Chapter 8 : Membrane Adaptations of (Hyper)Thermophiles to High Temperatures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap08-2.gif


This chapter discusses the recent insights into the mechanisms of membrane adaptation of and to high temperatures, with an emphasis on the structure and function of the lipids that constitute the membrane of hyperthermophiles. The cytoplasmic membrane plays an essential role in many metabolic processes, energy transduction, and signaling. Membranes of bacteria mainly contain phospholipids with a core structure consisting of a glycerol, a three-carbon alcohol, to which two fatty acid acyl chains are linked via ester bonds. The archaeal membrane lipids differ in composition from those of bacteria in three important ways. First, the lipid acyl chains are joined to a glycerol backbone by ether rather than ester linkages. High temperatures impose a burden on the cellular metabolism and require a higher stability of enzymes and other macromolecules. Second, the acyl chains are branched rather than linear. Finally, the stereochemistry of the central glycerol is inverted as compared with the ester-based phospholipids. Ether links are far more resistant to oxidation and high temperatures than ester links. Consequently, liposomes prepared from archaeal tetraether lipids are more thermostable. respond to changes in ambient temperature through adaptations of the lipid composition of their cytoplasmic membranes. The thermoresistance and tolerance of the membranes of hyperthermophiles is likely a result of an interplay between lipids and proteins.

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8

Key Concept Ranking

Bacteria and Archaea
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Schematic representation of the magnitude and composition of the proton motive force (PMF) and intracellular pH as a function of the extracellular pH for acido-, neutro-, and alkaliphilic bacteria. The compositions of the PMF, i.e., the transmembrane electrical potential (Δψ) and pH gradient (–ΔpH), are indicated separately. The scheme is a mosaic obtained from bioenergetic studies of various bacteria, but depending on the membrane proton permeability, the exact magnitude of the various components of the PMF may be different for individual species.

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model of a phospholipid membrane in the gel (A) and fluid (B) phase showing the high mobility of the acyl chains in the fluid membrane phase. The picture represents a slab image of 1-palmitoyl 2-oleoyl phosphatidyl choline bilayers that were obtained by molecular dynamics simulations as described by . The picture was generated with PyMOL (http://pymol.sourceforge.net/).

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Core structures of phospholipids in bacteria and tetraether lipids in . (A) Diacylglycerol in bacteria; and the archaeal tetraether lipids; (B) caldarchaeol; (C) isocaldarchaeol; (D) calditoglycerocaldarchaeol; and (E) crenarchaeol.

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Freeze-fracture (A, C) and freeze-etch (B, D) replicas of and of lipid vesicles. Freeze-fracture of (A) and lipid (B). The tetraether lipid vesicles show no fracture face as they form monolayers that cannot be cut in the middle of the membrane. Freeze-etching of (C) and lipid (D), showing the surface of the vesicles. The arrow indicates the direction of shadowing. Bar = 200 nm. Taken from with permission.

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Schematic presentation of the proton permeabilities of membranes from and that live at different temperatures. Data were obtained by measuring the proton permeabilities of liposomes made of the lipids of the respective organisms at different temperatures. At the respective growth temperatures, the proton permeabilities fall within a narrow window (gray bar). The bacteria and have a permeability that is higher than that in the other organisms at their respective growth temperature. From and adapted, with permission.

Citation: Driessen A, Albers S. 2007. Membrane Adaptations of (Hyper)Thermophiles to High Temperatures, p 104-116. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, M. W. 1993. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu. Rev. Microbiol. 47:627658
2. Albers, S. V.,, Z. Szabo, and, A. J. M. Driessen. 2006. Protein secretion in the Archaea: multiple paths towards a unique cell surface. Nat. Rev. Microbiol. 4:537547
3. Albers, S. V.,, J. L. C. M. van de Vossenberg,, A. J. M. Driessen, and, W. N. Konings. 2001. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5:285294
4. Antranikian, G.,, C. E. Vorgias, and, C. Bertoldo. 2005. Extreme environments as a resource for microorganisms and novel bio-catalysts. Adv. Biochem. Eng. Biotechnol. 96:219262
5. Bartucci, R.,, A. Gambacorta,, A. Gliozzi,, D. Marsh, and, L. Sportelli. 2005. Bipolar tetraether lipids: chain flexibility and membrane polarity gradients from spin-label electron spin resonance. Biochemistry 44:1501715023
6. Belly, R. T.,, and T. D. Brock. 1972. Cellular stability of a thermophilic, acidophilic mycoplasma. J. Gen. Microbiol. 73:465469
7. Bernhardt, G.,, R. Jaenicke,, H. D. Ludemann,, H. Konig, and, K. O. Stetter. 1988. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl. Environ. Microbiol. 54:12581261
8. Beveridge, T. J.,, C. G. Choquet,, G. B. Patel, and, G. D. Sprott. 1993. Freeze-fracture planes of methanogen membranes correlate with the content of tetraether lipids. J. Bacteriol. 175:11911197
9. Blocher, D.,, R. Gutermann,, B. Henkel, and, K. Ring. 1990. Physic-ochemical characterization of tetraether lipids from Thermo-plasma acidophilum. V. Evidence for the existence of a metastable state in lipids with acyclic hydrocarbon chains. Biochim. Biophys. Acta 1024:5460
10. Blochl, E.,, R. Rachel,, S. Burggraf,, D. Hafenbradl,, H. W. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:1421
11. Brock, T. D.,, K. M. Brock,, R. T. Belly, and, R. L. Weiss. 1972. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol. 84:5468
12. Burggraf, S.,, K. O. Stetter,, P. Rouviere, and, C. R. Woese. 1991. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. Syst. Appl. Microbiol. 14:346351
13. Canganella, F.,, J. M. Gonzalez,, M. Yanagibayashi,, C. Kato, and, K. Horikoshi. 1997. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch. Microbiol. 168:17
14. Chang, E. L. 1994. Unusual thermal stability of liposomes made from bipolar tetraether lipids. Biochem. Biophys. Res. Commun. 202:673679
15. Choquet, C. G.,, G. B. Patel,, T. J. Beveridge, and, G. D. Sprott. 1992. Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl. Environ. Microbiol. 58:28942900
16. Choquet, C. G.,, G. B. Patel,, T. J. Beveridge, and, G. D. Sprott. 1994. Stability of pressure-extruded liposomes made from archaeobacterial ether lipids. Appl. Microbiol. Biotechnol. 42:375384
17. Conlan, J. W.,, L. Krishnan,, G. E. Willick,, G. B. Patel, and, G. D. Sprott. 2001. Immunization of mice with lipopeptide antigens encapsulated in novel liposomes prepared from the polar lipids of various Archaeobacteria elicits rapid and prolonged specific protective immunity against infection with the facultative intracellular pathogen, Listeria monocytogenes. Vaccine 19:35093517
18. Cowen, D. A. 2004. The upper temperature of life—where do we draw the line? Trends Microbiol. 12:5860
19. De Rosa, M.,, and A. Gambacorta. 1988. The lipids of archaebacteria. Prog. Lipid Res. 27:153175
20. De Rosa, M.,, A. Gambacorta, and, A. Gliozzi. 1986. Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50:7080
21. de Vrij, W.,, R. A. Bulthuis, and, W. N. Konings. 1988. Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species. J. Bacteriol. 170:23592366
22. Elferink, M. G.,, T. Bosma,, J. S. Lolkema,, M. Gleiszner,, A. J. M. Driessen, and, W. N. Konings. 1995. Thermostability of respiratory terminal oxidases in the lipid environment. Biochim. Biophys. Acta 1230:3137
23. Elferink, M. G.,, J. G. de Wit,, R. Demel,, A. J. M. Driessen, and, W. N. Konings. 1992. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J. Biol. Chem. 267:13751381
24. Elferink, M. G.,, J. G. de Wit,, A. J. M. Driessen, and, W. N. Konings. 1994. Stability and proton-permeability of liposomes composed of archaeal tetraether lipids. Biochim. Biophys. Acta 1193:247254
25. Esser, A. F.,, and K. A. Souza. 1974. Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 71:41114115
26. Fan, Q.,, A. Relini,, D. Cassinadri,, A. Gambacorta, and, A. Gliozzi. 1995. Stability against temperature and external agents of vesicles composed of archael bolaform lipids and egg PC. Biochim. Biophys. Acta 1240:8388
27. Gaughran, E. R. L. 1947. The saturation of bacterial lipids as a function of temperature. J. Bacteriol. 53:506509
28. Gliozzi, A.,, R. Rolandi,, M. De Rosa, and, A. Gambacorta. 1982. Artificial black membranes from bipolar lipids of thermophilic Archaebacteria. Biophys. J. 37:563566
29. Gliozzi, A.,, R. Rolandi,, M. De Rosa, and, A. Gambacorta. 1983. Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J. Membr. Biol. 75:4556
30. Goodchild, A.,, N. F. Saunders,, H. Ertan,, M. Raftery,, M. Guilhaus,, P. M. Curmi, and, R. Cavicchioli. 2004. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 53:309321
31. Gulik, A.,, V. Luzzati,, M. De Rosa, and, A. Gambacorta. 1985. Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria. J. Mol. Biol. 182:131149
32. Gulik, A.,, V. Luzzati,, M. DeRosa, and, A. Gambacorta. 1988. Tetraether lipid components from a thermoacidophilic archae-bacterium. Chemical structure and physical polymorphism. J. Mol. Biol. 201:429435
33. Hafenbradl, D.,, M. Keller, and, K. O. Stetter. 1996. Lipid analysis of Methanopyrus kandleri. FEMS Microbiol. Lett. 136:199202
34. Hafenbradl, D.,, M. Keller,, R. Thiericke, and, K. O. Stetter. 1993. A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri. Syst. Appl. Microbiol. 16:165169
35. Heller, M.,, M. Schaeffer, and, K. Schulten. 1993. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J. Phys. Chem. 97:83438360
36. Horikoshi, K. 1998. Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1:291295
37. Kandler, O.,, and H. Hippe. 1977. Lack of peptidoglycan in the cell walls of Methanosarcina barkeri. Arch. Microbiol. 113:5760
38. Kashefi, K.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
39. Kates, M. 1996. Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria, p. 113–128. In J. Microbiol. Meth. 25.
40. Kates, M.,, N. Moldoveanu, and, L. C. Stewart. 1993. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1169:4653
41. Koga, Y.,, and H. Morii. 2005. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci. Biotechnol. Biochem. 69:20192034
42. Koga, Y.,, M. Nishihara,, H. Morii, and, M. Kagawa-Matsushita. 1993. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol. Rev. 57:164182
43. Krishnan, L.,, S. Sad,, G. B. Patel, and, G. D. Sprott. 2003. Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res. 63:25262534
44. Krulwich, T. A.,, L. F. Davidson,, S. J. Filip, Jr.,, R. S. Zuckerman, and, A. A. Guffanti. 1978. The protonmotive force and β-galactoside transport in Bacillus acidocaldarius. J. Biol. Chem. 253:45994603
45. Krulwich, T. A.,, M. Ito,, R. Gilmour,, D. B. Hicks, and, A. A. Guffanti. 1998. Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv. Microb. Physiol. 40:401-438.
46. Langworthy, T. A. 1982. Lipids of Thermoplasma. Methods Enzymol. 88:396406
47. Lolkema, J. S.,, G. Speelmans, and, W. N. Konings. 1994. Na(+)-coupled versus H(+)-coupled energy transduction in bacteria. Biochim. Biophys. Acta 1187:211215
48. Melchior, D. L. 2006. Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr. Top. Membr. Transp. 17:263316
49. Melchior, D. L.,, and J. M. Steim. 1976. Thermotropic transitions in biomembranes. Annu. Rev. Biophys. Bioeng. 5:205238
50. Michels, M.,, and E. P. Bakker. 1985. Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J. Bacteriol. 161:231237
51. Mirghani, Z.,, D. Bertoia,, A. Gliozzi,, M. De Rosa, and, A. Gambacorta. 1990. Monopolar–bipolar lipid interactions in model membrane systems. Chem. Phys. Lipids 55:8596
52. Mitchell, P. 1967. Translocations through natural membranes. Adv. Enzymol. Relat. Areas Mol. Biol. 29:3387
53. Mitchell, P. 1972. Chemiosmotic coupling in energy transduction: a logical development of biochemical knowledge. J. Bioenerg. 3:524
54. Mitchell, P.,, and J. Moyle. 1967. Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213:137139
55. Nichols, D. S.,, M. R. Miller,, N. W. Davies,, A. Goodchild,, M. Raftery, and, R. Cavicchioli. 2004. Cold adaptation in the Antarctic Archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bacteriol. 186:85088515
56. Nishihara, M.,, and Y. Koga. 1987. Extraction and composition of polar lipids from the archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of tetraether lipids by an acidified solvent. J. Biochem. (Tokyo) 101:9971005
57. Nishihara, M.,, H. Morii,, K. Matsuno,, M. Ohga,, K. O. Stetter, and, Y. Koga. 2002. Structural analysis by reductive cleavage with LiAlH4 of an allyl ether choline-phospholipid, archaetidylcholine, from the hyperthermophilic methanoarchaeon Methanopyrus kandleri. Archaea 1:123131
58. Padan, E.,, E. Bibi,, M. Ito, and, T. A. Krulwich. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717:6788
59. Patel, B. K. C.,, C. Monk,, H. Littleworth,, H. W. Morgan, and, R. M. Daniel. 1987. Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37:123126
60. Patel, G. B.,, A. Omri,, L. Deschatelets, and, G. D. Sprott. 2002. Safety of archaeosome adjuvants evaluated in a mouse model. J. Liposome Res. 12:353372
61. Patel, G. B.,, and G. D. Sprott. 1999. Archaeobacterial ether lipid liposomes (archaeosomes) as novel vaccine and drug delivery systems. Crit. Rev. Biotechnol. 19:317357
62. Prado, A.,, M. S. da Costa,, J. Laynez, and, V. M. Madeira. 1988a. Physical properties of membrane lipids isolated from a thermophilic eubacterium (Thermus sp.). Adv. Exp. Med. Biol. 238:4758
63. Prado, A.,, M. S. da Costa, and, V. M. Madeira. 1988b. Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol. 134:16531660
64. Preston, C. M.,, K. Y. Wu,, T. F. Molinski, and, E. F. DeLong. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93:62416246
65. Prowe, S. G.,, J. L. C. M. van de Vossenberg,, A. J. M. Driessen,, G. Antranikian, and, W. N. Konings. 1996. Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J. Bacteriol. 178:40994104
66. Raetz, C. R.,, and W. Dowhan. 1990. Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem. 265:12351238
67. Reizer, J.,, N. Grossowicz, and, Y. Barenholz. 1985. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Biochim. Biophys. Acta 815:268280
68. Relini, A.,, D. Cassinadri,, Q. Fan,, A. Gulik,, Z. Mirghani,, R. M. De, and, A. Gliozzi. 1996. Effect of physical constraints on the mechanisms of membrane fusion: bolaform lipid vesicles as model systems. Biophys. J. 71:17891795
69. Ren, Q.,, and I. T. Paulsen. 2005. Comparative analyses of fundamental differences in membrane transport capabilities in prokaryotes and eukaryotes. PLoS Comput. Biol. 1:e27.
70. Russell, N. J. 1983. Adaptation to temperature in bacterial membranes. Biochem. Soc. Trans. 11:333335
71. Russell, N. J.,, and N. Fukunaga. 1990. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 75:171182
72. Saunders, N. F.,, T. Thomas,, P. M. Curmi,, J. S. Mattick,, E. Kuczek,, R. Slade,, J. Davis,, P. D. Franzmann,, D. Boone,, K. Rusterholtz,, R. Feldman,, C. Gates,, S. Bench,, K. Sowers,, K. Kadner,, A. Aerts,, P. Dehal,, C. Detter,, T. Glavina,, S. Lucas,, P. Richardson,, F. Larimer,, L. Hauser,, M. Land, and, R. Cavicchioli. 2003. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13:15801588
73. Schleper, C.,, G. Puehler,, I. Holz,, A. Gambacorta,, D. Janekovic,, U. Santarius,, H. P. Klenk, and, W. Zillig. 1995a. Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177:70507059
74. Schleper, C.,, G. Puhler,, B. Kuhlmorgen, and, W. Zillig. 1995b. Life at extremely low pH. Nature 375:741742
75. Schouten, S.,, E. C. Hopmans,, R. D. Pancost, and, J. S. Sinninghe Damste. 2000. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proc. Natl. Acad. Sci. USA 97:1442114426
76. Seghal, S. N.,, M. Kates, and, N. E. Gibbons. 1962. Lipids of Halobacterium cutirubrum. Can. J. Biochem. Physiol. 40:6981
77. Sinninghe Damste, J. S.,, W. I. Rijpstra,, E. C. Hopmans,, F. G. Prahl,, S. G. Wakeham, and, S. Schouten. 2002a. Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Appl. Environ. Microbiol. 68:29973002
78. Sinninghe Damste, J. S.,, S. Schouten,, E. C. Hopmans,, A. C. van Duin, and, J. A. Geenevasen. 2002b. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota. J. Lipid Res. 43:16411651
79. Speelmans, G.,, B. Poolman,, T. Abee, and, W. N. Konings. 1993a. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA 90:79757979
80. Speelmans, G.,, B. Poolman, and, W. N. Konings. 1993b. Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J. Bacteriol. 175:20602066
81. Sprott, G. D.,, B. J. Agnew, and, G. B. Patel. 1997. Structural features of ether lipids in the archeaobacterial thermophiles Pyrococcus furiosus, Methanopyrus kandleri, Methanothermus fervidus, and Sulfolobus acidocaldarius. Can. J. Microbiol. 43:467476
82. Sprott, G. D.,, M. Meloche, and, J. C. Richards. 1991. Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J. Bacteriol. 173:39073910
83. Stern, J.,, H. J. Freisleben,, S. Janku, and, K. Ring. 1992. Black lipid membranes of tetraether lipids from Thermoplasma acidophilum. Biochim. Biophys. Acta 1128:227236
84. Stetter, K. O. 1996. Hyperthermophiles in the history of life. Ciba Found. Symp. 202:110
85. Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452:2225
86. Stingl, K.,, E. M. Uhlemann,, R. Schmid,, K. Altendorf, and, E. P. Bakker. 2002. Energetics of Helicobacter pylori and its implications for the mechanism of urease-dependent acid tolerance at pH 1. J. Bacteriol. 184:30533060
87. Svobodová, J.,, and P. Svoboda. 1988. Membrane fluidity in Bacillus subtilis. Physical change and biological adaptation. Folia Microbiol (Praha) 33:161169
88. Thompson, D. H.,, K. F. Wong,, R. Humphry-Baker,, J. J. Wheeler,, J.-M. Kim, and, S. B. Rananavare. 1992. Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectroscopy, 31 P NMR, X-ray scattering, and electron microscopy. J. Am. Chem. Soc. 114:90359042
89. van de Vossenberg, J. L. C. M.,, A. J. M. Driessen,, M. S. da Costa, and, W. N. Konings. 1999. Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim. Biophys. Acta 1419:97104
90. van de Vossenberg, J. L. C. M.,, A. J. M. Driessen,, W. Zillig, and, W. N. Konings. 1998. Bioenergetics and cytoplasmic membrane stability of the extremely acidophilic, thermophilic archaeon Picrophilus oshimae. Extremophiles 2:6774
91. van de Vossenberg, J. L. C. M.,, T. Ubbink-Kok,, M. G. Elferink,, A. J. M. Driessen, and, W. N. Konings. 1995. Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18:925932
92. Woese, C. R. 2004. The archaeal concept and the world it lives in: A retrospective. Photosyn. Res. 80:361372
93. Woese, C. R.,, O. Kandler, and, M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:45764579
94. Yamauchi, K.,, and M. Kinoshita. 1995. Highly stable lipid membranes from archaebacterial extremophiles. Prog. Polym. Sci. 18:763804
95. Yamauchi, K.,, Y. Yoshida,, T. Moriya,, K. Togawa, and, M. Kinoshita. 1994. Archaebacterial lipid models: formation of stable vesicles from single isoprenoid chain-amphiphiles. Biochim. Biophys. Acta 1193:4147

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error