Heutink, and, J. Tom-massen. 1995. Characterization of an Escherichia coli rotA mutant, affected in periplasmic peptidy-prolyl cis/trans isomerase.Mol. Microbiol. 18:313320.
28. Korndorfer, I. P.,, M. K. Dommel, and, A. Skerra. 2004. Structure of the periplasmic chaperone Skp suggests functional similarity with cytosolic chaper-ones despite differing architecture. Nat. Struct. Mol. Biol. 11:10151020.
29. Lazar, S. W., and, R. Kolter., 1996. SurA assists the folding of Escherichia coli outer membrane protein. J. Bacteriol. 178:17701773.
30. Liou, Y.-C.,, A. Sun,, A. Ryo,, X. Z. Zhou,, Z.-X. Yu,, H.-K. Huang,, T. Uchida,, R. Bronson,, G. Bing,, X. Li,, T. Hunter, and, K. P. Lu. 2003. Role of prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424:556561.
31. Liu, J., and, C. T. Walsh. 1990. Peptidyl-prolyl cis-trans isomerase from Escherichia coli: a periplasmic ho-molog of cyclophilin that is not inhibited by cy-closporin A. Proc. Natl. Acad. Sci. USA 87:40284032.
32. Liu, Y.,, X. Fu,, J. Shen,, H. Zhang,, H. W., and Z. Chang. 2004. Periplasmic proteins of Escherichia coli are highly resistant to aggregation: reappraisal for roles of molecular chaperones in periplasm. Biochem. Biophys. Res. Commun. 316:795801.
33. Matsuzaki, M.,, Y. Kiso,, I. Yamamoto, and, T. Satoh. 1998. Isolation of a periplasmic molecular chaperone-like protein of Rhodobacter sphaeroides f. sp. denitrificans that is homologous to the dipeptide transport protein DppA of Escherichia coli. J. Bacteriol. 180:27182722.
34. McCarthy, A. A.,, P. W. Haebel,, A. Torronen,, V. Rybin,, E. N. Baker, and, P. Metcalf. 2000. Crystal structure of the protein disulfide bond iso-merase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7:196199.
35. Miot, M., and, J. -M. Betton. 2004. Protein quality control in the bacterial periplasm. Microb. Cell Fact. 3:4.
36. Missiakas, D.,, J. -M. Betton, and, S. Raina. 1996. New components of protein folding in extracyto-plasmic compartments ofEscherichia coli SurA, FkpA and Skp/OmpH Mol. Microbiol. 21:871884.
37. Mogensen, J. E., and, D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57:326346.
38. Morimoto, R. I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12:37883896.
39. Pogliano, J.,, A. S. Lynch,, D. Belin,, E. C. C. Lin, and, J. Beckwith. 1997. Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system.Genes Dev. 11:11691182.
40. Ramm, K., and, A. Plückthun. 2000. The periplas-mic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA. II. Isomerase-independent chaperone activity in vitro.J. Biol. Chem. 275:1710617113.
41. Ramm, K., and, A. Plückthun. 2001. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E. coli peptidyl-prolyl isomerase FkpA. J. Mol. Biol. 310: 485498.
42. Ranson, N. A.,, H. E. White, and, H. R. Saibil. 1998. Chaperonins. Biochem. J. 333:233242.
43. Richarme, G., and, T. D. Caldas. 1997. Chaperone properties of the bacterial periplasmic substrate-binding proteins .J. Biol. Chem. 272:1560715612.
44. Rizzitello, A. E.,, J. R. Harper, and, T. J. Silhavy. 2001. Genetic evidence for parallel pathways of chaperone activity in the periplasm of Escherichia coli. J. Bacteriol. 183:67946800.
45. Rouviere, P. E., and, C. A. Gross. 1996. SurA, a periplasmic protein with peptidyl-prolyl isomerase activity, participates in the assembly of outer membrane porins.Genes Dev. 10:31703182.
46. Sauer, F. G.,, K. Futterer,, J. S. Pinkner,, K. W. Dodson,, S. J. Hultgren, and, G. Waksman. 1999. Structural basis of chaperone function and pilus biogenesis.Science 285:10581061.
47. Sauer, F. G.,, J. S. Pinkner,, G. Waksman, and, S. J. Hultgren. 2002. Chaperone priming of pilus sub-units facilitates a topological transition that drives fiber formation. Cell 111:543551.
48. Saul, F. A.,, J.-P. Arie,, B. Vulliez-le Normand,, R. Kahn,, J.-M. Betton, and, G. A. Bentley. 2004. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335:595608.
49. Saul, F. A.,, M. Mourez,, B.Vulliez-Le Normand,, N. Sassoon,, G. A. Bentley, and, J.-M. Betton. 2003. Crystal structure of a defective folding protein. Protein Sci. 12:577585.
50. Schäfer, U.,, K. Beck, and, M. Müller. 1999. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274:2456724574.
51. Schmid, F. X., 2001. Prolyl isomerases. Adv. Protein Chem. 59:243282.
52. Scholz, C.,, P. Schaarschmidt,, A. M. Engel,, H. Andres,, U. Schmitt,, E. Faatz,, J. Balbach, and, F. X. Schmid. 2005. Functional solubilization of aggregation-prone HIV envelope proteins by co-valent fusion with chaperone modules. J. Mol. Biol. 345:12291241.
53. Schulz, G. E., 2003. Transmembrane β-barrel proteins. Adv. Protein Chem. 63:4770.
54. Shao, F.,, M. W. Bader,, U. Jakob, and, J. C. A. Bardwell. 2000. DsbG, a protein disulfide isomerase with chaperone activity. J. Biol. Chem. 275:1334913352.
55. Siegert, R.,, M. R. Leroux,, C. Scheufler,, F.-U. Hartl, and, I. Moarefi. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621632.
56. Stirling, P. C.,, V. F. Lundin, and, M. R. Leroux. 2003. Getting a grip on non-native proteins. EMBO Rep. 4:565570.
57. Thome, B. M., and, M. Müller. 1991. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export. Mol. Microbiol. 5:28152821.
58. Tormo, A.,, M. Almiron, and, R. Kolter. 1990. surA, an Escherichia coli gene essential for survival in stationary phase. J. Bacteriol. 172:43394347.
59. van den Berg, B.,, W. M. Clemons,Jr.,, I. Collinson,, Y. Modis,, E. Hartmann,, S. C. Harrison, and, T. A. Rapoport. 2004. X-ray structure of a protein-conducting channel. Nature 427:3644.
60. Vetsch, M.,, C. Puorger,, T. Spirig,, U. Grauschopf,, E. U. Weber-Ban, and, R. Glockshuber. 2004. Pilus chaperones represent a new type of protein-folding catalyst. Nature 431:329332.
61. Walton, T. A., and, M. C. Sousa. 2004. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15:367374.
62. Wulfing, C., and, A. Plückthun. 1994. Protein folding in the periplasm of Escherichia coli. Mol. Micro-biol. 12:685692.
63. Young, J. C.,, V. R. Agashe,, K. Siegers, and, F.-U. Hartl. 2004. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5:781791.
64. Zhang, Z.,, L.-P. Song,, M. Fang,, F. Wang,, D. He,, R. Zhao,, J. Liu,, Z.-Y. Zhou,, C.-C. Yin,, Q. Lin, and, H.-L. Huang. 2003. Production of soluble and functional engineered antibodies in Es-cherichia coli improved by FkpA. Biotechniques 35: 10321042.
65. Zhao, Z.,, Y. Peng,, S.-F. Hao,, Z.-H. Zeng, and, C. C. Wang. 2003. Dimerization by domain hybridization bestows chaperone and isomerase activities. J. Biol. Chem. 278:4329243298.


Generic image for table

Periplasmic chaperones and peptidyl-prolyl isomerases

Citation: Jean-Michel B. 2007. Periplasmic Chaperones and Peptidyl-Prolyl Isomerases, p 141-149. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error