1887

Chapter 10 : Life in Ice Formations at Very Cold Temperatures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Life in Ice Formations at Very Cold Temperatures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap10-2.gif

Abstract:

The most vibrant and extensive of within-ice microbial ecosystems are those that develop in seasonal ice formed from seawater. Permanently frozen soil, or permafrost, represents an endmember to glacial ice in being primarily lithogenic by definition, with only a limited volume of either frozen or liquid water held within the soil matrix. The fraction of liquid inclusions is relatively large as a result of the non-linear process of ice-formation from seawater, which promotes the retention of pockets of seawater as the ice grows. With shrinking pore space, the encased liquid becomes increasingly salty. Temperature thus determines the salinity of the brine, though not in linear fashion, in part because the subzero precipitation points of individual sea salts differ. Enzymes may have been present in the initial seawater prior to freezing, and thus derived from an unknown myriad of possible organisms, only to partition and eventually concentrate in the brine inclusions during the freezing process and onset of winter. Tracers to measure the synthesis must enter the cell at lower temperatures permissive of solute diffusion, but incorporation into protein appears possible via conformational changes of enzymes that do not require diffusion. The wonders of life in the extreme cold continue to beckon.

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10

Key Concept Ranking

Microbial Ecosystems
0.53994274
Sea
0.4515452
Viruses
0.44265798
Bacterial Growth
0.44156995
Hybridization Techniques
0.41315904
Microbial Habitats
0.41061997
Chemicals
0.40091443
0.53994274
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Comparative (generic) temperature profiles over depth in three types of ice formations: glacial ice at South Pole, Antarctica (dotted line), with basement temperature varying depending on method of assessment (hatched box; adapted from ); Arctic permafrost, with the seasonal swing in the active surface layer (bold dashed lines; adapted from ); and Arctic sea ice, with a seasonal swing that results in its melting, first at the surface as atmospheric temperatures warm in summer (bold lines; adapted from ). Upper right image (A) depicts pore microstructure (liquid phase in black) in a 20-mm wide section of sea ice at –30°C; lower right image (B) same, but at –2.4°C with greater pore connectivity (see ).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Microscopic images of thin sections of Arctic winter sea ice, taken by transmission light at –20°C, showing the size and interconnectivity of brine pores (BP) and some particulate matter within them; note scale bar of 50 μm (courtesy of H. Eicken; see , for details).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Concentration of EPS (◆) or DOC (·) scaled to the brine volume of ice sections cored from Arctic winter sea ice, where the sampled temperature gradient spanned –4 to –18°C (data from ).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Fraction of actively respiring cells determined by CTC stain and evaluated as originally attached to surfaces in the brine pores of Arctic winter sea ice (◆), where the sampled temperature gradient spanned –2 to –20°C, and fraction of the total bacterial population that fluoresced in response to in situ hybridization probes for - - (▲), a group generally known for EPS production and an attached lifestyle. Error bars are standard error of the mean for triplicate samples; at –20°C, the symbol for CTC-stained bacteria obscures the error bars (data from ).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Frequency of detection of cold-adapted extracellular protease activity ( ≤ 15°C; A. L. Huston and J. W. D., unpublished), as measured by the protocols of ; inset depicts an individual experiment based on a sample of sinking particulate matter originally at –1°C (data from ).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Temperature-dependent extracellular enzyme activity (EEA) measured by fluorescent substrate assay (for proteases, as in ) in first-year Arctic winter sea-ice brines from Franklin Bay, N.W.T. (from ). Ice sections originally at –20°C in situ were melted into 0.2-μm filtered, artificial brine solutions to achieve final meltwater salinities (‰) of 220 (squares), 210 (circles), 180 (triangles), or 22 (inverted triangles). The dotted line connects the solid symbols, which represent EEA at salinities nearest to those of the microbial habitat at each temperature.

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Viral and bacterial dynamics in a section of Arctic winter sea ice melted into an artificial (0.2-μm filtered) brine solution to achieve a final sample salinity of 160‰, mimicking the in situ brine salinity of the ice at –12°C (data from ). In many cases, symbols (▲ for bacteria, ■ for viruses) for the mean of the microscopic counts obscure the error bars (standard error of the mean).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Schematic diagram of the potential roles of EPS in winter sea-ice brine pores (including freeze depressant, attachment facilitator, salt segregator, and physical buffer against osmotic damage) and as enzyme localizer and stabilizer (including virus-borne polysaccharide depolymerases; adapted from ).

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch10
1. Abyzov, S. S.,, I. N. Mitskevich,, and M. N. Poglazova. 1998. Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:6673.
2. Alley, R. B.,, P. U. Clark,, P. Huybrechts,, and I. Joughin. 2005. Ice-sheet and sea-level changes. Science 310:456460.
3. Alt, B.,, and C. Labine. 1998. Meteorology and soil temperatures, Hot Weather Creek, Ellesmere Island, NWT, Canada. In International Permafrost Association, Data and Information Working Group, comp., Circumpolar Active-Layer Permafrost System (CAPS), version 1.0. CD-ROM available from National Snow and Ice Data Center, nsidc@kryos.colorado.edu, Boulder: NSIDC, University of Colorado at Boulder.
4. Assur, A. 1960. Composition of sea ice and its tensile strength. SIPRE Res. Rep. 44:149.
5. Bakermans, C.,, A. I. Tsapin,, V. Souza-Egipsy,, D. A. Gilichinsky,, and K. H. Nealson. 2003. Reproduction and metabolism at –10°C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5:321326.
6. Baross, J. A.,, and R. Y. Morita. 1978. Microbial life at low temperatures: ecological aspects, p. 9–71. In D. J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, New York, NY.
7. Borriss, M.,, E. Helmke,, R. Hanschke,, and T. Schweder. 2003. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice. Extremophiles 7:377384.
8. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:30683078.
9. Breezee, J.,, N. Cady,, and J. T. Staley. 2004. Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii. Microb. Ecol. 47:300304.
10. Brinkmeyer, R.,, K. Knittel,, J. Jürgens,, H. Weyland,, R. Amann,, and E. Helmke. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
11. Bulat, S. A.,, I. A. Alekhina,, M. Blot,, J.-R. Petit,, M. de Angelis,, D. Wagenbach,, V. Y. Lipenkov,, L. P. Vasilyeva,, D. M. Wloch,, D. Raynard,, and V. V. Lukin. 2004. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments. Intl. J. Astrobiol. 3:112.
12. Castello, J. D.,, S. O. Rogers,, W. T. Starmer,, C. M. Catranis,, L. Ma,, G. D. Bachand,, Y. Zhao,, and J. E. Smith. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol. 22:207212.
13. Catling, D.,, and J. F. Kasting. Planetary atmospheres and life. In W. T. Sullivan, and J. A. Baross (ed.), Planets and Life: The Emerging Science of Astrobiology, Cambridge University Press, Cambridge, United Kingdom, in press.
14. Christner, B. C. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at –15°C. Appl. Environ. Microbiol. 68:64356438.
15. Christner, B. C.,, E. Moseley-Thomspon,, L. G. Thompson,, and J. N. Reeve. 2003. Bacterial recovery from ancient glacial ice. Environ. Microbiol. 5:433436.
16. Christner, B. C.,, J. A. Mikucki,, C. M. Foreman,, J. Denson,, and J. C. Priscu. 2005. Glacial ice cores: A model system for developing extraterrestrial decontamination protocols. Icarus 174:572584.
17. Cohet, N.,, and P. Widehem. 2000. Ice crystallization by Pseudomonas syringae. Appl. Microbiol. Biotechnol. 54:153161.
18. Collins, R. E.,, and J. W. Deming. 2006. Persistence of Archaea in sea ice, p. 214. In Symposia Poster Presentations, Astrobiology 6:174221.
19. Cox, G. F. N.,, and W. F. Weeks. 1983. Equations for determining the gas and brine volume in sea-ice samples. J. Glaciol. 29:306316.
20. Danovaro, R.,, A. Dell’Anno,, A. Trucco,, M. Serresi,, and S. Vanucci. 2001. Determination of virus abundance in marine sediments. Appl. Environ. Microbiol. 67:13841387.
21. Decho, A. W. 1990. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev. 28:73153.
22. Deming, J. W. 2004. New directions in the study of bacteria inhabiting very cold sea-ice formations. EOS Trans. AGU 85(47), Fall Meeting Suppl., Abstract B23C-01.
23. Deming, J. W.,, and J. A. Baross. 2002. Search and discovery of microbial enzymes from thermally extreme environments in the ocean, p. 327–362. In R. P. Dick, and R. G. Burns (ed.), Enzymes in the Environment, Activity, Ecology and Applications. Marcel Dekker Publishers, New York, NY.
24. Deming, J. W.,, and H. Eicken. 2007. Life in ice. In W. T. Sullivan and, J. A. Baross (ed.), Planets and Life: The Emerging Science of Astrobiology. Cambridge University Press, Cambridge, United Kingdom (in press).
25. Deming, J. W.,, and A. L. Huston. 2000. An oceanographic perspective on microbial life at low temperatures with implications for polar ecology, biotechnology and astrobiology, p. 149–160. In J. Seckbach (ed.), Cellular Origins and Life in Extreme Habitats. Kluwer Publishers, Dordrecht, The Netherlands.
26. Dumont, F.,, P. A. Marechal,, and P. Gervais. 2006. Involvement of two specific causes of cell mortality in freeze-thaw cycles with freezing to –196°C. Appl. Environ. Microbiol. 72:13301335.
27. Eicken, H. 2003. From the microscopic, to the macroscopic, to the regional scale: Growth, microstructure and properties of sea ice, p. 22–81. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology, Blackwell Science, Oxford, United Kingdom.
28. Eicken, H.,, J. Weissenberger,, I. Bussmann,, J. Freitag,, W. Schuster,, F. Valero Delgado,, K.-U. Evers,, P. Jochmann,, C. Krembs,, R. Gradinger,, F. Kindemann,, F. Cottier,, R. Hall,, P. Wadhams,, M. Reisemann,, H. Kouse,, J. Ikavalko,, G. H. Leonard,, H. Shen,, S. F. Ackley,, and L. H. Smedsrud. 1998. Ice tank studies of physical and biological sea-ice processes, p. 363–370. In H. T. Shen (ed.), Ice in Surface Waters, Balkema, Rotterdam, The Netherlands.
29. Geesey, G. G.,, and D. C. White. 1990. Determination of bacterial growth and activity at solid-liquid interfaces. Annu. Rev. Microbial. 44:579602.
30. Giannelli, V.,, D. N. Thomas,, C. Haas,, G. Kattner,, H. A. Kennedy,, and G. S. Dieckmann. 2001. Behaviour of dissolved organic matter and inorganic nutrients during experimental sea ice formation. Ann. Glaciol. 33:317321.
31. Gilichinsky, D.,, E. Rivkina,, V. Shcherbakova,, K. Laurinavichuis,, and J. M. Tiedje. 2003. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for Astrobiology. Astrobiology 3:331341.
32. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pacheritsina,, R. Fattakhova,, and J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microb. Ecol. 53:117128.
33. Gosselin, M.,, M. Levasseur,, P. A. Wheeler,, R. A. Horner,, and B. C. Booth. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res. II 44:16231644.
34. Gowing, M. M. 2003. Large viruses and infected microeukaryotes in Ross Sea summer pack ice habitats. Mar. Biol. 142:10291040.
35. Gowing, M. M.,, D. L. Garrison,, A. H. Gibson,, J. M. Krupp,, M. O. Jeffries,, and C. H. Fritsen. 2004. Bacterial and viral abundance in Ross Sea summer pack ice communities. Mar. Biol. 142:10291040.
36. Gregory, J. M.,, P. Huybrechts,, and S. C. B. Raper. 2004. Threatened loss of the Greenland ice-sheet. Nature 428:616.
37. Helmke, E.,, and H. Weyland. 1995. Bacteria in the sea ice and underlying water on the eastern Weddell Sea in midwinter. Mar. Ecol. Prog. Ser. 117:269287.
38. Hinkel, K. M.,, F. E. Nelson,, W. Parker,, V. Romanovsky,, O. Smith,, W. Tucker,, T. Vinson,, and L. W. Brigham (U.S. Arctic Research Commission Permafrost Task Force). 2003. Climate Change, Permafrost, and Impacts on Civil Infrastructure. Special Report 01–03, U.S. Arctic Research Commission, Arlington, Virginia.
39. Hinzman, L. D.,, D. J. Goering,, and D. L. Kane. 1998. A distributed thermal model for calculating soil temperature profiles and depth of thaw in permafrost regions. J. Geophys. Res. 103(D22):28,97528,991.
40. Hughes, K. A.,, I. W. Sutherland,, and M. V. Jones. 1998. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:30393047.
41. Huston, A. L.,, B. B. Krieger-Brockett,, and J. W. Deming. 2000. Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2:383388.
42. Huston, A. L.,, B. Methé,, and J. W. Deming. 2004. Purification, characterization and sequencing of an extracellular cold-active aminopeptidase produced by marine psychrophile Colwellia psychrerythraea strain 34H. Appl. Environ. Microbiol. 70:33213328.
43. Junge, K.,, C. Krembs,, J. Deming,, A. Stierle,, and H. Eicken. 2001. A microscopic approach to investigate bacteria under in-situ conditions in sea-ice samples. Ann. Glaciol. 33:304310.
44. Junge, K.,, J. W. Deming,, and H. Eicken. 2004a. A microscopic approach to investigate bacteria under in situ conditions in Arctic lake ice: initial comparisons to sea ice, p. 381–388. In R. Norris and, F. Stootman (ed.), Bioastronomy 2002: Life among the Stars, Astronomical Society of the Pacific, IAU Symposium Series, Vol. 213. International Astronomical Union, Paris, France.
45. Junge, K.,, H. Eicken,, and J. W. Deming. 2004b. Bacterial activity at –2 to –20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70:550557.
46. Junge, K.,, H. Eicken,, B. D. Swanson,, and J. W. Deming. 2006. Bacterial incorporation of leucine into protein down to –20°C with evidence for potential activity in subeutectic saline ice formations. Cryobiology 52:417429.
47. Krembs, C.,, J. W. Deming,, K. Junge,, and H. Eicken. 2002. High concentrations of exopolymeric substances in wintertime sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res. I 49:21632181.
48. Langlois, A.,, C. J. Mundy,, and D. G. Barber. 2007. On the winter evolution of snow thermophysical properties over landfast first-year sea ice. Hydrological Process. (in press).
49. Light, B.,, G. A. Maykut,, and T. C. Grenfell. 2003. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. 108(C2), 3051, doi:10.1029/2001JC000887.
50. Lindsay, R. W.,, and J. Zhang. 2005. The thinning of Arctic sea ice, 1988–2003: have we passed a tipping point? J. Climate 18:48794894.
51. Lizotte, M. P. 2003. The microbiology of sea ice, p. 184–210. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology and Geology, Blackwell Science, Oxford, United Kingdom.
52. Mancuso Nichols, C.,, J. Guezennec,, and J. P. Bowman. 2005. Bacterial exopolysaccharides from extreme marine environments with special considerations of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar. Biotechnol. 7:253271.
53. Mancuso Nichols, C.,, S. Garon,, J. P. Bowman,, G. Raguénès,, and J. Guezennec. 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. J. Appl. Microbiol. 96:10571066.
54. Maranger, R.,, D. F. Bird,, and S. K. Juniper. 1994. Viral and bacterial dynamics in Arctic sea ice during the spring algal bloom near Resolute, N.W.T., Canada. Mar. Ecol. Prog. Ser. 111:121127.
55. Meiners, K.,, R. Gradinger,, J. Fehling,, G. Civitarese,, and M. Spindler. 2003. Vertical distribution of exopolymer particles in sea ice of Fram Strait (Arctic) during autumn. Mar. Ecol. Prog. Ser. 248:113.
56. Meiners, K.,, R. Brinkmeyer,, M. A. Granskog,, and A. Lindfors. 2004. Abundance, size distribution and bacterial colonization of exopolymer particles in Antarctic sea ice (Bellingshausen Sea). Aquat. Microb. Ecol. 35:283296.
57. Methé, B. A.,, K. E. Nelson,, J. W. Deming,, B. Momen,, E. Melamud,, X. Zhang,, J. Moult,, R. Madupa,, W. C. Nelson,, R. J. Dodson,, L. M. Brinkac,, S. C. Daugherty,, A. S. Durkin,, R. T. DeBoy,, J. F. Kolonay,, S. A. Sullivan,, L. Zhou,, T. M. Davidsen,, M. Wu,, A. L. Huston,, M. Lewis,, B. Weaver,, J. F. Weidman,, H. Khouri,, T. R. Utterback,, T. V. Feldblyum,, and C. M. Fraser. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA 102:1091310918.
58. Miteva, V. I.,, P. P. Sheridan,, and J. E. Brenchley. 2004. Phylogenetic and physiological diversity of microorganisms isolated form a deep Greenland glacier ice core. Appl. Environ. Microbiol. 70:202213.
59. Mock, T.,, and D. N. Thomas. 2005. Recent advances in sea-ice microbiology. Environ. Microbiol. 7:605619.
60. Murray, J. L. S.,, and P. A. Jumars. 2002. Clonal fitness of attached bacteria predicted by analog modeling. BioScience 52:343355.
61. Murray, J. B.,, J.-P. Muller,, G. Neukum,, S. C. Werner,, S. van Gasselt,, E. Hauber,, W. J. Markiewicz,, J. W. Head III,, B. H. Foing,, D. Page,, K. L. Mitchell,, G. Portyankina, and the HRSC Co-Investigator Team. 2005. Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars’ equator. Nature 434:352356.
62. Nichols, C. A. M.,, J. Guezennec,, and J. P. Bowman. 2005a. Bacterial exopolysaccharides from extreme marine environments with special considerations of the Southern Ocean, sea ice, and deep-sea hydrothermal vents: a review. Mar. Biotechnol. 7:253271.
63. Nichols, C. M.,, S. G. Lardiére,, J. P. Bowman,, P. D. Nichols,, J. A. E. Gibson,, and J. Guézennec. 2005b. Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb. Ecol. 49:578589.
64. Oelke, C.,, and T. Zhang. 2004. A model study of circum-Arctic soil temperatures. Permafrost and Periglac. Process. 15:103121.
65. Osterkamp, T. E. 2003. Establishing long-term permafrost observatories for active-layer and permafrost investigations in Alaska: 1977–2002. Permafrost and Periglac. Process. 14:331342.
66. Price, P. B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97:12471251.
67. Price, P. B.,, and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 101:46314636.
68. Price, P. B.,, O. V. Nagornov,, R. Bay,, D. Chirkin,, Y. He,, P. Miocinovic,, A. Richards,, K. Woschnagg,, B. Koci,, and V. Zagorodnov. 2002. Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake. Proc. Natl. Acad. Sci. USA 99:78447847.
69. Priscu, J. C.,, and B. C. Christner. 2004. Earth’s ice biosphere, p. 130–145. In A. Bull (ed.), Microbial Diversity and Bioprospecting, ASM Press, Washington, DC.
70. Priscu, J. C.,, B. C. Christner,, C. M. Foreman,, and G. Royston-Bishop. Biological material in ice cores. Encyclopedia Quaternary Sci., in press.
71. Richardson, M. I.,, and M. A. Mischna. 2005. Long-term evolution of transient liquid water on Mars. J. Geophys. Res. 110:121.
72. Rivkina, E.,, E. I. Friedmann,, C. P. McCay,, and D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66:32303233.
73. Rivkina, E.,, K. Laurinavichius,, J. McGrath,, J. Tiedje,, V. Shcherbakova,, and D. Gilichinsky. 2004. Microbial life in permafrost. Adv. Space Res. 33:12151221.
74. Rogers, S. O.,, V. Theraisnathan,, L. J. Ma,, Y. Zhao,, G. Zhang,, S. -G. Shin,, J. D. Castello,, and W. T. Starmer. 2004. Comparison of protocols for decontamination of environmental ice samples for biological and molecular examinations. Appl. Environ. Microbiol. 70:25402544.
75. Sheridan, P. P.,, V. I. Miteva,, and J. E. Brenchley. 2003. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a Greenland glacier ice core. Appl. Environ. Microbiol. 69:21532160.
76. Shur, Y.,, K. M. Hinkel,, and F. E. Nelson. 2005. The transient layer: implications for geocryology and climate-change science. Permafrost and Periglac. Process. 16:517.
77. Smith, S. L.,, M. M. Burgess,, D. Riseborough,, and F. M. Nixon. 2005. Recent trends from Canadian permafrost thermal monitoring network sites. Permafrost and Periglac. Process. 16:1930.
78. Sowers, T. 2001. The N2O record spanning the penultimate deglaciation from the Vostok ice core. J. Geophys. Res. Atmos. 106:3190331914.
79. Sowers, T.,, V. Miteva,, and J. Brenchley. 2006. Assessing N2O anomalies in the Vostok ice core in terms of in-situ N2O production by nitrifying microorganisms, p. 43. In R. Margesin, and F. Schinner (ed.), Book of Abstracts, International Conference on Alpine and Polar Microbiology, Innsbruck, March 27–31, 2006, Institute of Microbiology, Leopold-Franzens-University, Innsbruck, Austria.
80. Stierle, A. P.,, and H. Eicken. 2002. Sediment inclusions in Alaskan coastal sea ice: spatial distribution, interannual variability and entrainment requirements. Arctic Antarctic Alpine Res. 34:103114.
81. Stroeve, J. C.,, M. C. Serreze,, F. Fetterer,, T. Arbetter,, W. Meier,, J. Maslanik,, and K. Knowles. 2005. Tracking the Arctic’s shrinking ice cover: another extreme minimum in 2004. Geophys. Res. Lett. 32:14.
82. Sullivan, W. T.,, and J. A. Baross. Prologue. In W. T. Sullivan, and J. A. Baross (ed.), Planets and Life: the Emerging Science of Astro-biology, Cambridge University Press, in press.
83. Thomas, D. N.,, and G. S. Dieckmann. 2002. Antarctic sea ice—a habitat for extremophiles. Science 295:641644.
84. Thomas, D. N.,, and S. Papadimitriou. 2003. Biogeochemistry of sea ice, p. 267–302. In D. N. Thomas, and G. S. Dieckmann (ed.), Sea Ice: An Introduction to Its Physics, Chemistry, Biology and Geology, Blackwell Science, Oxford, United Kingdom.
85. Thomas, D. N.,, R. J. Lara,, H. Eicken,, G. Kattner,, and A. Skoog. 1995. Dissolved organic matter in Arctic multi-year sea ice during winter: major components and relationship to ice characteristics. Polar Biol. 15:477483.
86. Vetter, Y.-A.,, J. W. Deming,, P. A. Jumars,, and B. B. Krieger-Brockett. 1998. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36:7592.
87. Vorobyova, E.,, V. Soina,, M. Gorlenko,, N. Minkovskaya,, N. Zalinova,, A. Mamukelashvili,, D. Gilichinsky,, E. Rivkina,, and T. Vishnivetskaya. 1997. The deep cold biosphere: facts and hypothesis. FEMS Microbiol. Rev. 20:277290.
88. Washburn, A. L. 1980. Geocryology: a Survey of Periglacial Processes and Environments. Halsted Press, New York, 406pp.
89. Wells, L. E.,, and J. W. Deming. 2006. Modeled and measured dynamics of viruses in Arctic winter sea-ice brines. Environ. Microbiol. 8:11151121.
90. ZoBell, C. E. 1934. Microbiological activities at low temperatures with particular reference to marine bacteria. Quart. Rev. Biol. 9:460466.

Tables

Generic image for table
Table 1.

Comparative features of three types of ice formations subject to very cold temperature

Citation: Deming J. 2007. Life in Ice Formations at Very Cold Temperatures, p 133-144. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error