1887

Chapter 7 : The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap07-2.gif

Abstract:

Many thermophiles and hyperthermophiles (from now on designated (hyper)thermophiles) have been isolated from both fresh water and seawater sources. Compatible solutes must be highly soluble and they usually belong to one of the following groups of compounds: amino acids, sugars, polyols, betaines, and ectoines. In general, compatible solutes accumulate to high levels in the cytoplasm. The relative abundance combined with the low molecular mass of these compounds greatly facilitates the task of their molecular identification by resorting to two powerful analytical techniques: nuclear magnetic resonance (NMR) and mass spectrometry. The mannosyl-3-phosphoglycerate synthase (MPGS) characterized to date produce mannosyl-3-phosphoglycerate with the same anomeric configuration of the substrate and accordingly have been classified as members of glycosyltransferases family GT55, which comprises GDP-mannose: α-mannosyltransferases that retain the anomeric configuration of the substrate. The evolution of MG biosynthesis is a fascinating topic but a meaningful discussion would demand more ample data sets and reliable tools for genome analysis. Diglycerol phosphate (DGP) biosynthesis was investigated by the author and his team on . In the case of solutes from hyperthermophiles, it was shown that the protecting effect was clearly dependent on the solute charge. The melting temperature of bovine ribonuclease A (RNase A) in the presence and absence of 2-a-O-mannosylglycerate (MG) depends on the ionization state of the solute. Due to the enhanced ability to stabilize biological materials, the application of hypersolutes in industrial applications was soon envisioned, and several industrial patents on their uses have been filed.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7

Key Concept Ranking

Bacteria and Archaea
0.5533554
16s rRNA Sequencing
0.40228885
0.5533554
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Compatible solutes primarily restricted to hyperthermophiles.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Distribution of trehalose (circles), mannosylglycerate (diamonds) and di--inositol-1,1′-phosphate (stars) among (hyper)thermophiles. Tree of Life adapted from . The question marks indicate unknown positions of the branching points between the three domains.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The two pathways for the synthesis of mannosylglycerate in . Single-step pathway uses mannosylglycerate synthase (MGS), while the two-step pathway involves the actions of mannosyl-3-phosphoglycerate synthase (MPGS) and mannosyl-3-phosphoglycerate phosphatase (MPGP).

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Unrooted phylogenetic tree based on known or putative sequences of mannosyl-3-phosphoglycerate synthase genes. The ClustalX and TreeView programs 5,7 were used for sequence alignment and to generate the phylogenetic tree. The significance of the branching order was evaluated by bootstrap analysis of 1000 computer-generated trees. Bar, 0.1 change per site. Abbreviations: Aper, ; Apro, ; Aven, ; Deth, ; Mgri, ; Ncra, ; Pfer, ; Paby, ; Pfur, ; Phor, ; Rmar, ; Tthe, ; Tlit, .

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Genomic organization of mannosylglycerate biosynthesis via the two-step pathway. Black arrows indicate genes; dark grey arrows indicate the genes; light grey arrow represents the phosphomannose isomerase/mannose-1-phosphate guanylyltransferase; the white arrow indicates phosphomannomutase.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Dependence of the melting temperature of RNase A on pH in the absence of solutes (squares and thin line) and with 0.5 M mannosylglycerate (circles and thick line).

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Effect of solutes on the melting temperature of staphylococcal nuclease (SNase) and pig heart malate dehydrogenase (MDH). Abbreviations: Tre, trehalose; MG, α-mannosylglycerate; MGA, α-mannosylglyceramide; DIP, di- -inositol-1,1′-phosphate; DGP, diglycerol phosphate; KCl, potassium chloride; Gly, glycerol; Ect, ectoine; Hect, hydroxyectoine.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Schematic representation of the preferential exclusion of solutes from the protein surface in the native and unfolded states. Upon denaturation, the zone of exclusion increases and, although the same amount of solute molecules is depicted, these become locally more concentrated, i.e., their chemical potential has increased. As a consequence, to achieve thermodynamic equilibrium, the unfolding reaction is displaced to the native state, hence the solute acts as a stabilizer.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Fluorescence decay times of staphylococcal nuclease as a function of temperature in the presence of 0.5 M mannosylglycerate (solid symbols) and in the absence of solutes (open symbols). Native protein: triangles; denatured states of the protein: squares and circles.

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch07
1. Adams, M. 1993. Enzymes and proteins from organisms that grow near and above 100°C. Annu. Rev. Microbiol. 47:627658
2. Alarico, S.,, N. Empadinhas,, C. Simões,, Z. Silva,, A. Henne,, A. Mingote,, H. Santos, and, M. S. da Costa. 2005. Distribution of genes for synthesis of trehalose and mannosylglycerate in Thermus spp. and direct correlation of these genes with halotolerance. Appl. Environ. Microbiol. 71:24602466
3. Arakawa, T.,, and S. N. Timasheff. 1982a. Stabilization of protein structure by sugars. Biochemistry. 21:65366544
4. Arakawa, T.,, and S. N. Timasheff. 1982b. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 21:65456552
5. Arakawa, T.,, and S. N. Timasheff. 1983. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch. Biochem. Biophys. 224:169177
6. Arakawa, T.,, and S. N. Timasheff. 1985a. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 24:67566762
7. Arakawa, T.,, and S. N. Timasheff. 1985b. The stabilization of proteins by osmolytes. Biophys. J. 47:411414
8. Baldwin, R. L. 1996. How Hofmeister ion interactions affect protein stability. Biophys. J. 71:20562063
9. Blöchl, E.,, S. Burggraf,, G. Fiala,, G. Lauerer,, G. Huber,, H. Huber,, R. Rachel,, A. Segerer,, K. O. Stetter, and, P. Völkl. 1995. Isolation, taxonomy and phylogeny of hyperthermophilic microorganisms. World J. Microbiol. Biotechnol. 11:916
10. Borges, N.,, A. Ramos,, N. D. H. Raven,, R. J. Sharp, and, H. Santos. 2002. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles. 6:209216
11. Borges, N.,, J. D. Marugg,, N. Empadinhas,, M. S. da Costa, and, H. Santos. 2004. Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J. Biol. Chem. 279:98929898
12. Bouveng, H.,, B. Lindberg, and, B. Wickberg. 1955. Low-molecular carbohydrates in algae. Acta Chem. Scand. 9:807809
13. Brown, A. D. 1976. Microbial water stress. Bacteriol. Rev. 40:803846
14. Busby, T. F.,, and K. C. Ingham. 1984. Thermal stabilization of antithrombin III by sugars and sugar derivatives and the effects of nonenzymatic glycosylation. Biochim. Biophys. Acta. 799:8089
15. Ciulla, R. A.,, S. Burggraf,, K. O. Stetter, and, M. F. Roberts. 1994. Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl. Env. Microbiol. 60:36603664
16. Chen, L.,, E. T. Spiliotis, and, M. F. Roberts. 1998. Biosynthesis of di-myo-inositol-1,1′-phosphate, a novel osmolyte in hyperthermophilic archaea. J. Bacteriol. 180:37853792
17. Chen, L.,, C. Zhou,, H. Yang, and, M. F. Roberts. 2000. Inositol-1-phosphate synthase from Archaeoglobus fulgidus is a class II aldolase. Biochemistry. 39:1241512423
18. da Costa, M. S.,, H. Santos, and, E. A. Galinski. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61:117153
19. Davis-Searles, P. R.,, A. J. Saunders,, D. A. Erie,, D. J. Winzor, and, G. J. Pielak. 2001. Interpreting the effect of small uncharged solutes on protein-folding equilibria. Annu. Rev. Biophys. Biomol. Struct. 30:271306
20. Empadinhas, N.,, J. D. Marugg,, N. Borges,, H. Santos, and, M. S. da Costa. 2001. Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. J. Biol. Chem. 276:4358043588
21. Empadinhas, N.,, L. Albuquerque,, A. Henne,, H. Santos, and, M. S. da Costa. 2003. The bacterium Thermus thermophilus, like hyperthermophilic archaea, uses a two-step pathway for the synthesis of mannosylglycerate. Appl. Environ. Microbiol. 69:32723279
22. Empadinhas, N.,, L. Albuquerque,, J. Costa,, S. H. Zinder,, M. A. Santos,, H. Santos, and, M. S. da Costa. 2004. A gene from the mesophilic bacterium Dehalococcoides ethenogenes encodes a novel mannosylglycerate synthase. J. Bacteriol. 186: 40754084
23. Empadinhas, N. 2004. Pathways for the synthesis of mannosylglycerate in prokaryotes: genes, enzymes and evolutionary implications. Ph. D. thesis, University of Coimbra, Portugal.
24. Faria, T. Q.,, S. Knapp,, R. Ladenstein,, A. L. Maçanita, and, H. Santos. 2003. Protein stabilisation by compatible solutes: effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. ChemBioChem. 4:734741
25. Faria, T. Q.,, J. C. Lima,, M. Bastos,, A. L. Macanita, and, H. Santos. 2004. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry. J. Biol. Chem. 279:4868048691
26. Flint, J.,, E. Taylor,, M. Yang,, D. N. Bolam,, L. E. Tailford,, C. Martinez-Fleites,, E. J. Dodson,, B. G. Davis,, H. J. Gilbert, and, G. J. Davies. 2005. Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat. Struct. Mol. Biol. 12:608614
27. Foord, R. L.,, and R. J. Leatherbarrow. 1998. Effect of osmolytes on the exchange rates of backbone amide proton in proteins. Biochemistry. 37:29692978
28. Galinski, E. A. 1995. Osmoadaptation in Bacteria. Adv. Microb. Physiol. 37:272328
29. Gekko, K.,, and S. N. Timasheff. 1981. Thermodynamic and kinetic examination of protein stabilization by glycerol. Biochemistry. 20:46774686
30. Gonçalves, L. G.,, R. Huber,, M. S. da Costa, and, H. Santos. 2003. A variant of the hyperthermophile Archaeoglobus fulgidus adapted to grow at high salinity. FEMS Microbiol. Lett. 218:239244
31. Gorkovenko, A.,, M. F. Roberts, and, R. H. White. 1994. Identification, biosynthesis, and function of 1,3,4,6-hexanetetracarboxylic acid in Methanobacterium thermoautotrophicum DeltaH. Appl. Environ. Microbiol. 60:12491253
32. Hensel, R., and H. König. 1988. Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol. Lett. 49:7579
33. Hensel, R. 1993. Proteins of extreme thermophiles. New Comp. Biochem. 26:209221
34. Karsten, U.,, K. D. Barrow,, A. S. Mostaert,, R. J. King, and, J. A. West. 1994. 13C- and 1H-NMR studies on digeneaside in the red alga Caloglossa leprieurii. A re-evaluation of its osmotic significance. Plant Physiol. Biochem. 32:669676
35. Kaushik, J. K.,, and R. Bhat. 1998. Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J. Phys. Chem. B. 102:70587066
36. Kaushik, J. K., and R. Bhat. 1999. A mechanistic analysis of the increase in the thermal stability of proteins in aqueous carboxylic acid salt solutions. Protein Sci. 8:222233
37. Lamosa, P.,, L. O. Martins,, M. S. da Costa, and, H. Santos. 1998. Effects of temperature, salinity, and medium composition on compatible solute accumulation by Thermococcus spp. Appl. Environ. Microbiol. 64:35913598
38. Lamosa, P.,, A. Burke,, R. Peist,, R. Huber,, M. Y. Liu,, G. Silva,, C. Rodrigues-Pousada,, J. LeGall,, C. Maycock, and, H. Santos. 2000. Thermostabilization of proteins by diglycerol phosphate, a new compatible solute from the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 66:19741979
39. Lamosa, P.,, L. Brennan,, H. Vis,, D. L. Turner, and, H. Santos. 2001. NMR structure of Desulfovibrio gigas rubredoxin: a model for studying protein stabilization by compatible solutes. Extremophiles. 5:303311.
40. Lamosa, P.,, D. L. Turner,, R. Ventura,, C. Maycock, and, H. Santos. 2003. Protein stabilization by compatible solutes: effect of diglycerol phosphate on the dynamics of Desulfovibrio gigas rubredoxin studied by NMR. Eur. J. Biochem. 270:46064614
41. Lee, J. C.,, and S. N. Timasheff. 1981. The stabilization of proteins by sucrose. J. Biol. Chem. 256:71937201
42. Lin, T. Y.,, and S. N. Timasheff. 1996. On the role of surface tension in the stabilization of globular proteins. Protein Sci. 5:372381
43. Liu, Y.,, and D. W. Bolen. 1995. The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry. 34:1288412891
44. Martin, D. D.,, R. A. Ciulla, and, M. F. Roberts. 1999. Osmoadaptation in Archaea. Appl. Environ. Microbiol. 65:18151825
45. Martins, L. O.,, and H. Santos. 1995. Accumulation of mannosylglycerate and di-myo-inositol-phosphate by Pyrococcus furiosos in response to salinity and temperature. Appl. Environ. Microbiol. 61:32993303
46. Martins, L. O.,, L. S. Carreto,, M. S. da Costa, and, H. Santos. 1996. New compatible solutes related to di-myo-inositol-phosphate in members of the order Thermotogales. J. Bacteriol. 178:56445651
47. Martins, L. O.,, R. Huber,, H. Huber,, K. O. Stetter,, M. S. da Costa, and, H. Santos. 1997. Organic solutes in hyperthermophilic Archaea. Appl. Environ. Microbiol. 63:896902
48. Martins, L. O.,, N. Empadinhas,, J. D. Marugg,, C. Miguel,, C. Ferreira,, M. S. da Costa, and, H. Santos. 1999. Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus. Biochemical and genetic characterization of a mannosylglycerate synthase. J. Biol. Chem. 274:3540735414
49. Neves, C.,, M. S. da Costa, and, H. Santos. 2005. Compatible solutes of the hyperthermophile Palaeococcus ferrophilus: osmoadaptation and thermoadaptation in the order Thermococcales. Appl. Environ. Microbiol. 71:80918098
50. Nunes, O. C.,, C. M. Manaia,, M. S. da Costa, and, H. Santos. 1995. Compatible solutes in the thermophilic bacteria Rhodothermus marinus and “Thermus thermophilus”. Appl. Environ. Microbiol. 61:23512357
51. Oren, A. 1999. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63:334348
52. Pais, T. M.,, P. Lamosa,, W. dos Santos,, J. LeGall,, D. L. Turner, and, H. Santos. 2005. Structural determinants of protein stabilization by solutes. The importance of the hairpin loop in rubredoxins. FEBS J. 272:9991011
53. Pittz, E. P.,, and S. N. Timasheff. 1978. Interaction of ribonuclease A with aqueous 2-methyl-2,4-pentanediol at pH 5.8. Biochemistry 17:615623
54. Qu, Y.,, C. L. Bolen, and, D. W. Bolen. 1998. Osmolyte-driven contraction of a random coil protein. Proc. Natl. Acad. Sci. USA. 95:92689273
55. Ramakrishnan, V.,, Q. Teng, and, M. W. Adams. 1997. Characterization of UDP amino sugars as major phosphocompounds in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 179:15051512
56. Ramos, A.,, N. D. H. Raven,, R. J. Sharp,, S. Bartolucci,, M. Rossi,, R. Cannio,, J. Lebbink,, J. van der Oost,, W. M. de Vos, and, H. Santos. 1997. Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate. Appl. Environ. Microbiol. 63:40204025
57. Ramos, C. H. I.,, and R. L. Baldwin. 2002. Sulfate anion stabilization of native ribonuclease A both by anion binding and the Hofmeister effect. Protein Sci. 11:17711778
58. Robertson, D. E.,, M. F. Roberts,, N. Belay,, K. O. Stetter, and, D. R. Boone. 1990. Occurrence of β-glutamate, a novel osmolyte, in marine methanogenic bacteria. Appl. Environ. Microbiol. 56: 15041508
59. Rohlin, L.,, J. D. Trent,, K. Salmon,, U. Kim,, R. P. Gunsalus, and, J. C. Liao. 2005. Heat shock response in Archaeoglobus fulgidus. J. Bacteriol. 187:60466057
60. Santos, H.,, P. Lamosa,, A. Burke, and, C. Maycock. 1999. Thermostabilisation, osmoprotection, and protection against desiccation of enzymes, and cell components by di-glycerol- phosphate. European patent no. 98670002.9.
61. Santos, H.,, and M. S. da Costa. 2001. Organic solutes from thermophiles and hyperthermophiles. Methods Enzymol. 334:302315
62. Santos, H.,, and M. S. da Costa. 2002. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol. 4:501509
63. Santos, H.,, P. Lamosa,, C. Jorge, and, M. S. da Costa. 2003. Diglycosyl glyceryl compounds for the stabilisation or preservation of biomaterials. Submitted to the European Patent Office. (International publication number WO 2004/094631 A1).
64. Santos, H.,, P. Lamosa,, N. D. Raven,, L. G. Gonçalves, and, M. V. Rodrigues. 2005. Glycerophosphoinositol as a stabilizer and/or preservative of biological materials. Submitted to the European Patent Office.
65. Santos, H.,, P. Lamosa, and, N. Borges. 2006. Characterization of organic compatible solutes of thermophilic microorganisms, p. 171–198. In A. Oren and, F. Rainey (ed.), Methods in Microbiology: Extremophiles. Elsevier, Amsterdam, The Netherlands.
66. Scholz, S.,, J. Sonnenbichler,, W. Schäfer, and, R. Hensel. 1992. Di-myo-inositol-1,1′-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 306:239242
67. Scholz, S.,, S. Wolff, and, R. Hensel. 1998. The biosynthesis pathway of di-myo-inositol-1,1′-phosphate in Pyrococcus woesei. FEMS Microbiol. Lett. 168:3742
68. Shima, S.,, D. A. Hérault,, A. Berkessel, and, R. K. Thauer. 1998. Activation and thermostabilization effects of cyclic 2,3-diphosphoglycerate on enzymes from the hyperthermophilic Methanopyrus kandleri. Arch. Microbiol. 170:469472
69. Schokley, K. R.,, D. E. Ward,, S. R. Chhabra,, S. B. Conners,, C. I. Montero, and, R. M. Kelly. 2003. Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus. Appl. Environ. Microbiol. 69:23652371
70. Silva, Z.,, N. Borges,, L. O. Martins,, R. Wait,, M. S. da Costa, and, H. Santos. 1999. Combined effect of the growth temperature and salinity of the medium on the accumulation of compatible solutes by Rhodothermus marinus and Rhodothermus obamensis. Extremophiles. 3:163172
71. Timasheff, S. N. 1993. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:6797

Tables

Generic image for table
Table 1.

Distribution of compatible solutes of (hyper)thermophilic microorganisms

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7
Generic image for table
Table 2.

Biochemical properties of recombinant mannosyl-3-phosphoglycerate synthase from and

Citation: Santos H, Lamosa P, Faria T, Borges N, Neves C. 2007. The Physiological Role, Biosynthesis, and Mode of Action of Compatible Solutes from (Hyper)Thermophiles, p 86-103. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error