1887

Chapter 12 : Psychrophiles: Membrane Adaptations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Psychrophiles: Membrane Adaptations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap12-2.gif

Abstract:

This chapter talks about membrane adaptations, with emphasis on the adaptive changes occurring in prokaryotes; where relevant, the distinctive changes in eukaryotes will be compared. Genotypic adaptation refers to adaptive changes on an evolutionary time scale (usually longer than that for phenotypic adaptation), which involve an alteration in genetic structure, i.e., mutations occur and are positively selected if favorable to become established as part of the genome. Of particular relevance to the membrane adaptations of psychrophiles are the phenotypic and genotypic adaptations in lipid composition (the cellular “lipiome”), for which there is much information. Like the membranes of higher organisms, those of microorganisms are comprised mainly of proteins and lipids, together with a smaller amount of carbohydrate in the form of glycoproteins, glycolipids, or other molecules, organized as described originally in the Fluid-Mosaic Model of membrane structure. The presence of lipids that have a tendency to form non-bilayer phases gives a certain tension to the membrane and may be important in helping to drive processes such as sporulation and cell division that involve segregation of membranes. Microorganisms modify their membrane lipid fatty acyl composition in response to thermal changes by altering unsaturation, (methyl) branching, or chain length. The -unsaturated fatty acids are synthesized by direct and non-reversible isomerization of cisunsaturated fatty acyl chains without a saturated intermediate. The gene for the / isomerase enzyme has been cloned and the enzyme purified. Anteiso-branched fatty acids seem to be particularly associated with growth at low temperatures.

Citation: Russell N. 2007. Psychrophiles: Membrane Adaptations, p 155-164. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch12

Key Concept Ranking

Fatty Acids
0.5454991
Membrane Lipids
0.53395385
Unsaturated Fatty Acids
0.50588715
Acyl Coenzyme A
0.4898025
Fatty Acid Synthase
0.4703341
0.5454991
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815813.ch12
1. Aguilar, P. S.,, J. E. Cronan, and, D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:21942200.
2. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Photobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65:17101720.
3. Annous, B. A.,, L. A. Becker,, D. O. Bayles,, D. P. Labeda, and, B. J. Wilkinson. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63:38873894.
4. Bowman, J. P.,, S. A. McCammon,, D. S. Nichols, et al. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (C20:5 ω3) and grow anaerobically by dissimilatory Fe(III) reduction. Int. J. Syst. Bacteriol. 47:10401047.
5. Certik, M.,, and S. Shimizu S. 1999. Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J. Biosci. Bioeng. 87:114.
6. Cronan, J. E. 2003. Bacterial membrane lipids: where do we stand? Annu. Rev. Microbiol. 57:203224.
7. de Kruiff, B. 1997. Lipid polymorphism and biomembrane function. Curr. Opin. Chem. Biol. 1:564569.
8. Dowhan, W. 1997. Molecular basis for membrane phospholipids diversity: Why are there so many lipids? Annu. Rev. Biochem. 66:157165.
9. Fulco, A. J.,, and D. K. Fujii. 1980. Adaptive regulation of membrane lipid biosynthesis in bacilli by environmental temperature, p. 77–98. In M. Kates and, A. Kuksis (ed.), Membrane Fluidity. Biophysical Techniques and Cellular Regulation. The Humana Press, Clifton, NJ.
10. Goldfine, H. 1984. Bacterial membranes and lipid packing theory. J. Lipid Res. 25:15011507.
11. Goodchild, A.,, N. F. Saunders,, H. Ertan, et al. 2004. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 53:309321.
12. Gounot, A.-M.,, and N. J. Russell. 1999. Physiology of cold-adapted microorganisms, p. 33–55. In R. Margesin and, F. Schinner (ed.), Cold-Adapted Microorganisms. Springer-Verlag, Berlin, Germany.
13. Härtig, C.,, N. Loffhagen, and, H. Harms. 2005. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl. Environ. Microbiol. 71:19151922.
14. Harwood, J. L.,, and N. J. Russell. 1984. Lipids in Plants and Microbes. George Allen and Unwin, London, United Kingdom.
15. Heipieper, H. J.,, F. Meinhardt, and, A. Segura. 2003. The cis–trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229:17.
16. Israelachvili, J. N.,, S. Marčela, and, R. G. Horn. 1980. Physical principles of membrane organization. Quart. Rev. Biophys. 13:121200.
17. Jones, S. L.,, P. Drouin,, B. J. Wilkinson, and, P. D. Morse II. 2002. Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch. Microbiol. 177:217222.
18. Kannenberg, E. L.,, and K. Poralla. 1999. Hopanoid biosynthesis and function. Naturwissenschaften 86:168176.
19. Kates, M.,, and E. Pugh. 1980. Role of phospholipid desaturases in control of membrane fluidity, p. 153–170. In M. Kates and, A. Kuksis (ed.), Membrane Fluidity. Biophysical Techniques and Cellular Regulation. The Humana Press, Clifton, NJ.
20. Macdonald, P. M.,, B. McDonough,, B. D. Sykes, and, R. N. McElhaney. 1983. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laid-lawii B membranes. Effects of methyl-branch substitution and of trans unsaturation upon membrane acyl-chain orientational order. Biochemistry 22:51035111.
21. Macdonald, P. M.,, B. D. Sykes, and, R. N. McElhaney. 1985. Fluorine-19 nuclear magnetic resonance studies of lipid fatty acyl chain order and dynamics in Acholeplasma laidlawii B membranes. Gel-state disorder in the presence of methyl iso- and anteiso-branched-chain substituents. Biochemistry 24:24122419.
22. Mansilla, M. C.,, and D. de Mendoza. 2005. The Bacillus subtilis desaturase: a model to understand phospholipid modification and temperature sensing. Arch. Microbiol. 183:229235.
23. Marrakchi, H.,, K.-H. Choi, and, C. O. Rock. 2002. A new mechanism for anaerobic unsaturated fatty acid formation in Streptococcus pneumoniae. J. Biol. Chem. 277:4480944816.
24. Medique, C.,, E. Krin,, G. Pascal, et al. 2005. Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res. 15:13251335.
25. Methe, B. A.,, K. E. Nelson,, J. W. Deming, et al. 2005. The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc. Natl. Acad. Sci. USA. 102:1091310918.
26. Metz, J. G.,, P. Roessler,, D. Facciotti, et al. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290293.
27. Morein, S.,, A. Andersson,, L. Rilfors, and, G. Lindblom. 1996. Wild-type Escherichia coli cells regulate the membrane lipid composition in a “window” between gel and non-lamellar structures. J. Biol. Chem. 271:68016809.
28. Nichols, D. S.,, M. R. Miller,, N. W. Davies,, A. Goodchild,, M. Rafferty, and, R. Cavicchioli. 2004. Cold adaptation in the archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bacteriol. 186:85088515.
29. Okuyama, H.,, D. Enari, and, N. Morita. 1997. Identification and characterization of 9- cis-hexadecenoic acid cistrans isomerase from a psychrotolerant bacterium Pseudomonas sp. strain E-3. Proc. NIPR Symp. Polar Biol. Microbiol. 10:153162.
30. Ourisson, G.,, M. Rohmer, and, K. Poralla. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 41:301333.
31. Pedrotta, V.,, and B. Witholt. 1999. Isolation and characterization of the cistrans-unsaturated fatty acid isomerase of Pseudomonas oleovorans GPo12. J. Bacteriol. 181:32563261.
32. Phadtare, S.,, K. Yamanaka, and, M. Inouye. 2000. The cold shock response, p. 33–45. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology Press, Washington, DC.
33. Phillips, R. W.,, J. Wiegel,, C. J. Berry,, C. Fliermans,, A. D. Peacock,, D. C. White, and, L. J. Shimkets. 2002. Kineococcus radiotolerans sp. nov., a radiation-resistant, gram-positive bacterium. Int. J. Syst. Evol. Microbiol. 52:933938.
34. Rabus, R.,, A. Ruepp,, T. Frickey, et al. 2004. The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ. Microbiol. 6:887902.
35. Russell, N. J. 1984a. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 9:108112.
36. Russell, N. J. 1984b. The regulation of membrane fluidity in bacteria by acyl chain length, p. 329–347. In L. A. Manson and, M. Kates (ed.), Biomembranes. Humana Press, Clifton, NJ.
37. Russell, N. J. 1989. Functions of lipids: structural roles and membrane functions, p. 279–365, vol. 2. In C. Ratledge and, S. G. Wilkinson (ed.), Microbial Lipids. Academic Press, London, United Kingdom.
38. Russell, N. J. 2003a. Psychrophily and resistance to low temperatures. In Encyclopaedia of Life Support Systems. EOLSS Publishers Co Ltd. Published electronically, contribution number 6-73-03-00@http://www.eolss.com.
39. Russell, N. J. 2003b. Membrane adaptation and solute uptake systems. In Encyclopaedia of Life Support Systems. EOLSS Publishers Co Ltd. Published electronically, contribution number 6-73-03-02@http://www.eolss.com.
40. Russell, N. J.,, and D. S. Nichols. 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145:767779.
41. Saunders, N. F.,, T. Thomas,, P. M. Curmi, et al. 2003 Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res. 13:15801588.
42. Seo, J. B.,, H. S. Kim,, G. Y. Jung, et al. 2004. Psychrophilicity of Bacillus psychrosaccharolyticus: A proteomic study. Proteomics 4:36543659.
43. Sinensky, M. 1974. Homeoviscous adaptation: a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:522525.
44. Smith, M. C. 2002. Molecular genetics of polyunsaturated fatty acid biosynthesis in Antarctic bacteria. Ph.D. Thesis. University of Tasmania, Australia.
45. Staunton, J.,, and K. J. Weissman. 2001. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18:380416.
46. Suutari, M.,, and S. Laakso. 1992. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126:119124.
47. Takeyama, H.,, D. Takeda,, K. Yazawa, et al. 1997. Expression of the eicosapentanoic acid synthesis gene cluster from Shewanella sp. in a transgenic marine cyanobacterium, Synechococcus sp. Microbiology 143:27252731.
48. Thomas, A. 1989. Thermal adaptation of bacterial membrane lipids. Ph.D. Thesis. University of Wales, United Kingdom.
49. van de Vossenberg, J., C. L. M.,, A. J. M. Driessen,, M. S. da Costa, and, W. N. Konings. 1999. Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim. Biophys. Acta 1419:97104.
50. White, P. L. 1999. The effects of environmental warming on Antarctic soil microbial communities. Ph.D. Thesis. University of London, United Kingdom.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error