Chapter 3 : Functional Genomics in Thermophilic Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Functional Genomics in Thermophilic Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap03-2.gif


This chapter, using the rapidly expanding set of whole-genome sequences now available, examines the progress made in understanding life at elevated temperatures. Functional genomics uses high-throughput techniques like DNA microarrays, proteomics, metabolomics and mutation analysis to describe the function and interactions of genes. The first thermophilic methanogen to be analyzed comprehensively by microarray was . This study resulted in the discovery of a unique heat-shock-inducible prefoldin chaperone gene. In an early study, activities of several key metabolic enzymes were evaluated when was grown on maltose and/or peptides, both with and without S. This study revealed that is able to utilize both peptides and maltose as sources of C and that it is able to grow well in the absence of S, metabolic characteristics that set it apart from most other S-reducing, heterotrophic hyperthermophiles. Comparative genomics also provides insights into the mobility of chromosomal sections and lateral gene transfer (LGT). Bacterial and archaeal thermophiles often share the same habitats, and there is abundant evidence from genomic analyses that LGT is common in the group. The application of microarray-based studies, already underway using the genome information, will be important to examine global stress regulation. Further studies of the growth physiology and molecular biology of model organisms such as hyperthermophiles and halophiles will be necessary to determine their potential for the production of gas fuels and the potential application of their extremely thermostable enzymes in biotechnology.

Citation: Robb F, Newby D. 2007. Functional Genomics in Thermophilic Microorganisms, p 30-38. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch3

Key Concept Ranking

Transcription Start Site
16s rRNA Sequencing
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adams, M. W.,, J. F. Holden,, A. L. Menon,, G. J. Schut,, A. M. Grunden,, C. Hour,, A. M. Hutchins,, J. F. Jenney,, C. Ki, and, K. Ma. 2001. Key role for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183:716724.
2. Angelov, A.,, and W. Liebl. 2006. Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea. J. Biotechnol. 126:310.
3. Bao, Q.,, Y. Tian,, W. Li,, Z. Xu,, Z. Xuan,, S. Hu,, W. Dong,, J. Yang,, Y. Chen,, Y. Xue,, Y. Xu,, X. Lai,, L. Huang,, X. Dong,, Y. Ma,, L. Ling,, H. Tan,, R. Chen,, J. Wang,, J. Yu, and, H. Yang. 2002. A complete sequence of the T. tengcongensis genome. Genome Res. 12:689700.
4. Blochl, E.,, S. Burggraf,, D. Hafenbradl,, H. W. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113° C. Extremophiles 1:1421.
5. Boonyaratanakornkit, B. B.,, A. J. Simpson,, T. A. Whitehead,, C. M. Fraser,, N. M. El-Sayed, and, D. S. Clark. 2005. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ. Microbiol. 7:789797.
6. Brügger, K.,, X. Peng, and, R. A. Garrett. Sulfolobus genomes: mechanisms of rearrangement and change. In H.-P. Klenk and, R. A. Garrett (ed.), Archaeal Biology, in press. Blackwell Publishing.
7. Bult, C. J.,, G. J. Olsen,, L. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. FitzGerald,, R. A. Clayton,, J. D. Gocayne,, A. R. Kerlavage,, B. A. Dougherty,, J. F. Tomb,, M. D. Adams,, C. L. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Weinstock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N. S. Geoghagen, and, J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:10581073.
8. Burggraf, S. K.,, P. Rouviere, and, C. R. Woese. 1991. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14:346351.
9. Cambillau, C.,, and J. M. Claverie. 2000. Structural and genomic correlates of hyperthermostability. J. Biol. Chem. 275:3238332386.
10. Clark, D. S.,, and F. T. Robb. 1999. Adaptation of proteins from hyperthermophiles to high pressure and high temperature. J. Mol. Microbiol. Biotechnol. 1:101105.
11. Cohen, G. N.,, V. Barbe,, D. Flament,, M. Galperin,, R. Heilig,, O. Lecompte,, O. Poch,, D. Prieur,, J. Querellou, and, R. Ripp. 2003. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Microbiol. 47:14951512.
12. Das, R.,, and M. Gerstein. 2000. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct. Integr. Genomics. 1:3345.
13. Deckert, G.,, P. V. Warren,, T. Gaasterland,, W. G. Young,, A. L. Lenox,, D. E. Graham,, R. Overbeek,, M. A. Snead,, M. Keller,, R. Huber,, S. J. Feldman,, G. J. Olsen, and, R. V. Swanson. 1998. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature. 392:353358.
14. DiRuggiero, J.,, D. Dunn,, D. L. Maeder,, R. Holley-Shanks,, J. Chatard,, R. Horlacher,, F. T. Robb,, W. Boos, and, R. B. Weiss. 2000. Evidence of recent lateral gene transfer among hyperthermophilic archaea. Mol. Microbiol. 38:684693.
15. Elcock, A. 1998. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 284:489502.
16. Ettema, T.,, J. v. d. Oost, and, M. Huynen. 2001. Modularity in the gain and loss of genes: applications for function prediction. Trends Genet. 17:485487.
17. Fiala, G.,, and K. O. Stetter. 1986. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaeabacteria growing optimally at 100°C. Arch Microbiol. 145:5661.
18. Fitz-Gibbon, S., T., H. Ladner,, U. J. Kim,, K. O. Stetter,, M. L. Simon, and, J. H. Miller. 2002. Genome sequence of the hyper-thermophilic crenarchaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA 99:984989.
19. Frankenberg, R., J., M. Andersson, and, D. S. Clark. 2003. Effect of temperature and pressure on the proteolytic specificity of the recombinant 20S proteasome from Methanococcus jannaschii. Extremophiles 7:353360.
20. Futterer, O.,, A. Angelov,, H. Liesegang,, G. Gottschalk,, C. Schleper,, B. Schepers,, C. Dock,, G. Antranikian, and, W. Liebl. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101:90919096.
21. Haney, P. J.,, G. L. Badger,, G. L. Buldak,, C. I. Reich,, C. R. Woese, and, G. J. Olsen. 1999. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc. Natl. Acad. Sci. USA 96:35783583.
22. Johnson, M. R.,, S. B. Connors,, C. I. Montero,, C. J. Chou,, K. R. Shockley, and, R. M. Kelly. 2006. The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl. Environ. Microbiol. 72:1118.
23. Kanoksilapatham, W.,, D. L. Maeder,, J. DiRuggiero, and, F. T. Robb. 2004. A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei. Archaea 1:277283.
24. Karshikoff, A.,, and R. Ladenstein. 2001. Ion pairs and the thermo-tolerance of proteins from hyperthermophiles: a “traffic rule” for hot roads. Trends Biochem. Sci. 26:550556.
25. Kashefi, K. L.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
26. Kawarabayasi, Y. S.,, Y. Hino,, H. Horikawa,, K. Jin-no,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Kato,, T. Yoshizawa,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, S. Masuda,, M. Yanagii,, M. Nishimura,, A. Yamagishi,, T. Oshima, and, H. Kikuchi. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res. 8:123140.
27. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, S. Yamazaki,, Y. Haikawa,, K. Jin-no,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, H. Nakazawa,, M. Takamiya,, S. Masuda,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, K. Kubota,, Y. Nakamura,, N. Nomura,, Y. Sako, and, H. Kikuchi. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6:83101.
28. Kawarabayasi, Y., S., H. Horikawa,, Y. Haikawa,, Y. Hino,, S. Yamamoto,, M. Sekine,, S. Baba,, H. Kosugi,, A. Hosoyama,, Y. Nagai,, M. Sakai,, K. Ogura,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Ohfuku,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki, and, H. Kikuchi. 1998. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5:147155.
29. Kawashima, T.,, N. Amano,, H. Koike,, S.-L. Makino,, S. Higuchi,, Y. Kawashima-Ohya,, K. Watanabe,, M. Yamazaki,, K. Kanehori, and, T. Kawamoto. 2000. Archaeal adaptation to higher temperatures, revealed by genomic sequences of Thermoplasma volcanium. Proc. Natl. Acad. Sci. USA 97:1425714262.
30. Kawashima, T.,, Y. Yamamoto,, H. Aramaki,, T. Nunoshiba,, T. Kawamoto,, K. Watanabe,, M. Yamazaki,, K. Kanehori,, N. Amano,, Y. Ohya,, K. Makino, and, M. Suzuki. 1999. Determination of the complete genomic DNA sequence of Thermo-plasma volcanium GSS1. Proc. Jpn. Acad. 75:213218.
31. Kim, K. K.,, H. Yokota,, S. Santoso,, D. Lerner,, R. Kim, and, S. H. Kim. 1998. Purification, crystallization, and preliminary X-ray crystallographic data analysis of small heat shock protein homolog from Methanococcus jannaschii, a hyperthermophile. J. Struct. Biol. 121:7680.
32. Klenk, P. H.,, A. R. Clayton,, F. J. Tomb,, O. White,, E. K. Nelson,, A. K. Ketchum,, J. R. Dodson,, M. Gwinn,, K. E. Hickey,, D. J. Peterson,, L. D. Richardson,, R. A. Kerlavage,, E. D. Graham,, C. N. Kyrpides,, D. R. Fleischmann,, J. Quackenbush,, H. N. Lee,, G. G. Sutton,, S. Gill,, F. E. Kirkness,, A. B. Dougherty,, K. McKenney,, D. M. Adams,, B. Loftus,, S. Peterson,, I. C. Reich,, K. L. McNeil,, H. J. Badger,, A. Glodek,, L. Zhou,, R. Overbeek,, D. J. Gocayne,, F. J. Weidman,, L. McDonald,, T. Utterback,, D. M. Cotton,, T. Spriggs,, P. Artiach,, P. B. Kaine,, M. S. Sykes,, W. P. Sadow,, P. K. D’Andrea,, C. Bowman,, C. Fujii,, A. S. Garland,, M. T. Mason,, J. G. Olsen,, M. C. Fraser,, O. H. Smith,, R. C. Woese, and, C. J. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364370.
33. Laksanalamai, P.,, T. A. Whitehead, and, F. T. Robb. 2004. Minimal protein-folding systems in hyperthermophilic archaea. Nature Rev. Microbiol. 2:315324.
34. Lesley, S. A.,, P. Kuhn,, A. Godzik,, A. M. Deacon,, L. Mathews,, A. Kreusch,, G. Spraggon,, H. E. Klock,, D. McMullan,, T. Shin,, J. Vincent,, A. Robb,, L. S. Brinen,, M. D. Miller,, T. M. McPhillips,, M. A. Miller,, D. Scheibe,, J. M. Canaves,, C. Guda,, L. Jaroszewski,, T. L. Selby,, M. A. Elsliger,, J. Wooley,, S. S. Taylor,, K. O. Hodgson,, L. A. Wilson,, P. G. Schultz, and, R. C. Stevens. 2002. Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 399:1166411669.
35. Maeder, D. L.,, R. B. Weiss,, D. M. Dunn,, J. L. Cherry,, J. M. Gonzalez,, J. DiRuggiero, and, F. T. Robb. 1999. Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152:12991305.
36. Martusewitsch, E.,, C. W. Sensen, and, C. Schleper. 2000. High spontaneous mutation rate in the hyperthermophilic Archaeon Sulfolobus solfataricus is mediated by transposable elements. J. Bacteriol. 182:25742581.
37. Minuth, T.,, G. Frey,, P. Lindner,, R. Rachel,, K. O. Stetter, and, R. Jaenicke. 1998. Recombinant homo- and hetero-oligomers of an ultrastable chaperonin from the archaeon Pyrodictium occultum show chaperone activity in vitro. Eur. J. Biochem. 258:837845.
38. Mongodin, E. F.,, I. R. Hance,, R. T. DeBoy,, S. R. Gill,, S. Daugherty,, R. Huber,, C. M. Fraser,, K. Stetter, and, K. E. Nelson. 2005. Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J. Bacteriol. 187:49354944.
39. Nelson, K. E.,, S. R. Clayton,, M. L. Gill,, R. J. Gwinn,, D. H. Dodson,, E. K. Haft,, J. D. Hickey,, W. C. Peterson,, K. A. Nelson,, L. Ketchum,, T. R. McDonald,, J. A. Utterback,, K. D. Malek,, M. M. Linher,, A. M. Garrett,, M. D. Stewart,, M. S. Cotton,, C. A. Pratt,, D. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, and C. M. Fraser. 1999. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323329.
40. Robb, F. T.,, D. L. Maeder,, J. R. Brown,, J. DiRuggiero,, M. D. Stump,, R. K. Yeh,, B. Weiss, and, D. M. Dunn. 2001. Genomic sequence of hyperthermophile Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol. 330:134157.
41. Rohlin, L.,, J. D. Trent,, K. Salmon,, U. Kim,, R. P. Gunsalus, and, J. C. Liao. 2005. Heat shock response of Archaeoglobus fulgidus. J. Bacteriol. 187:60466057.
42. Ruepp, A.,, W. Graml,, M. L. Santos-Martinez,, K. K. Koretke,, C. Volker,, H. W. Mewes,, D. Frishman,, S. Stocker,, A. N. Lupas, and, W. Baumeister. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 28:508513.
43. Schut, G. J.,, S. D. Brehm,, S. Datta, and, M. W. Adams. 2003. Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides. J. Bacteriol. 185:39353947.
44. Schut, G. J.,, J. Zhou, and, M. W. Adams. 2001. DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex. J. Bacteriol. 183:70277036.
45. Scott, R. A.,, N. J. Cosper,, F. E. Jenney, and, M. W. Adams. 2005. Bottlenecks and roadblocks in high-throughput XAS for structural genomics. J. Synchrotron Rad. 12:1922.
46. She, Q.,, R. K. Singh,, F. Confalonieri,, Y. Zivanovic,, G. Allard,, M. J. Awayez,, C. C. Chan-Weiher,, I. G. Clausen,, B. A. Curtis,, A. De Moors,, G. Erauso,, C. Fletcher,, P. M. Gordon,, I. Heikampde Jong,, A. C. Jeffries,, C. J. Kozera,, N. Medina,, X. Peng,, H. P. Thi-Ngoc,, P. Redder,, M. E. Schenk,, C. Theriault,, N. Tolstrup,, R. L. Charlebois,, W. F. Doolittle,, M. Duguet,, T. Gaaster-land,, R. A. Garrett,, M. A. Ragan,, C. W. Sensen, and, J. Van der Oost. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98:78357840.
47. Shockley, K.,, D. E. Ward,, S. R. Chhabra,, S. B. Conners,, C. I. Montero, and, R. M. Kelly. 2003. Heat shock response by the hyperthermophilic Archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 69:23652371.
48. Siegert, R.,, M. R. Leroux,, C. Scheufler,, F. U. Hartl, and, I. Moarefi. 2000. Structure of the molecular chaperone prefoldin: unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103:621632.
49. Slesarev, A., I., K. S. Makarova,, N. N. Polushin,, O. V. Shcherbinina,, V. V. Shakhova,, G. I. Belova,, L. Aravind,, D. A. Natale,, I. B. Rogozin,, R. L. Tatusov,, Y. I. Wolf,, K. O. Stetter,, A. G. Malykh,, E. V. Koonin, and, S. A. Kozyavkin. 2002. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl. Acad. Sci. USA. 99:46444649.
50. Smith, D., R., L. A. Doucette-Stamm,, C. Deloughery,, H.-M. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicare,, Y. Wang,, J. Wierzbowski,, R. Gibson,, N. Jiwani,, A. Caruso,, D. Bush,, H. Safer,, D. Patwell,, S. Prabhakar,, S. McDougall,, G. Shimer,, A. Goyal,, S. Pietrovski,, G. M. Church,, C. J. Daniels,, J. I. Mao,, P. Rice,, J. Nolling, and, J. N. Reeve. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J. Bacteriol. 179:71357155.
51. Sterner, R.,, and W. Liebl. 2001. Thermophilic adaptation of proteins. Crit. Rev. Biochem. Mol. Biol. 36:39106.
52. Stetter, K. O. 1996. Hyperthermophiles in the history of life. Ciba Found. Symp. 202:110; discussion 1118.
53. Tolgyesi, E.,, C. S. Bode,, L. Smelleri,, D. R. Kim,, K. K. Kim,, K. Heremans, and, J. Fidy. 2004. Pressure activation of the chaperone function of small heat shock proteins. Cell. Mol. Biol. 50:361369.
54. Vetriani, C.,, D. Maeder,, N. Tolliday,, K. S. Yip,, T. J. Stillman,, K. L. Britton,, D. W. Rice,, H. H. Klump, and, F. T. Robb. 1998. Protein thermostability above 100°C: a key role for ionic interactions. Proc. Natl. Acad. Sci. USA 95:1230012305.
55. Vierke, G.,, A. Engelmann,, C. Hebbeln, and, M. Thomm. 2003. A novel archaeal transcriptional regulator of heat shock response. J. Biol. Chem. 278:1826.
56. Volkl, P.,, R. Huber,, E. Drobner,, R. Rachel,, S. Burggraf,, A. Trin-cone, and, K. O. Stetter. 1993. Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl. Environ. Microbiol. 59:29182926.
57. Weinberg, M., V., G. Schut,, S. Brehm,, S. Datta, and, M. W. Adams. 2005. Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycolproteins. J. Bacteriol. 187:336348.
58. Worning, P.,, L. J. Jenson,, K. E. Nelson,, S. Brunak, and, D. W. Ussery. 2000. Structural analysis of DNA sequence: evidence for lateral gene transfer in Thermotoga maritima. Nucleic Acids Res. 28:706709.
59. Wu, M.,, Q. Ren,, A. S. Durkin,, S. C. Daugherty,, L. M. Brinkac,, R. J. Dodson,, R. Madupu,, S. A. Sullivan,, J. F. Kolonay,, W. C. Nelson,, L. J. Tallon,, K. M. Jones,, L. E. Ulrich,, J. M. Gonzalez,, I. B. Zhulin,, F. T. Robb, and, J. A. Eisen. 2005. Life in hot carbon monoxide: the complete genome sequence of Carboxydothermus hydrogenoformans Z-2901. PLoS Genetics 1(5):e65.
60. Yip, K.,, K. L. Britton,, T. Stillman,, J. Lebbink,, W. deVos,, D. L. Maeder,, F. T. Robb,, C. Vetriani, and, D. W. Rice. 1998. Insights into the molecular basis of thermal stability from the analysis of ion-pair networks in the glutamate dehydrogenase family. Eur. J. Biochem. 255:336346.


Generic image for table
Table 1.

Sequenced thermophile genomes

Citation: Robb F, Newby D. 2007. Functional Genomics in Thermophilic Microorganisms, p 30-38. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error