1887

Chapter 9 : Ecology and Biodiversity of Cold-Adapted Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ecology and Biodiversity of Cold-Adapted Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap09-2.gif

Abstract:

Cold-adapted organisms are generally classed in two overlapping groups: psychrophiles and psychrotrophs (or psychrotolerants). This chapter reviews the diversity of cold-adapted microorganisms known to exist in each of the major cold environments. Dissimilatory sulfate reduction is one of the most important bacterial reactions in anoxic marine sediments, and it is thought to account for approximately half of the total organic carbon remineralization. The Dry Valleys of Eastern Antarctica are the most extreme example of polar soils and are arguably the coldest and driest deserts on Earth. The most important lithic characteristics are porosity (providing interstitial spaces for microbial colonization) and translucence (facilitating photosynthetic activity). Alternatively, antifreeze proteins produced by psychrophiles could have applications in the food industry for products where low-temperature storage is critical but where ice formation would damage texture or structure. Habitats for cold-adapted microorganisms are widespread on Earth. Both the steady growth of new methods for metagenomic gene recovery and the continued expansion of the industrial enzyme market suggest that psychrophiles, even if relatively unexploited at present, will play an increasingly important role in the future of biotechnology.

Citation: Cowan D, Casanueva A, Stafford W. 2007. Ecology and Biodiversity of Cold-Adapted Microorganisms, p 119-132. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch9

Key Concept Ranking

Viruses
0.5292427
Gram-Negative Bacteria
0.52592397
Gram-Positive Bacteria
0.5219093
Chemicals
0.48513916
Desert Soils
0.43810934
Gram-Negative Cocci
0.42432618
Microbial Habitats
0.4193351
0.5292427
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815813.ch09
1. Abell, G. C.,, and J. P. Bowman. 2005. Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol. Ecol. 51:265277.
2. Amann, R.,, B. M. Fuchs, and, S. Behrens. 2001. The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol. 12:231246.
3. Amann, R. I.,, W. Ludwig, and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
4. Atlas, R. M.,, M. E. Di Menna, and, R. E. Cameron. 1978. Ecological investigations of yeasts in Antarctic soils. Antarct. Res. Ser. 30:2734.
5. Bakermans, C.,, A. I. Tsapin,, V. Souza-Egipsy,, D. A. Gilichinsky, and, K. H. Nealson. 2003. Reproduction and metabolism at –10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5:321326.
6. Bano, N.,, S. Ruffin,, B. Ransom, and, J. T. Hollibaugh. 2004. Phylogenetic composition of Arctic Ocean archaeal assemblages and comparison with Antarctic assemblages. Appl. Environ. Microbiol. 70:781789.
7. Bergauer, P.,, P. A. Fonteyne,, N. Nolard,, F. Schinner, and, R. Margesin. 2005. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Chemosphere 59:909918.
8. Borch, E.,, M. L. Kant-Muermans, and, Y. Blixt. 1996. Bacterial spoilage of meat and cured meat products. Int. J. Food Microbiol. 33:103120.
9. Bowman, J. P.,, J. Cavanagh,, J. J. Austin, and, K. Sanderson. 1996. Novel Psychrobacter species from Antarctic ornithogenic soils. Int. J. Syst. Bacteriol. 46:841848.
10. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols, and, T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:30683078.
11. Bozal, N.,, M. J. Montes,, E. Tudela, and, J. Guinea. 2003. Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. Int. J. Syst. Evol. Microbiol. 53:10931100.
12. Brambilla, E.,, H. Hippe,, A. Hagelstein,, B. J. Tindall, and, E. Stackebrandt. 2001. 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5:2333.
13. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann, and, E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
14. Brown, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol. Ecol. 35:267275.
15. Cameron, R. E. 1969. Cold desert characteristics and problems relevant to other arid lands, p. 167–205. In W. G. McGinnies and, B. J. Goldman (ed.), Arid Lands in Perspective. American Association for the Advancement of Science, Washington, D.C.
16. Cameron, R. E.,, J. King, and, C. N. David. 1970. Microbial ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica, p. 702–716. In M. W. Holdgate (ed.), Antarctic Ecology, Volume 1. Academic Press, London, United Kingdom.
17. Cameron, R. E. 1971. Antarctic soil microbial and ecological investigations, p. 137–189. In L. O. Ouam and, H. D. Porter (ed.), Research in the Antarctic. American Association for the Advancement of Science, Washington, D.C.
18. Cameron, R. E. 1974. Application of low latitude microbial ecology to high latitude deserts, p. 71–90. In T. L. Smiley and, J. H. Zumberge (ed.), Polar Deserts and Modern Man. University of Arizona Press, Tucson, AZ.
19. Cameron, R. E.,, F. A. Morelli, and, R. M. Johnson. 1972. Bacterial species in soil and air of the Antarctic continent. Antarct. J. U.S. 7:187189.
20. Carpenter, E. J.,, S. Lin, and, D. G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66:45144517.
21. Carrio, M. M.,, and A. Villaverde. 2002. Construction and deconstruction of bacterial inclusion bodies. J. Biotechnol. 96:312.
22. Castenholz, R. W.,, and J. B. Waterbury. 1989. Group I. Cyanobacteria, p. 1710–1728. In J. T. Staley,, M. O. P. Bryant,, N. Pfennig, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, Baltimore, MD.
23. Cavicchioli, R.,, K. S. Siddiqui,, D. Andrews, and, K. R. Sowers. 2002. Low-temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13:253261.
24. Chambers, M. J. G. 1967. Investigations of patterned ground at Signey Island, South Orkney Islands. III. Miniature patterns, frost heaving and general conclusions. Br. Antarct. Surv. Bull. 12:122.
25. Champagne, C. P.,, R. R. Laing,, D. Roy,, A. A. Mafu, and, M. W. Griffiths. 1994. Psychrotrophs in dairy products: their effects and their control. Crit. Rev. Food Sci. Nutr. 34:130.
26. Christner, B. C.,, B. H. Kvitko, and, J. N. Reeve. 2003. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177183.
27. Colquhoun, J. A.,, S. C. Heald,, L. Li,, J. Tamaoka,, C. Kato,, K. Horikoshi, and, A. T. Bull. 1998. Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 2:269277.
28. Cowan, D. A.,, and L. Ah Tow. 2004. Endangered Antarctic microbial communities. Annu. Rev. Microbiol. 58:649690.
29. Cowan, D. A.,, N. J. Russell,, A. Mamais, and, D. M. Sheppard. 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6:431436.
30. D’Amico, S.,, P. Claverie,, T. Collins,, D. Georlette,, E. Gratia,, A. Hoyoux,, M. A. Meuwis,, G. Feller, and, C. Gerday. 2002. Molecular basis of cold adaptation. Philos. Trans. R. Soc. Lond. B 357:917925.
31. D’Hondt, S.,, B. B. Jørgensen,, D. J. Miller,, A. Batzke,, R. Blake,, B. A. Cragg,, H. Cypionka,, G. R. Dickens,, T. Ferdelman,, K. U. Hinrichs,, N. G. Holm,, R. Mitterer,, A. Spivack,, G. Wang,, B. Bekins,, B. Engelen,, K. Ford,, G. Gettemy,, S. D. Rutherford,, H. Sass,, C. G. Skilbeck,, I. W. Aiello,, G. Guerin,, C. H. House,, F. Inagaki,, P. Meister,, T. Naehr,, S. Niitsuma,, R. J. Parkes,, A. Schippers,, D. C. Smith,, A. Teske,, J. Wiegel,, C. Naranjo Padilla,, and J. L. Solis Acosta. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:22162221.
32. Daskalov, H. 2005. The importance of Aeromonas hydrophila in food safety. Food Control. 17:474483.
33. Davey, M. C.,, and K. J. Clarke. 1991. The spatial distribution of microalgae in Antarctic fellfield soils. Antarct. Sci. 3:257263.
34. Davidson, A. T. 1998. The impact of UVB radiation on marine plankton. Mutat. Res. 422:119129.
35. Davis, R. C. 1981. Structure and function of two Antarctic terrestrial moss communities. Ecolog. Monogr. 51:125143.
36. de la Torre, J. R.,, B. M. Goebel,, E. I. Friedmann,, and N. R. Pace. 2003. Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69:38583867.
37. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin,, and R. V. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695697.
38. DeLong, E. F.,, L. T. Taylor,, T. L. Marsh,, and C. M. Preston. 1999. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65:55545563.
39. Demirjian, D. C.,, F. Morís-Varas,, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5:144151.
40. Edwards, K. J.,, D. R. Rogers,, C. O. Wirsen,, and T. M. McCollom. 2003. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ- Proteobacteria from the deep sea. Appl. Environ. Microbiol. 69:29062913.
41. Feller, G. 2003. Molecular adaptations to cold in psychrophilic enzymes. Cell. Mol. Sci. 60:648662.
42. Feller, G.,, and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1:200208.
43. Fernandes, S.,, B. Geueke,, O. Delgado,, J. Coleman,, and R. Hatti-Kaul. 2002. Beta-galactosidase from a cold-adapted bacterium: purification, characterization and application for lactose hydrolysis. Appl. Microbiol. Biotechnol. 58:313321.
44. Finegold, L. 1986. Molecular aspects of adaptation to extreme cold environments. Adv. Space Res. 6:257264.
45. Fredricksson-Ahomaa, M.,, and H. Korkeala. 2003. Low occurrence of pathogenic Yersinia enterocolitica in clinical, food, and environmental samples: a methodological problem. Clin. Microbiol. Rev. 16:220229.
46. Friedmann, E. I.,, and C. P. McKay. 1985. Methods for the continuous monitoring of snow: application to the cryptoendolithic microbial community of Antarctica. Antarct. J. U.S. 20:179181.
47. Fuhrman, J. A.,, and A. A. Davis. 1997. Widespread archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Ecol. Prog. Ser. 150:275285.
48. Georlette, D.,, V. Blaise,, T. Collins,, S. D’Amico,, E. Gratia,, A. Hoyoux,, J. C. Marx,, G. Sonan,, G. Feller,, and C. Gerday. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28:2542.
49. Gerday, C.,, M. Aittaleb,, M. Bentahir,, J. P. Chessa,, P. Claverie,, T. Collins,, S. D’Amico,, J. Dumont,, G. Garsoux,, D. Georlette,, A. Hoyoux,, T. Lonhienne,, M. A. Meuwis,, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18:103107.
50. Gerdel, R. W.,, and F. Drouet. 1960. The cryoconite in the Thule area, Greenland. Trans. Am. Microsc. Soc. 79:256272.
51. Giovannoni, S. J.,, L. Bibbs,, J. C. Cho,, M. D. Stapels,, R. Desiderio,, K. L. Vergin,, M. S. Rappe,, S. Laney,, L. J. Wilhelm,, H. J. Tripp,, E. J. Mathur,, and D. F. Barofsky. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438:8285.
52. Golovlev, E. L. 2003. Bacterial cold shock response at the level of DNA transcription, translation and chromosome dynamics. Mikrobiologiia 72:513.
53. Goo, A. Y.,, J. Roach,, G. Glusman,, N. S. Baliga,, K. Deutsch,, M. Pan,, S. Kennedy,, S. DasSarma,, W. V. Ng,, and L. Hood. 2004. Low-pass sequencing for microbial comparative genomics. BMC Genomics. 5:119.
54. Gounot, A. M. 1976. Effects of temperature on the growth of psychrophilic bacteria from glaciers. Can. J. Microbiol. 22:839846.
55. Gupta, P.,, G. S. Reddy,, D. Delille,, and S. Shivaji. 2004. Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int. J. Syst. Evol. Microbiol. 54:23752378.
56. Head, I. M.,, J. R. Saunders,, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35:121.
57. Holmes, A. J.,, J. Bowyer,, M. P. Holley,, M. O’Donoghue,, M. Montgomery,, and M. R. Gillings. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33:111120.
58. Junge, K.,, C. Krembs,, J. Deming,, A. Stierle,, and H. Eicken. 2001. A microscopic approach to investigate bacteria under in situ conditions in sea ice samples. Ann. Glaciol. 33:304310.
59. Junge, K.,, J. F. Imhoff,, J. T. Staley,, and J. W. Deming. 2002. Phylo-genetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb. Ecol. 43:315328.
60. Karner, M. B.,, E. F. DeLong,, and D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
61. Kawahara, H. 2002. The structures and functions of ice crystal-controlling proteins from bacteria. J. Biosci. Bioeng. 94:492496.
62. Klecka, G. M.,, C. L. Carpenter,, and B. D. Landenberger. 1993. Biodegradation of aircraft deicing fluids in soil at low temperatures. Ecotoxicol. Environ. Saf. 25:280295.
63. Knoblauch, C.,, B. B. Jørgensen,, and J. Harder. 1999. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Appl. Environ. Microbiol. 65:42304233.
64. Lauro, F. M.,, G. Bertoloni,, A. Obraztsova,, C. Kato,, B. M. Tebo,, and D. H. Bartlett. 2004. Pressure effects on Clostridium strains isolated from a cold deep-sea environment. Extremophiles 8:169173.
65. Lipson, D. A.,, and S. K. Schmidt, 2004. Seasonal changes in alpine soil microbial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol. 70:28672879.
66. Lipson, D. A.,, C. W. Schadt,, and S. K. Schmidt. 2002. Changes in soil microbial community structure and function in an alpine dry meadow following spring snow melt. Microb. Ecol. 43:307314.
67. López-García, P.,, A. López-López,, D. Moreira,, and F. Rodríguez-Valera. 2001a. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol. Ecol. 36:193202.
68. López-García, P.,, D. Moreira,, A. López-López,, and F. Rodríguez-Valera. 2001b. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ. Microbiol. 3:7278.
69. Margesin, R.,, and F. Schinner. 2001. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. Environ. Microbiol. 67:31273133.
70. Margesin, R.,, D. Labbé,, F. Schinner,, C. W. Greer,, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69:30853092.
71. Massana, R.,, A. E. Murray,, C. M. Preston,, and E. F. DeLong. 1997. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63:5056.
72. Matsumoto, G.,, K. Chikazawa,, H. Murayama,, T. Torii,, H. Fukushima,, and T. Hanya. 1983. Distribution and correlation of total organic carbon and mercury in Antarctic dry valley soils, sediments and organisms. Geochem. J. 17:241246.
73. McDougald, D.,, S. A. Rice,, D. Weichart,, and S. Kjelleberg. 1998. Noncultureability: adaptation or debilitation. FEMS Microbiol. Ecol. 25:1.
74. Medigue, C.,, E. Krin,, G. Pascal,, V. Barbe,, A. Bernsel,, P. N. Bertin,, F. Cheung,, S. Cruveiller,, S. D’Amico,, A. Duilio,, G. Fang,, G. Feller,, C. Ho,, S. Mangenot,, G. Marino,, J. Nilsson,, E. Parrilli,, E. P. Rocha,, Z. Rouy,, A. Sekowska,, M. L. Tutino,, D. Vallenet,, G. von Heijne,, and A. Danchin. 2005. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15:13251335.
75. Mergaert, J.,, A. Verhelst,, M. C. Cnockaert,, T. L. Tan,, and J. Swings. 2001. Characterization of facultative oligotrophic bacteria from polar seas by analysis of their fatty acids and 16S rDNA sequences. Syst. Appl. Microbiol. 24:98107.
76. Methé, B. A.,, K. E. Nelson,, J. W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupu,, W. C. Nelson,, R. J. Dodson,, L. M. Brinkac,, S. C. Daugherty,, A. S. Durkin,, R. T. DeBoy,, J. F. Kolonay,, S. A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J. F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum,, and C. M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102:1091310918.
77. Miettinen-Oinonen, A.,, M. Paloheimo,, R. Lantto,, and P. Suominen. 2005. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. J. Biotechnol. 116:305317.
78. Miwa, T. 1975. Clostridia in the soil of Antarctica. Jpn. J. Med. Sci. Biol. 28:201213.
79. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7:605619.
80. Montes, M. J.,, C. Belloch,, M. Galiana,, M. D. Garcia,, C. Andres,, S. Ferrer,, J. M. Torres-Rodriguez,, and J. Guinea. 1999. Polyphasic taxonomy of a novel yeast isolated from Antarctic environment; description of Cryptococcus victoriae sp. nov. Syst. Appl. Microbiol. 22:97105.
81. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39:144167.
82. Morita, R. Y. 1986. Pressure as an extreme environment, p. 171–186. In R. A. Herbert, and G. A. Codd (ed.), Microbes in Extreme Environments. Academic Press, London, United Kingdom.
83. Morris, G. J. 2005. The origin, ultrastructure, and microbiology of the sediment accumulating in liquid nitrogen storage vessels. Cryobiology 50:231238.
84. Murray, A. E.,, C. M. Preston,, R. Massana,, L. T. Taylor,, A. Blakis,, K. Wu,, and E. F. DeLong. 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl. Environ. Microbiol. 64:25852595.
85. Nagahama, T.,, M. Hamamoto,, T. Nakase,, H. Takami,, and K. Horikoshi. 2001. Distribution and identification of red yeasts in deep-sea environments around the northwest Pacific Ocean. Antonie Leeuwenhoek 80:101110.
86. Nemergut, D. R.,, E. K. Costello,, A. F. Meyer,, M. Y. Pescador,, M. N. Weintraub,, and S. K. Schmidt. 2005. Structure and function of alpine and arctic soil microbial communities. Res. Microbiol. 156:775784.
87. Nienow, J. A.,, and E. I. Friedmann. 1993. Terrestrial lithophytic (rock) communities, p. 343–412. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
88. O’Brien, A.,, R. Sharp,, N. J. Russell,, and S. Roller. 2004. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol. Ecol. 48:157167.
89. Ouverney, C. C.,, and J. A. Fuhrman. 2000. Marine planktonic archaea take up amino acids. Appl. Environ. Microbiol. 66:48294833.
90. Parkes, R. J.,, B. A. Cragg,, and P. Wellsbury. 2000. Recent studies on bacterial populations and processes on sub-seafloor sediments: a review. Hydrogeol. J. 8:11.
91. Pathom-Aree, W.,, Y. Nogi,, I. C. Sutcliffe,, A. C. Ward,, K. Horikoshi,, A. T. Bull,, and M. Goodfellow. 2006a. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int. J. Syst. Evol. Microbiol. 56:11231126.
92. Pathom-Aree, W.,, J. E. Stach,, A. C. Ward,, K. Horikoshi,, A. T. Bull,, and M. Goodfellow. 2006b. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10:181189.
93. Rabus, R.,, A. Ruepp,, T. Frickey,, T. Rattei,, B. Fartmann,, M. Stark,, M. Bauer,, A. Zibat,, T. Lombardot,, I. Becker,, J. Amann,, K. Gellner,, H. Teeling,, W. D. Leuschner,, F. O. Glockner,, A. N. Lupas,, R. Amann,, and H. P. Klenk. 2004. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6:887902.
94. Ramsey, A. J.,, and R. E. Stannard. 1986. Numbers and viability of bacteria in ornithogenic soils of Antarctica. Polar Biol. 5:195198.
95. Reddy, G. S.,, G. I. Matsumoto,, P. Schumann,, E. Stackebarndt,, and S. Shivaji. 2004. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 54:713719.
96. Russell, N. J. 1997. Psychrophilic bacteria—molecular adaptations of membrane lipids. Comp. Biochem. Physiol. A. 118:489493.
97. Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61:121.
98. Russell, N. J. 2002. Bacterial membranes: the effects of chill storage and food processing. An overview. Int. J. Food Microbiol. 79:2734.
99. Saunders, N. F.,, T. Thomas,, P. M. Curmi,, J. S. Mattick,, E. Kuczek,, R. Slade,, J. Davis,, P. D. Franzmann,, D. Boone,, K. Rusterholtz,, R. Feldman,, C. Gates,, S. Bench,, K. Sowers,, K. Kadner,, A. Aerts,, P. Dehal,, C. Detter,, T. Glavina,, S. Lucas,, P. Richardson,, F. Larimer,, L. Hauser,, M. Land,, and R. Cavicchioli. 2003. Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13:15801588.
100. Schadt, C. W.,, A. P. Martin,, D. A. Lipson,, and S. K. Schmidt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:13591361.
101. Selbmann, L.,, S. Onofri,, M. Fenice,, F. Federici,, and M. Petruccioli. 2002. Production and structural characterisation of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 153:585592.
102. Shivaji, S.,, P. Chaturvedi,, G. S. Reddy,, and K. Suresh. 2005. Pedobacter himalayensis sp. nov., from the Hamta glacier located in the Himalayan mountain ranges of India. Int. J. Syst. Evol. Microbiol. 55:10831088.
103. Siebert, J.,, P. Hirsch,, B. Hoffmann,, C. G. Gliesche,, K. Piessl,, and M. Jendrach. 1996. Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): diversity, properties and interactions. Biodiv. Conserv. 5:13371363.
104. Smith, H. G.,, and P. V. Tearle. 1985. Aspects of microbial and protozoan abundances in Signy Island fellfields. Br. Antarct. Surv. Bull. 68:8390.
105. Smith, J. J.,, L. A. Tow,, W. Stafford,, C. Cary,, and D. A. Cowan. 2006. Bacterial diversity in three Antarctic cold desert mineral soils. Microb. Ecol. 51:413421. [Epub ahead of print]
106. Suzuki, M. T.,, and S. J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625630.
107. Takami, H.,, Y., Takaki,, and I. Uchiyama. 2002. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res. 30:39273935.
108. Takami, H.,, A. Znone,, F. Fuji,, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152:279285.
109. Taton, A.,, S. Grubisic,, E. Brambilla,, R. De Wit,, and A. Wilmotte. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell McMurdo Dry Valleys, Antarctica: a morphological and molecular approach. Appl. Environ. Microbiol. 69:51575169.
110. Tindbaek, N.,, A. Svendsen,, P. R. Oestergaard,, and H. Draborg. 2004. Engineering a substrate-specific cold-adapted subtilisin. Protein Eng. Des. Sel. 17:149156.
111. Ugolini, F. C. 1972. Ornithogenic soils of Antarctica Antarct. Res. Ser. 20:181193.
112. Vishniac, H. S. 1993. The microbiology of Antarctic soils, p. 297–341. In E. I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, NY.
113. Ward, B. B. 2002. How many species of prokaryotes are there? Proc. Natl. Acad. Sci. USA 99:1023410236.
114. Waterbury, J. B.,, S. W. Watson,, R. R. L. Guillard,, and L. E. Brand. 1979. Widespread occurrence of a unicellular, marine, planktonic cyanobacterium. Nature 277:293294.
115. Wharton, R. A.,, C. P. McKay,, G. M. Simmons,, and B. C. Parker. 1985. Cryoconite holes on glaciers. Bioscience 35:499503.
116. Wynn-Williams, D. D. 1989. TV image analysis of microbial communities in Antarctic fellfields. Polarforschung 58:239250.
117. Wynn-Williams, D. D. 1990. Ecological aspects of Antarctic microbiology. Adv. Microbial Ecol. 11:71146.
118. Yi, H.,, and J. Chun. 2006. Flavobacterium weaverense sp. nov. and Flavobacterium segensis sp. nov., novel psychrophiles isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 56:12391244.
119. Yurkov, V. V.,, and J. T. Beatty. 1998. Aerobic anoxygenic phototrophic bacteria. Microb. Mol. Biol. Rev. 62:695724.

Tables

Generic image for table
Table 1.

Cardinal temperatures for cold-adapted organisms

Citation: Cowan D, Casanueva A, Stafford W. 2007. Ecology and Biodiversity of Cold-Adapted Microorganisms, p 119-132. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch9
Generic image for table
Table 2.

Microbial genera commonly isolated from psychrophilic habitats

Citation: Cowan D, Casanueva A, Stafford W. 2007. Ecology and Biodiversity of Cold-Adapted Microorganisms, p 119-132. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch9
Generic image for table
Table 3.

Psychrophile genome sequencing projects

Citation: Cowan D, Casanueva A, Stafford W. 2007. Ecology and Biodiversity of Cold-Adapted Microorganisms, p 119-132. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error