1887

Chapter 13 : Electron Transport Activities in the Periplasm

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Electron Transport Activities in the Periplasm, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap13-2.gif

Abstract:

This chapter provides an overview of the main periplasmic oxidation and reduction reactions alongside some consideration of how the assembly of electron transfer proteins is achieved. NapC is normally one of the proteins that is coded for within the operon, which includes genes for the subunits, NapA and NapB, of a periplasmic nitrate reductase. There are a number of possibilities as to why many oxidation reduction reactions are catalyzed in their periplasm. First, periplasmic handling avoids the need to provide transport systems for import of a substrate and export of a product. This leads to a second consideration, which is the exclusion of potentially toxic chemical species from the cytoplasm. A third possible reason is that the energetics of the oxidation/reduction reaction is only compatible with electron delivery to or from the electron transfer chain at the level of the c-type cytochromes. This chapter generalizes the electron transport system of a bacterium in terms of a quinone and/or a c-type cytochrome entry/exit point to the electron transfer chain. The chapter has sought to provide some general principles concerning the nature of periplasmic electron transfer pathways and the assembly of the individual proteins. Globular proteins, with membrane anchors, do function on the external surface of the membrane in some gram-positive organisms and thus permit processes such as denitrification that are nevertheless more commonly associated with gram-negative organisms.

Citation: Ferguson S. 2007. Electron Transport Activities in the Periplasm, p 235-246. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch13

Key Concept Ranking

Electron Transport System
0.44542655
Outer Membrane Proteins
0.44500202
0.44542655
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815806.ch13
1. Appia-Ayone, C., and, B. C. Berks. 2002. SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW Biochem. Biophys. Res. Commun. 296:737741.
2. Bardischewsky, F.,, J. Fischer,, B. Holler, and, C. Friedrich. 2006. SoxV transfers electrons to the periplasm of Paracoccus pantotrophus–an essential reaction for chemotrophic sulphur oxidation. Microbiology 152:465472.
3. Bender, K. S.,, C. Shang,, R. Charkraborty,, S. M. Belchik,, J. D. Coates, and, L. A. Achenbach. 2005. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 187:50905096.
4. Brass, J. M.,, C. F. Higgins,, M. Folley,, P. A. Rugman,, J. Birmingham, and, P. B. Garland. 1986. Lateral diffusion of proteins in the periplasm of Escherichia coli. J. Bacteriol. 165:787794.
5. Cross, R.,, J. Aish,, S. J. Paston,, R. K. Poole, and, J. W. B. Moir. 2000. Cytochrome c from Rhodobacter capsulatus confers increased resistance to nitric oxide. J. Bacteriol. 182:14421447.
6. Daldal, F.,, M. Deshmukh, and, R. C. Prince. 2003. Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. Photosynth. Res. 76:127134.
7. Daldal, F.,, S. Mandaci,, C. Winterstein,, H. Myllykallio,, K. Duyck, and, D. Zannoni. 2001. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides. J. Bacteriol. 183:20132024.
8. Feissner, R. E.,, C. S. Beckett,, J. A. Loughman, and, R. G. Kranz. 2005. Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis. J. Bacteriol. 187:39413949.
9. Ferguson, S. J., 1988. Periplasmic electron transport reactions, p. 151182. In C. Anthony (ed.), Bacterial Energy Transduction. Academic Press, San Diego, Calif.
10. Ferguson, S. J., 1990. Periplasm underestimated. Trends Biochem. Sci. 15:377.
11. Ferguson, S. J., 1991. The periplasm, p. 311339. In S. Mohan,, C. Dow, and, J. A. Cole (ed.), Prokaryotic Structure and Function: a New Perspective. SGM Symposium 47, Cambridge University Press, Cambridge, United Kingdom.
12. Goodwin, P. M., and, C. Anthony. 1995. The biosynthesis of periplasmic electron-transport proteins in methylotrophic bacteria. Physiology and genetics of PQQ and PQQ-containing enzymes. Microbiology 141:10511064.
13. Goodwin, P. M., and, C. Anthony. 1998. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv. Microbial. Physiol. 40:180.
14. Graham, L. L.,, J. J. Beveridge, and, N. Nanninga. 1991. The periplasmic space and the concept of the periplasm. Trends Biochem. Sci. 16:328329.
15. Lloyd, J. R.,, E. L. Blunt-Harris, and, D. R. Lovley. 1999. The periplasmic 9.6 kilodalton c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(IIII)J. Bacteriol. 181:76477649.
16. McEwan, A. G.,, J. P. Ridge,, C. A. McDevitt, and, P. Hugenholtz. 2002. The DMSO reductase family of microbial molybdenum enzymes: molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol. J. 19:321.
17. Mehta, T.,, M. V. Coppi,, S. E. Childers, and, D. R. Lovley. 2005. Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl. Environ. Microbiol. 71:86348641.
18. Merchante, R.,, H. M. Pooley, and, D. Karamata. 1995. A periplasm in Bacillus subtilis. J. Bacteriol. 177:61766183.
19. Mowatt, C. G., and, S. K. Chapman. 2005. Multiheme cytochromes–new structures, new chemistry? Dalton Trans. 2005:33813389.
20. Murakami, S.,, R. Nakashima,, E. Yamashita, and, A. Yamaguchi. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419: 587593.
21. Myers, J. D., and, D. J. Kelly. 2005. A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology 151:233242.
22. Nicholls, D. G., and, S. J. Ferguson. 2002. Bioenergetics 3. Academic Press, San Diego, Calif.
23. Pauleta, S. R.,, A. Cooper,, M. Nutley,, N. Errington,, S. Harding,, F. Guerlesquin,, C. F. Godhew,, I. Moura,, J. J. G. Moura, and, G. W. Pettigrew. 2004. A copper protein and a cytochrome bind at the same site on bacterial cytochrome c peroxidase. Biochemistry 43:1456614576.
24. Pearson, I. V.,, M. D. Page,, R. J. M. van Spanning, and, S. J. Ferguson. 2003. A mutant of Paracoccus denitrificans with disrupted genes coding for cytochrome c550 and pseudoazurin establishes these two proteins as the in vivo electron donors to cytochrome cd1 nitrite reductase. J. Bacteriol. 185:63086315.
25. Pittman, M. S., and, D. J. Kelly. 2005. Electron transport through nitrate and nitrite reductases in Campylobacter jejuni. Biochem. Soc. Trans. 33:190192.
26. Richardson, D. J., 2000. Bacterial respiration: a flexible process for a changing environment. Microbiology 146:551571.
27. Roldan, M. D.,, H. J. Sears,, M. P. Cheesman,, S. J. Ferguson,, A. J. Thomson,, B. C. Berks, and, D. J. Richardson. 1998. Spectroscopic characterisation of a novel multiheme c-type cytochrome widely implicated in bacterial electron transport. J. Biol. Chem. 273:2898528990.
28. Schoepp-Cothenet, B.,, M. Schults,, F. Baymann,, M. Brugna,, W. Nitschke,, H. Myllykallio, and, C. Schmidt. 2001. The membrane-extrinsic domain of cytochrome b558/566 from the archaeon Sulfolobus acidocaldarius performs pivoting movements with respect to the membrane surface. FEBS Lett. 487:372376.
29. Simon, J.,, M. Sanger,, S. C. Schunster, and, R. Gross. 2003. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol. Microbiol. 49:6979.
30. Stevens, J. M.,, O. Daltrop,, J. W. A. Allen, and, S. J. Ferguson. 2004. Cytochrome c biogenesis: chemical and biological enigmas. Acc. Chem. Res. 37:9991007.
31. Toyama, H.,, F. S. Matthews,, O. Adachi, and, K. Matsushita. 2004. Quinohemoprotein alcohol dehydrogenases: structure, function and physiology. Arch. Biochem. Biophys. 428:1021.
32. Vanwielink, J. E., and, J. A. Duine. 1990. How big is the periplasmic space? Trends Biochem. Sci. 15:136137.
33. Williams, P. A.,, V. Fulop,, Y. C. Leung,, C. Chan,, J. W. B. Moir,, G. Howlett,, S. J. Ferguson,, S. E. Radford, and, J. Hajdu. 1995. Pseudospecific docking surfaces on electron-transfer proteins as illustrated by pseudoazurin, cytochrome c550 and cytochrome cd1 nitrite reductase. Nat. Struct. Biol. 2:975982.
34. Wolterink, A. F. W. M.,, E. Schiltz,, P. L. Hagerdoorn,, W. R. Hagen,, S. W. M. Kengen, and, A. J. M. Stams. 2003. Characterization of the chlorate reductase from Pseudomonas chloritidismutans. J. Bacteriol. 185:32103213.
35. Yanyushin, M. F.,, M. C. del Rosario,, D. C. Brune, and, R. E. Blankenship. 2005. New class of bacterial membrane oxidoreductases. Biochemistry 44: 1003710045.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error