Chapter 14 : The Cold-Shock Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Cold-Shock Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap14-2.gif


When a bacterial culture growing exponentially at a temperature optimum for its growth is shifted to low temperature, it exhibits cold-shock response. This is irrespective of the preferred optimum growth temperature; thus all types of bacteria such as psychrotrophic, psychrophilic, mesophilic, and thermophilic bacteria possess cellular machinery to elicit this response. Recent global transcript profiling of cells undergoing cold shock showed that several genes encoding proteins involved in sugar transport and metabolism were induced by cold shock. Cold-shock response of cold-adapted bacteria is similar to that of mesophiles in aspects such as in many cases a lag phase of growth precedes acclimation to low temperature, specific proteins are induced by temperature downshift, membranes undergo adaptive changes, and enzymes are adapted to function at low temperature. One of the main differences in the cold-shock response of these two types of bacteria is the presence of cold acclimation proteins (Caps) in cold-adapted bacteria. The cold-shock response machinery of cyanobacteria is different from that of . The two main differences are: (i) the absence of CspA homologs and (ii) the presence of desaturases. Desaturases play an important role in cold-shock response of cyanobacteria. With the advent of DNA microarray technology, several groups have carried out global transcript profiling of cold-shock response of different bacteria. Cellular events occurring during cold-shock response are used in applications such as in food and agricultural industry and in research.

Citation: Inouye M, Phadtare S. 2007. The Cold-Shock Response, p 180-193. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch14

Key Concept Ranking

Gene Expression and Regulation
Fatty Acid Desaturase
DNA Microarray Analysis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Schematic representation of the cold-shock response and adaptation in and Csps, cold-shock proteins; Caps, cold acclimation proteins.

Citation: Inouye M, Phadtare S. 2007. The Cold-Shock Response, p 180-193. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agafonov, D. E.,, V. A. Kolb, and, A. S. Spirin. 2001. Ribosome-associated protein that inhibits translation at the aminoacyltRNA binding stage. EMBO Rep. 2:399402.
2. Aguilar, P. S.,, J. E. Cronan, Jr., and, D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:21942200.
3. Aguilar, P. S.,, A. M. Hernandez-Arriaga,, L. E. Cybulski,, A. C. Erazo, and, D. de Mendoza. 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. EMBO J. 20:16811691.
4. Annous, B. A.,, L. A. Becker,, D. O. Bayles,, D. P. Labeda, and, B. J. Wilkinson. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63:38873894.
5. Arnorsdottir, J.,, M. M. Kristjansson, and, R. Ficner. 2005. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation. FEBS. J. 272:832845.
6. Bae, W.,, S. Phadtare,, K. Severinov, and, M. Inouye. 1999. Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol. Microbiol. 31:14291441.
7. Bae, W.,, B. Xia,, M. Inouye, and, K. Severinov. 2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA 97:77847789.
8. Becker, L. A.,, S. N. Evans,, R. W. Hutkins, and, A. K. Benson. 2000. Role of sigma(B) in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacteriol. 182:70837087.
9. Beckering, C. L.,, L. Steil,, M. H. Weber,, U. Volker, and, M. A. Marahiel. 2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184:63956402.
10. Berger, F.,, N. Morellet,, F. Menu, and, P. Potier. 1996. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J. Bacteriol. 178:29993007.
11. Berger, F.,, P. Normand, and, P. Potier. 1997. capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J. Bacteriol. 179:56705676.
12. Boonyaratanakornkit, B. B.,, A. J. Simpson,, T. A. Whitehead,, C. M. Fraser,, N. M. El-Sayed, and, D. S. Clark. 2005. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock. Environ. Microbiol. 7:789797.
13. Brandi, A.,, R. Spurio,, C. O. Gualerzi, and, C. L. Pon. 1999. Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J. 18:16531659.
14. Broeze, R. J.,, C. J. Solomon, and, D. H. Pope. 1978. Effects of low temperature on in vivo and in vitro protein synthesis in Escherichia coli and Pseudomonas fluorescens. J. Bacteriol. 134:861874.
15. Carroll, J. W.,, M. C. Mateescu,, K. Chava,, R. R. Colwell, and, A. K. Bej. 2001. Response and tolerance of toxigenic Vibrio cholerae O1 to cold temperatures. Antonie Van Leeuwenhoek 79:377384.
16. Chamot, D.,, W. C. Magee,, E. Yu, and, G. W. Owttrim. 1999. A cold shock-induced cyanobacterial RNA helicase. J. Bacteriol. 181:17281732.
17. Chamot, D.,, and G. W. Owttrim. 2000. Regulation of cold shock-induced RNA helicase gene expression in the Cyanobacterium anabaena sp. strain PCC 7120. J. Bacteriol. 182:12511256.
18. Chapot-Chartier, M. P.,, C. Schouler,, A. S. Lepeuple,, J. C. Gripon, and, M. C. Chopin. 1997. Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J. Bacteriol. 179:55895593.
19. Craig, J. E.,, D. Boyle,, K. P. Francis, and, M. P. Gallagher. 1998. Expression of the cold-shock gene cspB in Salmonella typhimurium occurs below a threshold temperature. Microbiology 144:697704.
20. Dammel, C. S.,, and H. F. Noller. 1995. Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev. 9:626637.
21. Dersch, P.,, S. Kneip, and, E. Bremer. 1994. The nucleoid-associated DNA-binding protein H-NS is required for the efficient adaptation of Escherichia coli K-12 to a cold environment. Mol. Gen. Genet. 245:255259.
22. Derzelle, S.,, B. Hallet,, T. Ferain,, J. Delcour, and, P. Hols. 2003. Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl. Environ. Microbiol. 69:42854290.
23. Donovan, W. P.,, and S. R. Kushner. 1986. Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proc. Natl. Acad. Sci. USA 83:120124.
24. Ermolenko, D. N.,, and G. I. Makhatadze. 2002. Bacterial cold-shock proteins. Cell. Mol. Life Sci. 59:19021913.
25. Fang, L.,, Y. Hou, and, M. Inouye. 1998. Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J. Bacteriol. 180:9095.
26. Fang, L.,, W. Jiang,, W. Bae, and, M. Inouye. 1997. Promoter-independent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol. Microbiol. 23:355364.
27. Feller, G.,, and C. Gerday. 1997. Psychrophilic enzymes: molecular basis of cold adaptation. Cell. Mol. Life Sci. 53:830841.
28. Feng, W.,, R. Tejero,, D. E. Zimmerman,, M. Inouye, and, G. T. Montelione. 1998. Solution NMR structure and backbone dynamics of the major cold-shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37:1088110896.
29. Feng, Y.,, H. Huang,, J. Liao, and, S. N. Cohen. 2001. Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J. Biol. Chem. 276:3165131656.
30. Frankenberg, N.,, C. Welker, and, R. Jaenicke. 1999. Does the elimination of ion pairs affect the thermal stability of cold shock protein from the hyperthermophilic bacterium Thermotoga maritima? FEBS Lett. 454:299302.
31. Friedman, D. I.,, E. R. Olson,, C. Georgopoulos,, K. Tilly,, I. Herskowitz, and, F. Banuett. 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol. Rev. 48:299325.
32. Garwin, J. L.,, and J. E. Cronan, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J. Bacteriol. 141:14571459.
33. Garwin, J. L.,, A. L. Klages, and, J. E. Cronan, Jr. 1980. Beta-ketoacyl-acyl carrier protein synthase II of Escherichia coli. Evidence for function in the thermal regulation of fatty acid synthesis. J. Biol. Chem. 255:32633265.
34. Goldenberg, D.,, I. Azar,, A. B. Oppenheim,, A. Brandi,, C. L. Pon, and, C. O. Gualerzi. 1997. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol. Gen. Genet. 256:282290.
35. Goldstein, J.,, N. S. Pollitt, and, M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87:283287.
36. Graumann, P.,, K. Schroder,, R. Schmid, and, M. A. Marahiel. 1996. Cold shock stress-induced proteins in Bacillus subtilis. J. Bacteriol. 178:46114619.
37. Graumann, P.,, T. M. Wendrich,, M. H. Weber,, K. Schroder, and, M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25:741756.
38. Graumann, P. L.,, and M. A. Marahiel. 1998. A superfamily of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23:286290.
39. Graumann, P. L.,, and M. A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203209.
40. Gualerzi, C. O.,, A. M. Giuliodori, and, C. L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331:527539.
41. Gualerzi, C. O.,, and C. L. Pon. 1990. Initiation of mRNA translation in prokaryotes. Biochemistry 29:58815889.
42. Han, Y.,, D. Zhou,, X. Pang,, L. Zhang,, Y. Song,, Z. Tong,, J. Bao,, E. Dai,, J. Wang,, Z. Guo,, J. Zhai,, Z. Du,, X. Wang,, J. Wang,, P. Huang, and, R. Yang. 2005. DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect. 7:335348.
43. Hanna, M. M.,, and K. Liu. 1998. Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J. Mol. Biol. 282:227239.
44. Hebraud, M.,, and P. Potier. 1999. Cold shock response and low temperature adaptation in psychrotrophic bacteria. J. Mol. Microbiol. Biotechnol. 1:211219.
45. Hillier, B. J.,, H. M. Rodriguez, and, L. M. Gregoret. 1998. Coupling protein stability and protein function in Escherichia coli CspA. Fold Des. 3:8793.
46. Hu, K. H.,, E. Liu,, K. Dean,, M. Gingras,, W. DeGraff, and, N. J. Trun. 1996. Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143:15211532.
47. Imbert, M.,, and F. Gancel. 2004. Effect of different temperature downshifts on protein synthesis by Aeromonas hydrophila. Curr. Microbiol. 49:7983.
48. Inaba, M.,, I. Suzuki,, B. Szalontai,, Y. Kanesaki,, D. A. Los,, H. Hayashi, and, N. Murata. 2003. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in synechocystis. J. Biol. Chem. 278:1219112198.
49. Ishizaki-Nishizawa, O.,, T. Fujii,, M. Azuma,, K. Sekiguchi,, N. Murata,, T. Ohtani, and, T. Toguri. 1996. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat. Biotechnol. 14:10031006.
50. Jacob, M.,, T. Schindler,, J. Balbach, and, F. X. Schmid. 1997. Diffusion control in an elementary protein folding reaction. Proc. Natl. Acad. Sci. USA 94:56225627.
51. Jiang, W.,, L. Fang, and, M. Inouye. 1996. The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178:49194925.
52. Jiang, W.,, Y. Hou, and, M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272:196202.
53. Jones, P. G.,, and M. Inouye. 1994. The cold-shock response—a hot topic. Mol. Microbiol. 11:811818.
54. Kaan, T.,, G. Homuth,, U. Mader,, J. Bandow, and, T. Schweder. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:34413455.
55. Kandror, O.,, A. DeLeon, and, A. L. Goldberg. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 99:97279732.
56. Kandror, O.,, and A. L. Goldberg. 1997. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc. Natl. Acad. Sci. USA 94:49784981.
57. Kaneda, T. 1967. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J. Bacteriol. 93:894903.
58. Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol. Rev. 55:288302.
59. Kaplan, F.,, and C. L. Guy. 2004. β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135:16741684.
60. Karlson, D.,, K. Nakaminami,, T. Toyomasu, and, R. Imai. 2002. A cold-regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J. Biol. Chem. 277:3524835256.
61. Katzif, S.,, D. Danavall,, S. Bowers,, J. T. Balthazar, and, W. M. Shafer. 2003. The major cold shock gene, cspA, is involved in the susceptibility of Staphylococcus aureus to an antimicrobial peptide of human cathepsin G. Infect. Immun. 71:43044312.
62. Kondo, K.,, and M. Inouye. 1991. TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J. Biol. Chem. 266:1753717544.
63. Kondo, K.,, and M. Inouye. 1992. Yeast NSR1 protein that has structural similarity to mammalian nucleolin is involved in prerRNA processing. J. Biol. Chem. 267:1625216258.
64. Kremer, W.,, B. Schuler,, S. Harrieder,, M. Geyer,, W. Gronwald,, C. Welker,, R. Jaenicke, and, H. R. Kalbitzer. 2001. Solution NMR structure of the cold-shock protein from the hyperthermophilic bacterium Thermotoga maritima. Eur. J. Biochem. 268:25272539.
65. Krispin, O.,, and R. Allmansberger. 1995. Changes in DNA super-twist as a response of Bacillus subtilis towards different kinds of stress. FEMS Microbiol. Lett. 134:129135.
66. Leblanc, L.,, C. Leboeuf,, F. Leroi,, A. Hartke, and, Y. Auffray. 2003. Comparison between NaCl tolerance response and acclimation to cold temperature in Shewanella putrefaciens. Curr. Microbiol. 46:157162.
67. Lee, S. J.,, A. Xie,, W. Jiang,, J. P. Etchegaray,, P. G. Jones, and, M. Inouye. 1994. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol. Microbiol. 11:833839.
68. Lelivelt, M. J.,, and T. H. Kawula. 1995. Hsc66, an Hsp70 homolog in Escherichia coli, is induced by cold shock but not by heat shock. J. Bacteriol. 177:49004907.
69. Lopez, M. M.,, K. Yutani, and, G. I. Makhatadze. 2001. Interactions of the cold shock protein CspB from Bacillus subtilis with single-stranded DNA. Importance of the T base content and position within the template. J. Biol. Chem. 276:1551115518.
70. Los, D. A.,, and N. Murata. 1999. Responses to cold shock in cyanobacteria. J. Mol. Microbiol. Biotechnol. 1:221230.
71. Maier, R.,, B. Eckert,, C. Scholz,, H. Lilie, and, F. X. Schmid. 2003. Interaction of trigger factor with the ribosome. J. Mol. Biol. 326:585592.
72. Mangoli, S.,, V. R. Sanzgiri, and, S. K. Mahajan. 2001. A common regulator of cold and radiation response in Escherichia coli. J. Environ. Pathol. Toxicol. Oncol. 20:2326.
73. Martin, A.,, V. Sieber, and, F. X. Schmid. 2001. In-vitro selection of highly stabilized protein variants with optimized surface. J. Mol. Biol. 309:717726.
74. Martinez-Costa, O. H.,, M. Zalacain,, D. J. Holmes, and, F. Malpartida. 2003. The promoter of a cold-shock-like gene has pleiotropic effects on Streptomyces antibiotic biosynthesis. FEMS Microbiol. Lett. 220:215221.
75. Michel, V.,, I. Lehoux,, G. Depret,, P. Anglade,, J. Labadie, and, M. Hebraud. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J. Bacteriol. 179:73317342.
76. Mitta, M.,, L. Fang, and, M. Inouye. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26:321335.
77. Mizushima, T.,, K. Kataoka,, Y. Ogata,, R. Inoue, and, K. Sekimizu. 1997. Increase in negative supercoiling of plasmid DNA in Escherichia coli exposed to cold shock. Mol. Microbiol. 23:381386.
78. Moll, I.,, M. Huber,, S. Grill,, P. Sairafi,, F. Mueller,, R. Brimacombe,, P. Londei, and, U. Blasi. 2001. Evidence against an Interaction between the mRNA downstream box and 16S rRNA in translation initiation. J. Bacteriol. 183:34993505.
79. Movahedi, S.,, and W. Waites. 2002. Cold shock response in sporulating Bacillus subtilis and its effect on spore heat resistance. J. Bacteriol. 184:52755281.
80. Murata, N.,, and H. Wada. 1995. Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J. 308:18.
81. Nakashima, K.,, K. Kanamaru,, T. Mizuno, and, K. Horikoshi. 1996. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J. Bacteriol. 178:29942997.
82. Napolitano, M. J.,, and D. H. Shain. 2005. Distinctions in adenylate metabolism among organisms inhabiting temperature extremes. Extremophiles 9:9398.
83. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S.,, Pratt, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter, and, C. M. Fraser. 1999. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323329.
84. Newkirk, K.,, W. Feng,, W. Jiang,, R. Tejero,, S. D. Emerson,, M. Inouye, and, G. T. Montelione. 1994. Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc. Natl. Acad. Sci. USA 91:51145118.
85. Nishiyama, S. I.,, T. Umemura,, T. Nara,, M. Homma, and, I. Kawagishi. 1999. Conversion of a bacterial warm sensor to a cold sensor by methylation of a single residue in the presence of an attractant. Mol. Microbiol. 32:357365.
86. Orlova, I. V.,, T. S. Serebriiskaya,, V. Popov,, N. Merkulova,, A. M. Nosov,, T. I. Trunova,, V. D. Tsydendambaev, and, D. A. Los. 2003. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell. Physiol. 44:447450.
87. Pan, J.,, X. L. Chen,, C. Y. Shun,, H. L. He, and, Y. Z. Zhang. 2005. Stabilization of cold-adapted protease MCP-01 promoted by trehalose: prevention of the autolysis. Protein Pept. Lett. 12:375378.
88. Panoff, J. M.,, D. Corroler,, B. Thammavongs, and, P. Boutibonnes. 1997. Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. J. Bacteriol. 179:44514454.
89. Perl, D.,, and F. X. Schmid. 2001. Electrostatic stabilization of a thermophilic cold shock protein. J. Mol. Biol. 313:343357.
90. Perl, D.,, C. Welker,, T. Schindler,, K. Schroder,, M. A. Marahiel,, R. Jaenicke, and, F. X. Schmid. 1998. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat. Struct. Biol. 5:229235.
91. Phadtare, S. 2004. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6:125136.
92. Phadtare, S.,, J. Alsina, and, M. Inouye. 1999. Cold-shock response and cold-shock proteins. Curr. Opin. Microbiol. 2:175180.
93. Phadtare, S.,, J. Hwang,, K. Severinov, and, M. Inouye. 2003. CspB and CspL, thermostable cold-shock proteins from Thermotoga maritima. Genes Cells 8:801810.
94. Phadtare, S.,, and M. Inouye. 1999. Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol. Microbiol. 33:10041014.
95. Phadtare, S.,, and M. Inouye. 2001. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183:12051214.
96. Phadtare, S.,, and M. Inouye. 2004. Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J. Bacteriol. 186:70077014.
97. Phadtare, S.,, M. Inouye, and, K. Severinov. 2002. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J. Biol. Chem. 277:72397245.
98. Phadtare, S.,, and K. Severinov. 2005. Extended –10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J. Bacteriol. 187:65846589.
99. Phadtare, S.,, Yamanaka, K, and, Inouye, M. 2000. The cold shock response, p. 33–45. In G. Storz, and, R. Hengge-Aronis (ed.), The Bacterial Stress Responses. ASM Press, Washington, D.C.
100. Polissi, A.,, W. De Laurentis,, S. Zangrossi,, F. Briani,, V. Longhi,, G. Pesole, and, G. Deho. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res. Microbiol. 154:573580.
101. Porankiewicz, J.,, and A. K. Clarke. 1997. Induction of the heat shock protein ClpB affects cold acclimation in the cyanobacterium Synechococcus sp. strain PCC 7942. J. Bacteriol. 179:51115117.
102. Qing, G.,, B. Xia, and, M. Inouye. 2004. Enhancement of translation initiation by A/T-rich sequences downstream of the initiation codon in Escherichia coli. J. Mol. Microbiol. Biotechnol. 6:133144.
103. Reid, K. L.,, H. M. Rodriguez,, B. J. Hillier, and, L. M. Gregoret. 1998. Stability and folding properties of a model beta-sheet protein, Escherichia coli CspA. Protein Sci. 7:470479.
104. Russell, N. J. 1990. Cold adaptation of microorganisms. Philos. Trans. R. Soc. Lond., B., Biol. Sci. 326:595608.
105. Russell, N. J. 1998. Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv. Biochem. Eng. Biotechnol. 61:121.
106. Sakamoto, T.,, and D. A. Bryant. 1997. Temperature-regulated mRNA accumulation and stabilization for fatty acid desaturase genes in the cyanobacterium Synechococcus sp. strain PCC 7002. Mol. Microbiol. 23:12811292.
107. Sand, O.,, Gingras, M.,, Beck, N.,, Hall, C.,, and N. Trun. 2003. Phenotypic characterization of overexpression or deletion of the Escherichia coli crcA, cspE and crcB genes. Microbiology 149:21072117.
108. Sato, N. 1995. A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic Acids Res. 23:21612167.
109. Schelin, J.,, F. Lindmark, and, A. K. Clarke. 2002. The clpP multi-gene family for the ATP-dependent Clp protease in the cyanobacterium Synechococcus. Microbiology 148:22552265.
110. Schindelin, H.,, W. Jiang,, M. Inouye, and, U. Heinemann. 1994. Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 91:51195123.
111. Schindelin, H.,, M. A. Marahiel, and, U. Heinemann. 1993. Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364:164168.
112. Schindler, T.,, D. Perl,, P. Graumann,, V. Sieber,, M. A. Marahiel, and, F. X. Schmid. 1998. Surface-exposed phenylalanines in the RNP1/RNP2 motif stabilize the cold-shock protein CspB from Bacillus subtilis. Proteins 30:401406.
113. Schnuchel, A.,, R. Wiltscheck,, M. Czisch,, M. Herrler,, G. Willimsky,, P. Graumann,, M. A. Marahiel, and, T. A. Holak. 1993. Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364:169171.
114. Schroder, K.,, P. Graumann,, A. Schnuchel,, T. A. Holak, and, M. A. Marahiel. 1995. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol. Microbiol. 16:699708.
115. Segura, A.,, P. Godoy,, P. van Dillewijn,, A. Hurtado,, N. Arroyo,, S. Santacruz, and, J. L. Ramos. 2005. Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J. Bacteriol. 187:59375945.
116. Sinensky, M. 1974. Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 71:522525.
117. Sugino, A.,, C. L. Peebles,, K. N. Kreuzer, and, N. R. Cozzarelli. 1977. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Natl. Acad. Sci. USA 74:47674771.
118. Suzuki, I.,, D. A. Los,, Y. Kanesaki,, K. Mikami, and, N. Murata. 2000. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19:13271334.
119. Toone, W. M.,, K. E. Rudd, and, J. D. Friesen. 1991. deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J. Bacteriol. 173:32913302.
120. Topanurak, S.,, S. Sinchaikul,, B. Sookkheo,, S. Phutrakul, and, S. T. Chen. 2005. Functional proteomics and correlated signaling pathway of the thermophilic bacterium Bacillus stearothermophilus TLS33 under cold-shock stress. Proteomics 5:44564471.
121. Walker, G. C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48:6093.
122. Wang, J. Y.,, and M. Syvanen. 1992. DNA twist as a transcriptional sensor for environmental changes. Mol. Microbiol. 6:18611866.
123. Wang, N.,, K. Yamanaka, and, M. Inouye. 1999. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J. Bacteriol. 181:16031609.
124. Wassenberg, D.,, C. Welker, and, R. Jaenicke. 1999. Thermodynamics of the unfolding of the cold-shock protein from Thermotoga maritima. J. Mol. Biol. 289:187193.
125. Weber, M. H.,, and M A. Marahiel. 2003. Bacterial cold shock responses. Sci. Prog. 86:975.
126. Weinberg, M. V.,, G. J. Schut,, S. Brehm,, S. Datta, and, M. W. Adams. 2005. Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glyco-proteins. J. Bacteriol. 187:336348.
127. Welker, C.,, G. Bohm,, H. Schurig, and, R. Jaenicke. 1999. Cloning, overexpression, purification, and physicochemical characterization of a cold shock protein homolog from the hyperthermophilic bacterium Thermotoga maritima. Protein Sci. 8:394403.
128. Xia, B.,, H. Ke, and, M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40:179188.
129. Yamanaka, K.,, L. Fang, and, M. Inouye. 1998. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27:247255.
130. Yamanaka, K.,, and M. Inouye. 1997. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J. Bacteriol. 179:51265130.
131. Yamanaka, K.,, and M. Inouye. 2001. Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37 degrees C. Genes Cells 6:279290.
132. Yamanaka, K.,, W. Zheng,, E. Crooke,, Y. H. Wang, and, M. Inouye. 2001. CspD, a novel DNA replication inhibitor induced during the stationary phase in Escherichia coli. Mol. Microbiol. 39:15721584.


Generic image for table
Table 1.

Comparison between cold-shock response of and psychrotrophs

Citation: Inouye M, Phadtare S. 2007. The Cold-Shock Response, p 180-193. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error