1887

Chapter 18 : Antimicrobial and Stress Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Antimicrobial and Stress Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815806/9781555813987_Chap18-2.gif

Abstract:

This chapter highlights the current literature vis-à-vis periplasmic mechanisms of antimicrobial and stress resistance and periplasmic constituents of signaling pathways that influence expression of resistance (periplasmic and other) determinants. An unrelated periplasmic heavy metal (Zn, Cu, Co, Ni)-binding protein, CzcE, is also encoded by the locus in , although it appears not to function in CzcCBA-mediated heavy metal efflux, its loss in mutant strains having no impact on resistance. A variety of mutant and gene-splicing studies have confirmed that the periplasmic domains of the CM-spanning resistance-nodulation-division (RND) components of tripartite RND-membrane fusion protein (MFP)-OM factor (OMF) pumps are responsible for substrate recognition. The observation that the Cu sensitivity of CopA ATPase mutants is not ameliorated by the presence of CusCFBA argues that this RND-type efflux system is unable to replace CopA in exporting Cu from the cytosol, its efflux activity apparently restricted to periplasmic Cu. Bacteria sense their immediate environments and trigger appropriate responses through the up- or down-regulation of specific genes and/or their products. Many of the determinants of heavy metal resistance, including those involved in efflux and metal trafficking/detoxification, are metal inducible and this is mediated by two-component regulatory systems responsive to the metal substrates of these resistance determinants. Finally, the plethora of periplasmic enzymes for protection against ROS emphasizes the significance of environmental oxidative stress in the life of gram-negative bacteria, and while these are promoted as virulence determinants, it is far from clear that this is their only function.

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18

Key Concept Ranking

Bacterial Proteins
0.66855496
Gram-Negative Bacteria
0.4572413
0.66855496
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of periplasm-spanning gram-negative efflux systems that accommodate agents with antimicrobial activity. Pumps are highlighted either as representative of the different families of such efflux systems known to operate in gram-negative bacteria or to emphasize the substrates accommodated by these pumps. The figure is not intended to suggest that substrates are exported from the cytoplasm. MD, multiple drugs; AH, aromatic hydrocarbons (i.e., solvents);PHY, phytolectins;HM, heavy metals;ML, macrolides;OM, outer membrane; PP, periplasm; CM, cytoplasmic membrane; ????, the OMF component has yet to be identified.

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Periplasmic metal trafficking and detoxification. (A) MerP binds Hg in the periplasm and delivers it to CM transporter MerT, which delivers it to the MerA mercury reductase in the cytoplasm. Reduction to Hg renders Hg nontoxic and volatile. (B) PcoABCDE functions in the detoxification of periplasmic Cu, absolutely dependent on PcoA, a multicopper oxidase that likely oxidizes toxic Cu to less toxic Cu. PcoB is an OM protein of unknown function that may be involved in the delivery of Cu to PcoA or export of Cu across the OM. PcoE is a periplasmic Cu-binding protein that likely shuttles Cu to PcoA. PcoCD functions in the binding of Cu in the periplasm and its subsequent transport across the CM where it may be delivered to apo-PcoA in the cytoplasm, prior to its export to the periplasm. (C) CueO is a periplasmic multicopper oxidase with Cu oxidase activity that functions to oxidize Cu to Cu. OM, outer membrane; PP, periplasm; CM, cytoplasmic membrane; CY, cytosol.

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulation of resistance/stress determinants through signal recognition in the periplasm (PP) and transduction across the cytoplasmic membrane (CM). (A) CusSR as a representative two-component regulatory system that mediates the periplasmic Cu inducibility of the CusCBA/F efflux system. The CM-spanning histidine kinase, CusS, senses Cu in the periplasm and autophosphorylates a cytoplasmic domain before phosphorylating the response regulator CusR, which in turn activates gene expression. (B) AlgU-MucAB as a representative ECF sigma factor (AlgU) controlled by a CM-spanning anti-sigma factor (MucA). Periplasmic MucB interacts with and is believed to control the activity of MucA in response to certain periplasmic stress signals. AlgU sequestration (physically and functionally) by MucA is thus alleviated in response to periplasmic stress, permitting AlgU recruitment of RNA polymerase apoenzyme and subsequent transcription of target (i.e., stress response) genes. It is not clear, however, that this requires physical dissociation of AlgU from MucA.

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815806.ch18
1. Adaikkalam, V., and, S. Swarup., 2005. Characterization of copABCD operon from a copper-sensitive Pseudomonas putida strain. Can. J. Microbiol. 51: 209216.
2. Aires, J. R., and, H. Nikaido., 2005. Aminoglyco-sides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli.J. Bacteriol. 187:19231929.
3. Akama, H.,, M. Kanemaki,, M. Yoshimura,, T. Tsukihara,, T. Kashiwagi,, H. Yoneyama,, S. I. Narita,, A. Nakagawa, and, T. Nakae., 2004b. Crystal structure of the drug-discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end. J. Biol. Chem. 17:5281652819.
4. Akama, H.,, T. Matsuura,, S. Kashiwagi,, H. Yoneyama,, S. Narita,, T. Tsukihara,, A. Nakagawa, and, T. Nakae., 2004a. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa.J. Biol. Chem. 279: 2593925942.
5. Allocati, N.,, B. Favaloro,, M. Masulli,, M. F. Alexeyev, and, C. Di Ilio., 2003. Proteus mirabilis glutathione S-transferase B1–1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem.J. 373:305311.
6. Amemura-Maekawa, J.,, S. Mishima-Abe,, F. Kura,, T. Takahashi, and, H. Watanabe., 1999. Identification of a novel periplasmic catalase-peroxidase KatA of Legionella pneumophila. FEMS Microbiol. Lett. 176:339344.
7. Ammendola, S.,, M. Ajello,, P. Pasquali,, J. S. Kroll,, P. R. Langford,, G. Rotilio,, P. Valenti, and, A. Battistoni., 2005. Differential contribution of sodCl and sodC2 to intracellular survival and pathogenicity of Salmonella enterica serovar Choleraesuis. Microb. Infect. 7:698707.
8. Bandyopadhyay, P.,, B. Byrne,, Y. Chan,, M. S. Swanson, and, H. M. Steinman., 2003. Legionella pneumophila catalase-peroxidases are required for proper trafficking and growth in primary macrophages. Infect. Immun. 71:45264535.
9. Barkay, T.,, S. M. Miller, and, A. O. Summers., 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27:355384.
10. Barnes, A. C.,, M. C. Balebona,, M. T. Horne, and, A. E. Ellis., 1999a. Superoxide dismutase and catalase in Photobacterium damselae subsp. piscicida and their roles in resistance to reactive oxygen species. Microbiology 145:483494.
11. Barnes, A. C.,, T. J. Bowden,, M. T. Horne, and, A. E. Ellis., 1999b. Peroxide-inducible catalase in Aeromonas salmonicida subsp. salmonicida protects against exogenous hydrogen peroxide and killing by activated rainbow trout, Oncorhynchus mykiss L., macrophages. Microb. Pathog. 26:149158.
12. Battistoni, A., 2003. Role of prokaryotic Cu, Zn superoxide dismutase in pathogenesis. Biochem. Soc. Trans. 31:13261329.
13. Bijlsma, J. J., and, E. A. Groisman., 2003. Making informed decisions:regulatory interactions between two-component systems. Trends Microbiol. 11:359366.
14. Borges-Walmsley, M. I.,, D. Du,, K. S. McKeegan,, G. J. Sharples, and, A. R. Walmsley., 2005.VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA.J. Mol. Biol. 349:387400.
15. Brown, S. M.,, M. L. Howell,, M. L.V asil,, A. J. Anderson, and, D. J. Hassett., 1995. Cloning and characterization of the katB gene of Pseudomonas aeruginosa encoding a hydrogen peroxide-inducible catalase: purification of KatB, cellular localization, and demonstration that it is essential for optimal resistance to hydrogen peroxide.J. Bacteriol. 177:65366544.
16. Brunder, W.,, H. Schmidt, and, H. Karch., 1996. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142:33053315.
17. Canovas, D.,, I. Cases, and, V. de Lorenzo., 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5:12421256.
18. Cha, M. K.,, H. K. Kim, and, I. H. Kim., 1996. Mutation and mutagenesis of thiol peroxidase of Escherichia coli and a new type of thiol peroxidase family.J. Bacteriol. 178:56105614.
19. Cha, M. K.,, W. C. Kim,, C. J. Lim,, K. Kim, and, I. H. Kim., 2004. Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279:87698778.
20. Chuanchuen, R.,, R. R. Karkhoff-Schweizer, and, H. P. Schweizer., 2003. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am.J. Infect. Control 31:124127.
21. Cooksey, D. A., 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol. Rev. 14:381386.
22. Crouch, M. L.,, L. A. Becker,, I. S. Bang,, H. Tanabe,, A. J. Ouellette, and, F. C. Fang., 2005. The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol. Microbiol. 56:789799.
23. Deckers, D.,, B. Masschalck,, A. Aertsen,, L. Callewaert,, C. G.V an Tiggelen,, M. Atanassova, and, C. W. Michiels., 2004. Periplasmic lysozyme inhibitor contributes to lysozyme resistance in Escherichia coli. Cell. Mol. Life Sci. 61:12291237.
24. Desideri, A., and, M. Falconi., 2003. Prokaryotic Cu, Zn superoxide dismutases. Biochem. Soc. Trans. 31:13221325.
25. Duguay, A. R., and, T. J. Silhavy., 2004. Quality control in the bacterial periplasm. Biochim. Biophys. Acta 1694:121134.
26. Egler, M.,, C. Grosse,, G. Grass, and, D. H. Nies., 2005. Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli.J. Bacteriol. 187:22972307.
27. Elkins, C. A., and, H. Nikaido., 2002. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops.J. Bacteriol. 184:64906498.
28. Elkins, C. A., and, H. Nikaido, 2003. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump.J. Bacteriol. 185:53495356.
29. Eswaran, J.,, E. Koronakis,, M. K. Higgins,, C. Hughes, and, V. Koronakis., 2004.Three’s company: component structures bring a closer view of tripartite drug efflux pumps. Curr. Opin. Struct. Biol 14: 741747.
30. Fenner, B. J.,, R. P. Tiwari,, W. G. Reeve,, M. J. Dilworth, and, A. R. Glenn., 2004. Sinorhizobium medicae genes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol. Lett. 236:2131
31. Fernandes, P.,, B. S. Ferreira, and, J. M. Cabral., 2003. Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. Int. J. Antimicrob. Agents 22:211216.
32. Fisher, J. F.,, S. O. Meroueh, and, S. Mobashery., 2005. Bacterial resistance to [3-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 105: 395424.
33. Fournier, M.,, Z. Dermoun,, M. C. Durand, and, A. Dolla., 2004. A new function of the Desulfovibrio vulgaris Hildenborough [Fe] hydrogenase in the protection against oxidative stress. J. Biol. Chem. 279:17871793.
34. Fournier, M.,, Y. Zhang,, J. D. Wildschut,, A. Dolla,, J. K. Voordouw,, D. C. Schriemer, and, G. Voordouw., 2003. Function of oxygen resistance proteins in the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 185:7179.
35. Gee, J. M.,, M. E. Kovach,, V. K. Grippe,, S. Hagius,, J. V. Walker,, P. H. Elzer, and, R. M. Roop., 2004. Role of catalase in the virulence of Brucella melitensis in pregnant goats. Vet. Microbiol. 102:111115.
36. Gee, J. M.,, M. W. Valderas,, M. E. Kovach,, V. K. Grippe,, G. T. Robertson,, W. L. Ng,, J. M. Richardson,, M. E. Winkler, and, R. M. Roop., 2005.The Brucella abortus Cu, Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice. Infect. Immun. 73:28732880.
37. Gilotra, U., and, S. Srivastava., 1997. Plasmid-encoded sequestration of copper by Pseudomonas pickettii strain US321. Curr. Microbiol 34:378381.
38. Goodhew, C. F.,, I. B. Wilson,, D. J. Hunter, and, G. W. Pettigrew., 1990. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem.J. 271:707712.
39. Groisman, E. A., 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:18351842.
40. Grosse, C.,, A. Anton,, T. Hoffmann,, S. Franke,, G. Schleuder, and, D. H. Nies., 2004. Identification of a regulatory pathway that controls the heavy-metal resistance system Czc via promoter czcN p in Ralstonia metallidurans. Arch. Microbiol. 182:109118.
41. Gunn, J. S.,, S. S. Ryan,, J. C. Van Velkinburgh,, R. K. Ernst, and, S. I. Miller., 2000. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 68:61396146.
42. Harris, A. G., and, S. L. Hazell., 2003. Localisation of Helicobacter pylori catalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol. Lett. 229:283289.
43. Hassan, M. T.,, D. van der Lelie,, D. Springael,, U. Romling,, N. Ahmed, and, M. Mergeay., 1999. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238:417425.
44. Heeb, S.,, C. Valverde,, C. Gigot-Bonnefoy, and, D. Haas., 2005. Role of the stress sigma factor RpoS in GacA/RsmA-controlled secondary metabolism and resistance to oxidative stress in Pseudomonasfluorescens CHA0. FEMS Microbiol. Lett. 243: 251258.
45. Heimberger, A., and, A. Eisenstark., 1988. Compartmentalization of catalases in Escherichia coli. Biochem. Biophys. Res. Commun. 154:392397.
46. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol 46:47110.
47. Hendrixson, D. R., and, V. J. DiRita., 2004. Identification of Campylobacter JeJuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52:471484.
48. Herouart, D.,, S. Sigaud,, S. Moreau,, P. Frendo,, D. Touati, and, A. Puppo., 1996. Cloning and characterization of the katA gene of Rhizobium meliloti encoding a hydrogen peroxide-inducible catalase. J. Bacteriol. 178:68026809.
49. Herren, C. D.,, E. R. Rocha, and, C. J. Smith., 2003. Genetic analysis of an important oxidative stress locus in the anaerobe Bacteroides fragilis. Gene 316: 167175.
50. Higgins, M. K.,, E. Bokma,, E. Koronakis,, C. Hughes, and, V. Koronakis., 2004. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl. Acad. Sci USA 101:99949999.
51. Hild, E.,, K. Takayama,, R. M. Olsson, and, S. Kjelleberg., 2000. Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14.J. Bacteriol. 182:69646974.
52. Hirakawa, H.,, K. Nishino,, T. Hirata, and, A. Yamaguchi., 2003. Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J. Bacteriol. 185:18511856.
53. Hyytiainen, H.,, S. Sjoblom,, T. Palomaki,, A. Tuikkala, and, P. E. Tapio., 2003. The PmrAPmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol. Microbiol. 50: 795807.
54. Imlay, J. A., 2003. Pathways of oxidative damage. Annu. Rev. Microbiol. 57:395418.
55. Jacoby, G. A., and, L. S. Munoz-Price., 2005. The new β-lactamases. N. Engl.J. Med. 352:380391.
56. Jeannot, K.,, M. L. Sobel,, F. El Garch,, K. Poole, and, P. Plesiat., 2005. Induction of the MexXY efflux pump in Pseudomonas aeruginosa is dependent on drug-ribosome interaction. J. Bacteriol. 187: 53415346.
57. Johnson, C. R.,, J. Newcombe,, S. Thorne,, H. A. Borde,, L. J. Eales-Reynolds,, A. R. Gorringe,, S. G. Funnell, and, J. J. McFadden., 2001. Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis. Mol. Microbiol. 39: 13451355.
58. Join-Lambert, O. F.,, M. Michea-Hamzehpour,, T. Kohler,, F. Chau,, F. Faurisson,, S. Dautrey,, C. Vissuzaine,, C. Carbon, and, J. C. Pechere., 2001. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob. Agents Chemother. 45: 571576.
59. Jude, F.,, C. Arpin,, C. Brachet-Castang,, M. Capdepuy,, P. Caumette, and, C. Quentin., 2004. TbtABM, a multidrug efflux pump associated with tributyltin resistance in Pseudomonas stutzeri. FEMS Microbiol. Lett. 232:714.
60. Junker, F., and, J. L. Ramos., 1999. Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181: 56935700.
61. Kang, B. R.,, B. H. Cho,, A. J. Anderson, and, Y. C. Kim., 2004. The global regulator GacS of a bio-control bacterium Pseudomonas chlororaphis O6 regulates transcription from the rpoS gene encoding a stationary-phase sigma factor and affects survival in oxidative stress. Gene 325:137143.
62. Karnachuk, O. V.,, S. Y. Kurochkina,, D. Nicomrat,, Y. A. Frank,, D. A. Ivasenko,, E. A. Phyllipenko, and, O. H. Tuovinen., 2003. Copper resistance in Desulfovibrio strain R2. Antonie Van Leeuwenhoek 83:99106.
63. Keith, L. M., and, C. L. Bender., 1999. AlgT σ22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae.J. Bacteriol. 181:71767184.
64. Kiyono, M., and, H. Pan-Hou., 1999.The merG gene product is involved in phenylmercury resistance in Pseudomonas strain K-62.J. Bacteriol. 181:726730.
65. Klotz, M. G., and, S. W. Hutcheson., 1992.Multiple periplasmic catalases in phytopathogenic strains ofPseudomonas syringae. Appl. Environ. Microbiol. 58: 24682473.
66. Koronakis, V.,, J. Eswaran, and, C. Hughes., 2004. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu. Rev. Biochem. 73: 467489.
67. Korshunov, S. S., and, J. A. Imlay., 2002. A potential role for periplasmic superoxide dismutase in blocking the penetration of external superoxide into the cytosol of Gram-negative bacteria. Mol. Microbiol. 43: 95106.
68. Krishnakumar, R.,, M. Craig,, J. A. Imlay, and, J. M. Slauch., 2004. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028.J. Bacteriol. 186:52305238.
69. Kroll, J. S.,, P. R. Langford,, K. E. Wilks, and, A. D. Keil., 1995. Bacterial [Cu, Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141:22712279.
70. Leclere, V.,, M. Bechet, and, R. Blondeau., 2004. Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila.J. Appl. Microbiol. 96: 828833.
71. Legatzki, A.,, G. Grass,, A. Anton,, C. Rensing, and, D. H. Nies., 2003. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J. Bacteriol. 185:43544361.
72. Li, X.-Z.,, L. Zhang, and, K. Poole., 2002. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 46:333343.
73. Llama-Palacios, A.,, E. Lopez-Solanilla,, C. PozaCarrion,, F. Garcia-Olmedo, and, P. Rodriguez-Palenzuela., 2003. The Erwinia chrysanthemi phoP-phoQ operon plays an important role in growth at low pH, virulence and bacterial survival in plant tissue. Mol. Microbiol. 49:347357.
74. Macfarlane, E. L.,, A. Kwasnicka, and, R. E. Hancock., 2000. Role of Pseudomonas aeruginosa PhoPphoQ in resistance to antimicrobial cationic pep-tides and aminoglycosides. Microbiology 146:25432554.
75. Mao, W.,, M. S. Warren,, D. S. Black,, T. Satou,, T. Murata,, T. Nishino,, N. Gotoh, and, O. Lomovskaya., 2002. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol. Microbiol. 46:889901.
76. Marceau, M.,, F. Sebbane,, F. Ewann,, F. Collyn,, B. Lindner,, M. A. Campos,, J. A. Bengoechea, and, M. Simonet., 2004. The pmrF polymyxin-resistance operon of Yersinia pseudotuberculosis is up-regulated by the PhoP-PhoQ two-component system but not by PmrA-PmrB, and is not required for virulence. Microbiology 150:39473957.
77. Marchand, I.,, L. Damier-Piolle,, P. Courvalin, and, T. Lambert., 2004. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob. Agents Chemother. 48:32983304.
78. Masschalck, B., and, C. W. Michiels., 2003. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29:191214.
79. McDougald, D.,, L. Gong,, S. Srinivasan,, E. Hild,, L. Thompson,, K. Takayama,, S. A. Rice, and, S. Kjelleberg., 2002. Defences against oxidative stress during starvation in bacteria. Antonie Van Leeuwenhoek 81:313.
80. McPhee, J. B.,, S. Lewenza, and, R. E. Hancock., 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50:205217.
81. Mergeay, M.,, S. Monchy,, T. Vallaeys,, V. Auquier,, A. Benotmane,, P. Bertin,, S. Taghavi,, J. Dunn,, L. D. van der, and, R. Wattiez., 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385410.
82. Middlemiss, J. K., and, K. Poole., 2004. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa.J. Bacteriol. 186:12581269.
83. Morita, Y.,, T. Murata,, T. Mima,, S. Shiota,, T. Kuroda,, T. Mizushima,, N. Gotoh,, T. Nishino, and, T. Tsuchiya., 2003. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J. Antimicrob. Chemother. 5:991994.
84. Moskowitz, S. M.,, R. K. Ernst, and, S. I. Miller., 2004. PmrAB, a two-component regulatory system ofPseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol. 186:575579.
85. Murakami, S., and, A. Yamaguchi., 2003. Multi-drug-exporting secondary transporters. Curr. Opin. Struct. Biol. 13:443452.
86. Nehme, D.,, X. Z. Li,, R. Elliot, and, K. Poole., 2004. Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. J. Bacteriol. 186:29732983.
87. Nehme, D., and, K. Poole., 2005. Interaction of the MexA and MexB components of the MexABOprM multidrug efflux system of Pseudomonas aeruginosa: identification of MexA extragenic suppressors of a T578I mutation in MexB. Antimicrob. Agents Chemother. 49:43754378.
88. Nickerson, K. W., and, A. Aspedon., 1992. Detergent-shock response in enteric bacteria. Mol. Microbiol. 6:957961.
89. Nies, D. H., 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313339.
90. Nishino, K.,, T. Honda, and, A. Yamaguchi. 2005. Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol. 187:17631772.
91. Nishino, K.,, Y. Inazumi, and, A. Yamaguchi., 2003. Global analysis of genes regulated by EvgA of the two-component regulatory system in Escherichia coli. J. Bacteriol. 185:26672672.
92. Oyston, P. C.,, N. Dorrell,, K. Williams,, S. R. Li,, M. Green,, R. W. Titball, and, B. W. Wren., 2000. The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect. Immun. 68:34193425.
93. Palmer, M., 2003. Efflux of cytoplasmically acting antibiotics from gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. J. Bacteriol. 185:52875289.
94. Perron, K.,, O. Caille,, C. Rossier,, C. Van Delden,, J. L. Dumas, and, T. Kohler., 2004. CZCRCZCS: a two component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa.J. Biol. Chem. 279:87618768.
95. Poole, K., 2004a. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 10: 1226.
96. Poole, K., 2004b. Resistance to [3-lactam antibiotics. Cell. Mol. Life Sci. 61:22002223.
97. Poole, K., 2004c. Efflux pumps, p. 635674. In J.-L. Ramos (ed.), Pseudomonas, vol. I. Genomics, life style and molecular architecture. Kluwer Academic/ Plenum Publishers, New York, N.Y.
98. Poole, K., 2005. Efflux-mediated antimicrobial resistance.J.Antimicrob. Chemother. 56:2051.
99. Puig, S.,, E. M. Rees, and, D. J. Thiele., 2002. The ABCDs of periplasmic copper trafficking. Structure (Camb.) 10:12921295.
100. Putman, M.,, H. W. van Veen, and, W. N. Konings., 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64:672693.
101. Rajagopal, S.,, N. Eis,, M. Bhattacharya, and, K. W. Nickerson., 2003. Membrane-derived oligosaccharides (MDOs) are essential for sodium dodecyl sulfate resistance in Escherichia coli. FEMS Microbiol. Lett. 223:2531.
102. Ramos, J. L.,, E. Duque,, M. T. Gallegos,, P. Godoy,, M. I. Ramos-Gonzalez,, A. Rojas,, W. Teran, and, A. Segura., 2002. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56:743768.
103. Ramos-Gonzalez, M. I.,, P. Godoy,, M. Alaminos,, A. Ben Bassat, and, J. L. Ramos., 2001. Physiological characterization of Pseudomonas putida DOT-T1E tolerance to p-hydroxybenzoate. Appl. Environ. Microbiol. 67:43384341.
104. Randall, L. P.,, S. W. Cooles,, A. R. Sayers, and, M. J. Woodward., 2001. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes.J. Med. Microbiol. 50:919924.
105. Rensing, C., and, G. Grass., 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27:197213.
106. Rossbach, S.,, M. L. Kukuk,, T. L. Wilson,, S. F. Feng,, M. M. Pearson, and, M. A. Fisher., 2000. Cadmium-regulated gene fusions in Pseudomonas fluorescens. Environ. Microbiol. 2:373382.
107. St John, G., and, H. M. Steinman., 1996. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival. J. Bacteriol. 178:1578–1584.
108. Sanchez, P.,, J. F. Linares,, B. Ruiz-Diez,, E. Campanario,, A. Navas,, F. Baquero, and, J. L. Martinez., 2002. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. J.Antimicrob. Chemother. 50:657664.
109. San Mateo, L. R.,, M. M. Hobbs, and, T. H. Kawula., 1998. Periplasmic copper-zinc superoxide dismutase protects Haemophilus ducreyi from exogenous superoxide. Mol. Microbiol. 27:391404.
110. San Mateo, L. R.,, K. L.T offer,, P. E. Orndorff, and, T. H. Kawula., 1999. Neutropenia restores virulence to an attenuated Cu, Zn superoxide dismutasedeficient Haemophilus ducreyi strain in the swine model of chancroid. Infect. Immun. 67:53455351.
111. Sanchez, P.,, J. F. Linares,, B. Ruiz-Diez,, E. Campanario,, A. Navas,, F. Baquero, and, J. L. Martinez., 2002. Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants.J.Antimicrob. Chemother. 50:657664.
112. Sansone, A.,, P. R. Watson,, T. S.W allis,, P. R. Lang-ford, and, J. S. Kroll., 2002. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Microbiology 148:719726.
113. Saxena, D.,, N. Joshi, and, S. Srivastava., 2002. Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Curr. Microbiol. 45:410414.
114. Schnell, S., and, H. M. Steinman., 1995. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.J. Bacteriol. 177:59245929.
115. Schurr, M. J.,, H. Yu,, J. M. Martinez-Salazar,, J. C. Boucher, and, V. Deretic., 1996. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis.J. Bacteriol. 178:49975004.
116. Seib, K. L.,, H. J. Tseng,, A. G. McEwan,, M. A. Apicella, and, M. P. Jennings., 2004. Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles.J. Infect. Dis. 190:136147.
117. Sha, Z.,, T. J. Stabel, and, J. E. Mayfield., 1994. Brucella abortus catalase is a periplasmic protein lacking a standard signal sequence.J. Bacteriol. 176:73757377.
118. Shi, Y.,, M. J. Cromie,, F. F. Hsu,, J. Turk, and, E. A. Groisman., 2004. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol. Microbiol. 53:229241.
119. Short, K. A., and, R. P. Blakemore., 1989. Periplasmic superoxide dismutases in Aquaspirillum magnetotacticum. Arch. Microbiol. 152:342346.
120. Silver, S., 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27: 341353.
121. Singh, S. K.,, G. Grass,, C. Rensing, and, W. R. Montfort., 2004. Cuprous oxidase activity of CueO from Escherichia coli.J. Bacteriol. 186:78157817.
122. Sobel, M. L.,, G. A. McKay, and, K. Poole., 2003. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47: 32023207.
123. Souza-Hart, J. A.,, W. Blackstock,, V. Di Modugno,, I. B. Holland, and, M. Kok., 2003.Two-component systems in Haemophilus influenzae: a regulatory role for ArcA in serum resistance. Infect. Immun. 71:163172.
124. Srinivasa Rao, P. S.,, Y. Yamada, and, K. Y. Leung., 2003. A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda. Microbiology 149:26352644.
125. Suziedeliene, E.,, K. Suziedelis,, V. Garbenciute, and, S. Normark., 1999. The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J. Bacteriol. 181:20842093.
126. Tamburro, A.,, I. Robuffo,, H. J. Heipieper,, N. Allocati,, D. Rotilio,, C. Di Ilio, and, B. Favaloro., 2004. Expression of glutathione S-transferase and peptide methionine sulphoxide reductase in Ochrobactrum anthropi is correlated to the production of reactive oxygen species caused by aromatic substrates. FEMS Microbiol. Lett. 241:151156.
127. Testerman, T. L.,, A. Vazquez-Torres,, Y. Xu,, J. Jones-Carson,, S. J. Libby, and, F. C. Fang., 2002. The alternative sigma factor σE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol. Microbiol. 43:771782.
128. Tikhonova, E. B.,, Q. Wang, and, H. I. Zgurskaya., 2002. Chimeric analysis of the multicomponent multidrug efflux transporters from Gram-negative bacteria. J. Bacteriol. 184:64996507.
129. Touze, T.,, J. Eswaran,, E. Bokma,, E. Koronakis,, C. Hughes, and, V. Koronakis., 2004. Interactions underlying assembly of the Escherichia coli AcrABTolC multidrug efflux system. Mol. Microbiol. 53: 697706.
130. Visick, K. L., and, E. G. Ruby., 1998.The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J. Bacteriol. 180:20872092.
131. Waidner, B.,, K. Melchers,, I. Ivanov,, H. Loferer,, K. W. Bensch,, M. Kist, and, S. Bereswill., 2002. Identification by RNA profiling and mutational analysis of the novel copper resistance determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP 1328) in Helicobacter pylori. J. Bacteriol. 184:67006708.
132. Winfield, M. D., and, E. A. Groisman., 2004. Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proc. Natl. Acad. Sci. USA 101:1716217167.
133. Winfield, M. D.,, T. Latifi, and, E. A. Groisman., 2005. Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis.J. Biol. Chem. 280:1476514772.
134. Yu, E. W.,, G. McDermott,, H. I. Zgurskaya,, H. Nikaido, and, D. E. Koshland, Jr., 2003. Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300: 976980.
135. Zwir, I.,, D. Shin,, A. Kato,, K. Nishino,, T. Latifi,, F. Solomon,, J. M. Hare,, H. Huang, and, E. A. Groisman., 2005. Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc. Natl. Acad. Sci USA 102:28622867.

Tables

Generic image for table
Table 1

Substrate profiles and distribution of RND family pumps in gram-negative bacteria

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Generic image for table
TABLE 2

Non-efflux-mediated periplasmic resistance mechanisms

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Generic image for table
Table 3

Classification and properties of β-lactamases of gram-negative bacteria

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18
Generic image for table
Table 4

Two-component regulatory systems involved in resistance to antimicrobials, heavy metals, and environmental stresses

Citation: Poole K. 2007. Antimicrobial and Stress Resistance, p 304-324. In Ehrmann M (ed), The Periplasm. ASM Press, Washington, DC. doi: 10.1128/9781555815806.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error