1887

Chapter 5 : How Thermophiles Cope with Thermolabile Metabolites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

How Thermophiles Cope with Thermolabile Metabolites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap05-2.gif

Abstract:

An intriguing question is how thermophilic organisms, in particular hyperthermophilic ones, cope with heat-sensitive thermolabile metabolites. Important phosphorylated metabolites, also used in glucose metabolism, are ATP and ADP. The comparison of the hyperthermophilic enzymes for tryptophan synthesis with the mesophilic homologs has suggested possible strategies by which hyperthermophiles cope with the thermolabile intermediates in tryptophan biosynthesis. In bacteria such as and serovar , tryptophan synthase is an α β tetrameric enzyme complex that catalyzes the final two steps in the biosynthesis of tryptophan and involves the conversion of indole 3-glycerol phosphate (IGP) and serine to tryptophan. Important from the point of view of adaptation to thermophily is that interdomain signaling and channeling of NH in the enzyme of were found to be strongly temperature dependent. Hyperthermophiles appear to cope with the limitations posed by thermolabile metabolites and coenzymes by a range of mechanisms including rapid turnover or increased catalytic efficiency, local stabilization, substitution or bypassing, microenvironmental compartmentation, or metabolic channeling. Already some years ago, the enzymes of several metabolic pathways were suggested to be organized into structural and functional units. In this view, metabolic channeling of intermediates between physically associated enzymes that are sequential members of a metabolic pathway can be a major thermoprotective mechanism for thermolabile metabolites and therefore can play a critical role in the physiology of thermophiles.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5

Key Concept Ranking

Acetyl Coenzyme A
0.5063291
Purine Nucleotide Biosynthesis
0.4477105
Multienzyme Complex
0.40079856
0.5063291
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Embden–Meyerhof (EM) and Entner–Doudoroff (ED) glucose-degrading pathways.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Non-phosphorylative and semi-phosphorylative Entner–Doudoroff pathway.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Tryptophan biosynthetic pathway.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

De novo purine biosynthesis.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Carbamoyl phosphate, a precursor of both arginine and pyrimidine biosynthetic pathways.

Citation: Massant J. 2007. How Thermophiles Cope with Thermolabile Metabolites, p 57-74. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch05
1. Adams, M., W. W. 1993. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu. Rev. Microbiol. 47:627658.
2. Ahmed, H.,, B. Tjaden,, R. Hensel, and, B. Siebers. 2004. Embden–Meyerhof–Parnas and Entner–Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation. Biochem. Soc. Trans. 32:303304.
3. Ahmed, H.,, T. J. G. Ettema,, B. Tjaden,, A. C. M. Geerling,, J. van der Oost, and, B. Siebers. 2005. The semi-phosphorylative Entner–Doudoroff pathway in hyperthermophilic archaea – a re-evaluation. Biochem. J. 390:529540.
4. Ahuja, A.,, Purcarea, C.,, Ebert, R.,, Sadecki, S.,, Guy, H. I., and, D. R. Evans. 2004. Aquifex aeolicus dihydroorotase. Association with aspartate transcarbamoylase switches on catalytic activity. J. Biol. Chem. 279:5313653144.
5. Aimi, J.,, H. Oiu,, J. Williams,, H. Zalkin, and, J. E. Dixon. 1990. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetaseglycinamide ribonucleotide transformylase by functional complementation in E. coli. Nucleic Acids Res. 18:66656672.
6. Alberts, B.,, and R. Miake-Lye. 1992. Unscrambling the puzzle of biological machines: the importance of the details. Cell 68:415420.
7. Alcántara, C.,, J. Cervera, and, V. Rubio. 2000. Carbamate kinase can replace in vivo carbamoyl phosphate synthetase. Implications for the evolution of carbamoyl phosphate biosynthesis. FEBS Lett. 484:261264.
8. al-Habori, M. 1995. Microcompartmentation, metabolic channeling and carbohydrate metabolism. Int. J. Biochem. Cell Biol. 27:123132.
9. Anderson, K. S. 1999. Fundamental mechanisms of substrate channeling. Methods Enzymol. 308:111145.
10. Beeckmans, S.,, E. Van Driessche, and, L. Kanarek. 1990. Clustering of sequential enzymes in the glycolytic pathway and the citric acid cycle. J. Cell. Biochem. 43:297306.
11. Belkaïd, M.,, B. Penverne,, M. Denis, and, G. Hervé. 1987. In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. 2. Reaction mechanism of aspartate transcarbamylase dissociated from carbamylphosphate synthetase by genetic alteration. Arch. Biochem. Biophys. 254:568578.
12. Belkaïd, M.,, B. Penverne, and, G. Herve. 1988. In site behavior of the pyrimidine pathway enzymes in saccharomyces cerevisiae, 3: Catalytic and regulatory properties of carbamoylphosphate synthetase: channeling of carbamoylphosphate to aspartate carbamoyl transferase. Arch. Biochem. Biophys. 262:171180.
13. Ben-Zeev, E.,, A. Berchanski,, A. Heifetz,, B. Shapira, and, M. Eisenstein. 2003. Prediction of the unknown: inspiring experience with the CAPRI experiment. Proteins 52:4146.
14. Bera, A. K.,, J. L. Smith, and, H. Zalkin. 2000a. Dual role for the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel. Interdomain signaling and intermediate channeling. J. Biol. Chem. 275:79757979.
15. Bera, A. K.,, S. Chen,, J. L. Smith, and, H. Zalkin. 2000b. Temperature-dependent function of the glutamine phosphoribosylpyrophosphate amidotransferase ammonia channel and coupling with glycinamide ribonucleotide synthetase in a hyperthermophile. J. Bacteriol. 182:37343739.
16. Blamey, J. M.,, and M. W. Adams. 1993. Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochim. Biophys. Acta 1161:1927.
17. Borges, N.,, A. Ramos,, N. D. H. Raven,, R. J. Sharp, and, H. Santos. 2002. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6:209216.
18. Bräsen, C.,, and P. Schönheit. 2004. Unusual ADP-forming acetyl-coenzyme A synthetases from the mesophilic halophilic euryarchaeon Haloarcula marismortui and from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Arch. Microbiol. 182:277287.
19. Brunner, N. A.,, B. Siebers, and, R. Hensel. 2001. Role of two different glyceraldehydes-3-phosphate dehydrogenases in controlling the reversible Embden–Meyerhof–Parnas pathway in Thermoproteus tenax: regulation on protein and transcript level. Extremophiles 5:101109.
20. Charlier, D.,, and N. Glansdorff. 9 September 2004, posting date. Chapter 3.6.1.10. Biosynthesis of arginine and polyamines. In A. Böck et al. (ed.), EcoSal—Escherichia coli and Salmonella: Cellular and Molecular Biology. http://www.ecosal.org. ASM Press, Washington, DC.
21. Chen, S.,, J. W. Burgner,, J. M. Krahn,, J. L. Smith, and, H. Zalkin. 1999. Tryptophan fluorescence monitors multiple conformational changes required for glutamine phosphoribosylpyrophosphate amidotransferase interdomain signaling and catalysis. Biochemistry 38:1165911669.
22. Chittur, S. V.,, Y. Chen, and, V. J. Davisson. 2000. Expression and purification of imidazole glycerol phosphate synthase from Saccharomyces cerevisiae. Protein Expr. Purif. 18:366377.
23. Clegg, J. S.,, and S. A. Jackson. 1990. Glucose metabolism and the channeling of glycolytic intermediates in permeabilized L-929 cells. Arch. Biochem. Biophys. 278:452460.
24. Cohen, G. N.,, V. Barbe,, D. Flament,, M. Galperin,, R. Heilig,, O. Lecompte,, O. Poch,, D. Prieur,, J. Quérellou,, R. Ripp,, J.-C. Thierry,, J. Van der Oost,, J. Weissenbach,, Y. Zilvanovic, and, P. Forterre. 2003. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Microbiol. 47:14951512.
25. Cohen, N. S.,, C.-W. Cheung,, E. Sijuwade, and, L. Raijman. 1992. Kinetic properties of carbamoyl-phosphate synthase (ammonia) and ornithine carbamoyltransferase in permeabilized mitochondria. Biochem. J. 282:173180.
26. Coleman, P. F.,, D. P. Suttle, and, G. R. Stark. 1977. Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides. J. Biol. Chem. 252:63796385.
27. Creighton, T. E. 1970. N(5′-phosphoribosyl) anthranilate isomerase-indol-3-ylglycerol phosphate synthetase of tryptophan biosynthesis: relationship between the two activities of the enzyme from Escherichia coli: Biochem. J. 120, 699707.
28. Daniel, R. M.,, and D. A. Cowan. 2000. Biomolecular stability and life at high temperatures. Cell. Mol. Life Sci. 57:250264.
29. Daniel, R. M.,, and M. J. Danson. 1995. Did primitive microorganisms use nonhaem iron proteins in place of NAD/P? J. Mol. Evol. 40:559563.
30. Danson, M. J. 1988. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv. Microb. Physiol. 29:165231.
31. Davidson, J. N.,, K. C. Chen,, R. S. Jamison,, L. A. Musmanno, and, C. B. Kern. 1993. The evolutionary history of the first three enzymes in pyrimidine biosynthesis. Bioessays 15:157164.
32. Dörr, C.,, M. Zaparty,, B. Tjaden,, H. Brinkman, and, B. Siebers. 2003. The hexokinase of the hyperthermophile Thermoproteus tenax: ATP-dependent hexokinases and ADP-dependent glucokinases, two alternatives for glucose phosphorylation in Archaea. J. Biol. Chem. 278:1874418753.
33. Douangamath, A.,, M. Walker,, S. Beismann-Driemeyer,, M. C. Vega-Fernandez,, R. Sterner, and, M. Wilmanns. 2002. Structural evidence for ammonia tunneling across the (beta alpha)(8) barrel of the imidazole glycerol phosphate synthase bienzyme complex. Structure 10:185193.
34. Durbecq, V.,, C. Legrain,, M. Roovers,, A. Pierard, and, N. Glansdorffa 1997. The carbomate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeor pyrococcus furiosus, a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc Natl Acad Sci USA 94, 1280312808.
35. Elcock, A. H.,, and J. A. McCammon. 1996. Evidence for electrostatic channeling in a fusion protein of malate dehydrogenase and citrate synthase. Biochemistry 35:1265212658.
36. Elcock, A. H.,, M. J. Potter,, D. A. Matthews,, D. R. Knighton, and, J. A. McCammon. 1996. Electrostatic channeling in the bifunctional enzyme dihydrofolate reductase-thymidilate synthase. J. Mol. Biol. 262:370374.
37. Ellis, R. J. 2001. Macromolecular crowding: obvious but underappreciated. Trends Biochem. Sci. 26:597604.
38. Glansdorff, N. 1999. On the origin of operons and their possible role in evolution toward thermophily. J. Mol. Evol. 49:432438.
39. Gooljarsingh, L. T.,, J. Ramcharan,, S. Gilroy, and, S. J. Benkovic. 2001. Localization of GAR transformylase in Escherichia coli and mammalian cells. Proc. Natl. Acad. Sci. USA 98:65656570.
40. Gotz, R.,, E. Schluter,, G. Shoham, and, F. K. Zimmerman. 1999. A potential role of the cytoskeleton of Saccharomyces cerevisiae in a functional organization of glycolytic enzymes. Yeast 15:16191629.
41. Guy, H. I.,, and D. R. Evans. 1994. Cloning and expression of the mammalian multifunctional protein CAD in Escherichia coli. Characterization of the recombinant protein and a deletion mutant lacking the major interdomain linker. J. Biol. Chem. 269:2380823816.
42. Hennig, M.,, R. Sterner,, K. Kirschner, and, J. N. Jansonius. 1997. Crystal structure at 2.0 Å resolution of phosphoribosyl anthranilate isomerase from the hyperthermophile Thermotoga maritima: possible determinants of protein stability. Biochemistry 36:60096016.
43. Henn-Sax, M.,, R. Thoma,, S. Schmidt,, M. Hennig,, K. Kirschner, and, R. Sterner. 2002. Two (αβ)8-barrel enzymes of histidine and tryptophan biosynthesis have similar reaction mechanisms and common strategies for protecting their labile substrates. Biochemistry 41:1203212042.
44. Hettwer, S.,, and R. Sterner. 2002. A novel tryptophan synthase β-subunit from the hyperthermophile Thermotoga maritima: quaternary structure, steady-state kinetics, and putative physiological role. J. Biol. Chem. 277:81948201.
45. Hoppert, M.,, and F. Mayer. 1999. Principles of macromolecular organization and cell function in Bacteria and Archaea. Cell Biochem. Biophys. 31:247284.
46. Huang, X.,, Holden, H. M., and, F. M. Raushel. 2001. Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 70:149180.
47. Hyde, C. C.,, S. A. Ahmed,, E. A. Padlan,, E. W. Miles, and, D. R. Davies. 1988. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263:1785717871.
48. Irvine, H. S.,, S. M. Shaw,, A. Paton, and, E. A. Carrey. 1997. A reciprocal allosteric mechanism for efficient transfer of labile intermediates between active sites in CAD, the mammalian pyrimidine-biosynthetic multienzyme polypeptide. Eur. J. Biochem. 247:10631073.
49. Ivens, A.,, O. Mayans,, H. Szadkowski,, M. Wilmanns, and, K. Kirschner. 2001. Purification, characterization and crystallization of thermostable anthranilate phosphoribosyltransferase from Sulfolobus solfataricus. Eur. J. Biochem. 268:22462252.
50. Katchalski-Katzir, E.,, I. Shariv,, M. Eisenstein,, A. A. Friesem,, C. Aflalo, and, I. A. Vakser. 1992. Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89:21952199.
51. Kengen, S. W.,, F. A. De Bok,, N. D. Van Loo,, C. Dijkema,, A. J. Stams, and, W. M. De Vos. 1994. Evidence for the operation of a novel Embden–Meyerhof pathway that involves ADP-dependent kinases during sugar fermentation by Pyrococcus furiosus. J. Biol. Chem. 269:1753717541.
52. Knöchel, T.,, A. Ivens,, G. Hester,, A. Gonzalez,, R. Bauerle,, M. Wilmanns,, K. Kirschner, and, J. Jansonius. 1999. The crystal structure of anthranilate synthase from Sulfolobus solfataricus: functional implications. Proc. Natl. Acad. Sci. USA 96:94799484.
53. Knöchel, T.,, A. Pappenberger,, J. N. Jansonius, and, K. Kirschner. 2002. The crystal structure of indoleglycerol-phosphate synthase from Thermotoga maritima. Kinetic stabilization by salt bridges. J. Biol. Chem. 277:86268634.
54. Krahn, J. M.,, J. H. Kim,, M. R. Burns,, R. J. Parry,, H. Zalkin, and, J. L. Smith. 1997. Coupled formation of an amidotransferase interdomain ammonia channel and a phosphoribosyltransferase active site. Biochemistry 36:1106111068.
55. Larralde, R.,, M. P. Robertson, and, S. L. Miller. 1995. Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc. Natl. Acad. Sci. USA 92:81588160.
56. Lecompte, O.,, R. Ripp,, V. Puzos-Barbe,, S. Duprat,, R. Heilig,, J. Dietrich,, J. C. Thierry, and, O. Poch. 2001. Genome evolution at the genus level: comparison of three complete genomes of hyperthermophilic archaea. Genome Res. 11:981993.
57. Legrain, C.,, M. Demarez,, N. Glansdorff, and, A. Piérard. 1995. Ammonia-dependent synthesis and metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus. Microbiology 141:10931099.
58. Legrain, C.,, V. Villeret,, M. Roovers,, D. Gigot,, O. Dideberg,, A. Piérard, and, N. Glansdorff. 1997. Biochemical characterization of ornithine carbamoyltransferase from Pyrococcus furiosus. Eur. J. Biochem. 247:10461055.
59. Lipscomb, W. N. 1994. Aspartate carbamoyltransferase from Escherichia Coli: activity and regulation. Adv. Enzymol. 68, 67151.
60. Lowry, O. H.,, J. V. Passonneau, and, M. K. Rock. 1961. The stability of pyridine nucleotides. J. Biol. Chem. 236:27562759.
61. Mai, X.,, and M. W. W. Adams. 1996. Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 178:58975903.
62. Malaisse, W. J.,, Y. Zhang, and, A. Sener. 2004. Enzyme-to-enzyme channeling in the early steps of glycolysis in rat pancreatic islets. Endocrine 24:105109.
63. Martins, L. O.,, and H. Santos. 1995. Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosus in response to salinity and temperature. Appl. Environ. Microbiol. 61:32993303.
64. Massant, J. 2004. Molecular physiology of hyperthermophiles: metabolic channeling of carbamoyl phosphate, a thermolabile and potentially toxic intermediate, p. 177. Ph.D. thesis. Vrije Universiteit Brussel, Brussels, Belgium.
65. Massant, J.,, and N. Glansdorff. 2004. Metabolic channelling of carbamoyl phosphate in the hyperthermophilic archaeon Pyrococcus furiosus: dynamic enzyme–enzyme interactions involved in the formation of the channelling complex. Biochem. Soc. Trans. 32:306309.
66. Massant, J.,, and N. Glansdorff. 2005. New experimental approaches to investigate interactions between Pyrococcus furiosus carbamate kinase and carbamoyltransferases, enzymes involved in the channeling of thermolabile carbamoyl phosphate. Archaea, 1, 365373.
67. Massant, J.,, J. Wouters, and, N. Glansdorff. 2003. Refined structure of Pyrococcus furiosus ornithine carbamoyltransferase at 1.87 Å. Acta Cryst. D 59:21402149.
68. Massant, J.,, P. Verstreken,, V. Durbecq,, A. Kholti,, C. Legrain,, S. Beeckmans,, P. Cornelis, and, N. Glansdorff. 2002. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 277:1851718522.
69. Maughan, D. W.,, J. A. Henkin, and, J. O. Vigoreaux. 2005. Concentrations of glycolytic enzymes and other cytosolic proteins in the diffusible fraction of a vertebrate muscle proteome. Mol. Cell. Proteomics 410:15411549.
70. McConkey, E. H. 1982. Molecular evolution, intracellular organization, and the quinary structure of proteins. Proc. Natl. Acad. Sci. USA 79:32363240.
71. Merz, A.,, T. Knöchel,, J. N. Jansonius, and, K. Kirschner. 1999. The hyperthermostable indoleglycerol phosphate synthase from Thermotoga maritima is destabilized by mutational disruption of two solvent-exposed salt bridges. J. Mol. Biol. 288:753763.
72. Meyer, E.,, T. J. Kappock,, C. Osuji, and, J. Stubbe. 1999. Evidence for the direct transfer of the carboxylate of N5-4-carboxy-5-aminoimidazole ribonucleotide (N5-CAIR) to generate 4-carboxy-5-aminoimidazole ribonucleotide catalyzed by Escherichia coli PurE, an N5-CAIR mutase. Biochemistry 38:30123018.
73. Miles, E. W.,, S. Rhee, and, D. R. Davies. 1999. The molecular basis of substrate channeling. J. Biol. Chem. 274:1219312196.
74. Minton, A. P. 2000. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 10:3439.
75. Minton, A. P. 2001. The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276:1057710580.
76. Morollo, A. A.,, and M. J. Eck. 2001. Structure of the cooperative allosteric anthranilate synthase from Salmonella typhimurium. Nat. Struct. Biol. 8:243247.
77. Mowbray, J.,, and V. Moses. 1976. The tentative identification in Escherichia coli of a multienzyme complex with glycolytic activity. Eur. J. Biochem. 66:2536.
78. Mueller, E. J.,, E. Meyer,, J. Rudolph,, V. J. Davisson, and, J. Stubbe. 1994. N5-4-carboxy-5-aminoimidazole ribonucleotide: evidence for a new intermediate and two new enzymatic activities in the de novo purine biosynthetic pathway of Escherichia coli. Biochemistry 33:22692278.
79. Mukund, S.,, and M. W. W. Adams. 1995. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic Archaeon Pyrococcus furiosus. J. Biol. Chem. 270:83898392.
80. Napolitano, M. J.,, and D. H. Shain. 2005. Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9:9398.
81. Nichols, B. P. 1996. Evolution of genes and enzymes of tryptophan biosynthesis, p. 2638–2648. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
82. Nishida, H.,, M. Nishiyama,, N. Kobashi,, T. Kosuge,, T. Hoshino, and, H. Yamane. 1999. A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. Genome Res. 9:11751183.
83. Ogasahara, K.,, M. Ishida, and, K. Yutani. 2003. Stimulated interaction between α and β subunits of tryptophan synthase from hyperthermophile enhances its thermal stability. J. Biol. Chem. 278:89228928.
84. Orosz, F.,, and J. Ovadi. 1987. A simple approach to identify the mechanism of intermediate transfer: enzyme system related to triose phosphate metabolism. Biochim. Biophys. Acta 915:5359.
85. Ovádi, J.,, and V. Saks. 2004. On the origin of intracellular compartmentation and organized metabolic systems. Mol. Cell. Biochem. 256/257:512.
86. Ownby, K.,, H. Xu, and, R. H. White. 2005. A Methanocaldococcus jannaschii archaeal signature gene encodes for a 5-formaminoimidazole-4-carboxamide-1-β-D-ribofuranosyl 5′-monophosphate synthetase: a new enzyme in purine biosynthesis. J. Biol. Chem. 280:1088110887.
87. Pan, G.,, M. F. J. M. Verhagen, and, M. W. W. Adams. 2001. Characterization of pyridine nucleotide coenzymes in the hyper-thermophilic archaeon Pyrococcus furiosus. Extremophiles 5:393398.
88. Pan, P.,, E. Woehl, and, M. F. Dunn. 1997. Protein architecture, dynamics and allostery in tryptophan synthase channeling. Trends Biochem. Sci. 22:2227.
89. Penverne, B.,, M. Belkaïd, and, G. Hervé. 1994. In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. 4. The channeling of carbamylphosphate to aspartate transcarbamylase and its partition in the pyrimidine and arginine pathways. Arch. Biochem. Biophys. 309:8593.
90. Perham, R. N. 2000. Swinging arms and swinging domains in multifunctional enzymes: catalytic machines for multistep reactions. Annu. Rev. Biochem. 69:9611004.
91. Pittard, A. J. 1996. Biosynthesis of aromatic amino acids, p. 458–484. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
92. Powers-Lee, S. G.,, R. A. Mastico and, M. Bendayan. 1987. The interaction of rat liver carbamoyl phosphate synthetase and ornithine transcarbamoylase with inner mitochondrial membranes. J. Biol. Chem. 262:1568315688.
93. Purcarea, C.,, A. Ahuja,, T. Lu,, L. Kovari,, H. I. Guy, and, D. R. Evans. 2003. Aquifex aeolicus aspartate transcarbamoylase, an enzyme specialized for the efficient utilization of unstable carbamoyl phosphate at elevated temperature. J. Biol. Chem. 278:5292452934.
94. Purcarea, C.,, G. Erauso,, D. Prieur, and, G. Hevvé. 1994. The catalytic and regulatory properties of aspartate carbamoyltransferase from pyrococcus abyss: a new deep-sea hyperthermophilic archacobacterium. Microbiology 140, 19671975.
95. Purcarea, C.,, D. R. Evans, and, G. Hervé. 1999. Channeling of carbamoyl phosphate to the pyrimidine and arginine biosynthetic pathways in the deep sea hyperthermophilic archaeon Pyrococcus abyssi. J. Biol. Chem. 274:61226129.
96. Rakus, D.,, M. Pasek,, H. Krotkiewski, and, A. Dzugaj. 2004. Interaction between muscle aldolase and muscle fructose 1,6-bisphophatase results in the substrate channeling. Biochemistry 43:1494814957.
97. Ramirez, F.,, J. F. Marecek, and, J. Szamosi. 1980. Magnesium and calcium ion effects on hydrolysis rates of adenosine-5′-triphosphate. J. Org. Chem. 45:47484752.
98. Ramón-Maiques, S.,, A. Marina,, M. Uriarte,, I. Fita, and, V. Rubio. 2000. The 1.5 Å resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. J. Mol. Biol. 299:463476.
99. Robb, F. T.,, J. B. Park, and, M. W. Adams. 1992. Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim. Biophys. Acta 1120:267272.
100. Ronimus, R. S.,, and H. W. Morgan. 2003. Distribution and phylogenies of enzymes of the Embden–Meyerhof–Parnas pathway from archaea and hyperthermophilic bacteria support a gluconeogenic origin of metabolism. Archaea 1:199221.
101. Rudolph, J.,, and J. Stubbe. 1995. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Biochemistry 34:22412250.
102. Santos, H.,, and M. S. da Costa. 2002. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol. 4:501509.
103. Schäfer, T.,, and P. Schönheit. 1993. Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden–Meyerhof pathway. Arch. Microbiol. 159:354363.
104. Schäfer, T.,, M. Selig, and, P. Schönheit. 1993. Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch. Microbiol. 159:7283.
105. Schramm, A.,, B. Siebers,, B. Tjaden,, H. Brinkman, and, R. Hensel. 2000. Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: physiological role and phylogenetic aspects. J. Bacteriol. 182:20012009.
106. Schreiber, S. L. 2005. Small molecules: the missing link in the central dogma. Nat. Chem. Biol. 1:6466.
107. Schurig, H.,, N. Beaucamp,, R. Ostendorp,, R. Jaenicke,, E. Adler, and, J. R. Knowles. 1995. Phospholycerate kinase and triosephosphate isomerase from the hyperthermophilic bacterium Thermotoga maritima from a covalent bifunctional enzyme complex. EMBO J. 14:442451.
108. Selig, M.,, K. B. Xavier,, H. Santos, and, P. Schönheit. 1997. Comparative analysis of Embden–Meyerhof and Entner–Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch. Microbiol. 167:217232.
109. Serre, V.,, H. Guy,, X. Liu,, B. Penverne,, G. Hervé, and, D. Evans. 1998. Allosteric regulation and substrate channeling in multifunctional pyrimidine biosynthetic complexes: analysis of isolated domains and yeast-mammalian chimeric proteins. J. Mol. Biol. 281:363377.
110. Shearer, G.,, J. C. Lee,, J. Koo, and, D. H. Kohl. 2005. Quantitative estimation of channeling from early glycolytic intermediates to CO2 in intact Escherichia coli. FEBS J. 272:32603269.
111. Siebers, B.,, B. Tjaden,, K. Michalke,, C. Dörr,, H. Ahmed,, M. Zaparty,, P. Gordon,, C. W. Sensen,, A. Zibat,, H.-P. Klenk,, S. C. Schuster, and, R. Hensel. 2004. Reconstruction of the central carbohydrate metabolism of Thermoproteus tenax by use of genomic and biochemical data. J. Bacteriol. 186:21792194.
112. Siebers, B.,, H.-P. Klenk, and, R. Hensel. 1998. PPi-dependent phophofructokinase from Thermoproteus tenax, an archaeal descendant of an ancient line in phosphofructokinase evolution. J. Bacteriol. 180:21372143.
113. Smith, E. T.,, J. M. Blamey, and, M. W. Adams. 1994. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga maritima, have different catalytic mechanisms. Biochemistry 33:10081016.
114. Smith, G. K.,, W. T. Mueller,, G. F. Wasserman,, W. D. Taylor, and, S. J. Benkovic. 1980. Characterization of the enzyme complex involving the folate-requiring enzymes of de novo purine biosynthesis. Biochemistry 19:43134321.
115. Souciet, J. L.,, M. Nagy,, M. Le Gouar,, F. Lacroute, and, S. Potier. 1989. Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase–aspartate transcarbamylase complex. Gene 79:5970.
116. Spivey, H. O.,, and J. Ovádi. 1998. Substrate channeling. Methods 19:306321.
117. Srere, P. A. 1987. Complexes of sequential metabolic enzymes. Annu. Rev. Biochem. 56:89124.
118. Srere, P. A.,, and K. Mosbach. 1974. Metabolic compartmentation: symbiotic, organellar, multienzymic, and microenvironmental. Annu. Rev. Microbiol. 28:6183.
119. Sterner, R.,, A. Dahm,, B. Darimont,, A. Ivens,, W. Liebl, and, K. Kirschner. 1995. (βα)8-barrel proteins of tryptophan biosynthesis in the hyperthermophile Thermotoga maritima. EMBO J. 14:43954402.
120. Sterner, R.,, G. R. Kleemann,, H. Szadkowski,, A. Lustig,, M. Hennig, and, K. Kirschner. 1996. Phosphoribosyl anthranilate isomerase from Thermotoga maritima is an extremely stable and active homodimer. Protein Sci. 5:20002008.
121. Tutino, M. L.,, G. Scarano,, G. Marino,, G. Sannia, and, M. V. Cubellis. 1993. Tryptophan biosynthesis genes trpEGC in the thermoacidophilic archaebacterium Sulfolobus solfataricus. J. Bacteriol. 175:299302.
122. Uriarte, M.,, A. Marina,, S. Ramón-Maiques,, I. Fita, and, V. Rubio. 1999. The carbamoyl-phosphate synthetase of Pyrococcus furiosus is enzymologically and structurally a carbamate kinase. J. Biol. Chem. 274:1629516303.
123. Van Boxstael, S.,, R. Cunin,, S. Khan, and, D. Maes. 2003. Aspartate transcarbamylase from the hyperthermophilic archaeon Pyrococcus abyssi: thermostability and 1.8 Å resolution crystal structure of the catalytic subunit complexed with the bisubstrate analogue N-phosphonacetyl-l-aspartate. J. Mol. Biol. 326:203216.
124. Van de Casteele, M.,, L. Desmarez,, C. Legrain,, P. G. Chen,, K. Van Lierde,, A. Piérard, and, N. Glansdorff. 1994. Genes encoding thermophilic aspartate carbamoyltransferases of Thermus aquaticus ZO5 and Thermotoga maritima MSB8: modes of expression in E. coli and properties of their products. Biocatalysis 11:165179.
125. Van de Casteele, M.,, M. Desmarez,, C. Legrain,, N. Glansdorff, and, A. Piérard. 1990. Pathways of arginine biosynthesis in extreme thermophilic archaeo- and eubacteria. J. Gen. Microbiol. 136:11771183.
126. Van de Casteele, M.,, C. Legrain,, L. Desmarez,, P. G. Chen,, A. Piérard, and, N. Glansdorff. 1997. Molecular physiology of carbamoylation under extreme conditions: what can we learn from extreme thermophilic microorganisms? Comp. Biochem. Physiol. 118A:463473.
127. Vélot, C.,, M. B. Mixon,, M. Teige, and, P. A. Srere. 1997. Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry 36:1427114276.
128. Verhees, C. H.,, S. W. M. Kengen,, J. E. Tuininga,, G. J. Schut,, M. W. W. Adams,, W. M. de Vos, and, J. van der Oost. 2003. The unique features of glycolytic pathways in Archaea. Biochem. J. 375:231246.
129. Villerct, V.,, B. Clantin,, C. Tricot,, C. Legrain,, M. Roovers,, V. Stalon,, N. Glamdorff, and, J. Van Beeumen, 1998. The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for the oligomerization in enzyme stability at high temperatures. Proc. Natl. Acad. Sci. USA 95, 28012806.
130. Walden, H.,, G. L. Taylor,, E. Lorentzen,, E. Pohl,, H. Lilie,, A. Schramm,, T. Knura,, K. Stubbe,, B. Tjaden, and, R. Hensel. 2004a. Structure and function of a regulated archaeal triosephosphate isomerase adapted to high temperature. J. Mol. Biol. 342:861875.
131. Walden, H.,, G. Taylor,, H. Lilie,, T. Knura, and, R. Hensel. 2004b. Triosephosphate isomerase of the hyperthermophile Thermoproteus tenax: thermostability is not everything. Biochem. Soc. Trans. 32:305.
132. Walsh, K. A.,, R. M. Daniel, and, H. W. Morgan. 1983. A soluble NADH dehydrogenase (NADH: ferricyanide oxidoreductase) from Thermus aquaticus strain T351. Biochem. J. 209:427433.
133. White, R. H. 1993. Structures of the modified folates in the thermophilic archaebacteria Pyrococcus furiosus. Biochemistry 32:745753.
134. White, R. H. 1997. Purine biosynthesis in the domain Archaea without folates or modified folates. J. Bacteriol. 179:33743377.
135. Zalkin, H. 1993. Overview of multienzyme systems in biosynthetic pathways. Biochem. Soc. Trans. 21:203207.
136. Zalkin, H.,, and P. Nygaard. 1996. Biosynthesis of purine nucleotides, p. 561–579. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error