1887

Chapter 15 : Perception and Transduction of Low Temperature in Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Perception and Transduction of Low Temperature in Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap15-2.gif

Abstract:

This chapter focuses on the various mechanisms by which membrane fluidity is modulated in bacteria vis-à-vis its importance in cold adaptation. A detailed update on the perception and transduction of low-temperature signals in bacteria is also included. Subsequently, it was found that trans-monounsaturated are predominant in gram-negative bacteria and are synthesized by direct isomerization of -unsaturated fatty acids to -unsaturated fatty acids without shifting of a double bond. One of the predominant signal transduction mechanisms employed by bacteria is the phosphotransfer pathway commonly referred to as the two-component signal transduction system, which consists of a sensor kinase (histidine kinase) and a response regulator, found in bacteria, , and . The first direct evidence for the two-component signal transduction mechanism involved in sensing cold has come from studies on . Modulation in membrane fluidity appears to be crucial for low-temperature sensing in bacteria, and this is normally achieved by the conversion of saturated fatty acids to unsaturated fatty acids. Yet we are far from understanding many key aspects of bacterial signal transduction in response to low temperature.

Citation: Shivaji S, Kiran M, Chintalapati S. 2007. Perception and Transduction of Low Temperature in Bacteria, p 194-207. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch15

Key Concept Ranking

Unsaturated Fatty Acids
0.50757337
Two-Component Signal Transduction Systems
0.5074709
Fourier Transform Infrared Spectroscopy
0.41272736
0.50757337
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Diagrammatic representation of the two-component signal transduction pathway for the perception and transduction of low-temperature signals in (A) and (B). In panel (A), Hik33 and Rer1 are the histidine kinase (sensor) and the response regulators, respectively, of The four transmembrane domains (shaded cylinders), the histidine kinase domain and the histidine residue (vertical rectangles with an H), the HAMP domain (histidine–kinase–adenylyl–cyclase–methyl-binding protein phosphatase), and the PAS (PER–ARNF–SIM) domain are indicated. In Rer1, the receiver domain with an aspartate residue (D), the DNA-binding domain (HMG), and the transcriptional activation domain (ARNT) are indicated. In panel (B), DesK and DesR are the histidine kinase and response regulators, respectively, of The four transmembrane domains (shaded cylinders) and the histidine kinase domain (vertical rectangle with an H) of DesK are indicated. In DesR, HTH refers to the DNA-binding domain and the receiver domain with an aspar-tate residue (D) are also shown. (The data for this figure has been taken from and ).

Citation: Shivaji S, Kiran M, Chintalapati S. 2007. Perception and Transduction of Low Temperature in Bacteria, p 194-207. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch15
1. Aguilar, P. S.,, J. E. Cronan, Jr., and, D. de Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipids desaturase. J. Bacteriol. 180:21942200.
2. Aguilar, P. S.,, P. Lopez, and, D. de Mendoza. 1999. Transcriptional control of the low temperature inducible des gene, encoding the delta 5 desaturase of Bacillus subtilis. J. Bacteriol. 181:70287033.
3. Aguilar, P. S.,, A. M. Hernandez-Arriaga,, L. E. Cybulski,, A. C. Erazo, and, D. de Mendoza. 2001. Molecular basis of thermosensing: a two-competent signal transduction thermometer in Bacillus subtilis. EMBO J. 20:16811691.
4. Akimoto, M.,, T. Ishii,, K. Yamagaki,, K. Ohtaguchi,, K. Koide, and, Y. Kazunaga. 1990. Production of eicosapentaenoic acid by a bacterium isolated from mackerel intestines. J. Am. Oil Chem. Soc. 67:911915.
5. Albanesi, D.,, M. C. Mansilla, and, D. de Mendoza. 2004. The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J. Bacteriol. 186:26552663.
6. Andersen, J.,, and N. Delihas. 1990. micF RNA binds to the 5′ end of ompF mRNA and to a protein from Escherichia coli. Biochemistry 29:92499256.
7. Appleby, J. L.,, J. S. Parkinson, and, R. B. Bourret. 1996. Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845848.
8. Baldassare, J. J.,, K. B. Rhinehart, and, D. F. Silbert. 1976. Modifications of membrane lipid: physical properties in relation to fatty acid structure. Biochemistry 15:29862994.
9. Baross, J. A.,, and R. Y. Morita. 1978. Microbial life at low temperatures: ecological aspects, p. 9–71. In D. J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, New York, NY.
10. Beney, L.,, and P. Gervais. 2000. Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses. Appl. Microbiol. Biotechnol. 57:3442.
11. Bloch, K. 1963. The biological synthesis of unsaturated fatty acids. Biochem. Soc. Symp. 24:116.
12. Bond, P. J.,, and M. S. Sansom. 2003. Membrane protein dynamics versus environment: simulations of OmpA in a micelle and in a bilayer. J. Mol. Biol. 329:10351053.
13. Brandi, A.,, C. L. Pon, and, C. O. Gualerzi. 1994. Interaction of the main cold shock protein CS 7.4 (CspA) of Escherichia coli with the promoter region of HNS. Biochimie 76:10901098.
14. Browse, J.,, and Z. Xin. 2001. Temperature sensing and cold acclimation. Curr. Opin. Plant Biol. 4:241246.
15. Cavicchioli, R.,, Siddiqui, K. S.,, Andrews, D,, and K. R. Sowers. 2002. Low temperature extremophiles and their applications. Curr. Opin. Biotechnol. 13:253261.
16. Chattopadhyay, M. K.,, M. V. Jagannadham,, M. Vairamani, and, S. Shivaji. 1997. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure and interaction with synthetic membranes. Biochem. Biophys. Res. Commun. 239:8590.
17. Chauhan, S.,, and S. Shivaji. 1994. Growth and pigmentation in Sphingobacterium antarcticus, a psychrotrophic bacterium from Antarctica. Polar Biol. 14:3136.
18. Chintalapati, S.,, M. D. Kiran, and, S. Shivaji. 2005. Role of membrane lipid fatty acids in cold adaptation. Cell. Mol. Biol. 50:631642.
19. Cronan, Jr.,, J. E., and, E. P. Gelmann. 1973. An estimate of the minimum amount of unsaturated fatty acid required for growth of Escherichia coli. J. Biol. Chem. 248:11881195.
20. Cybulski, L. E.,, D. Albanesi,, M. C. Mansilla,, S. Altabe,, P. S. Aguilar, and, D. de Mendoza. 2002. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl lipid desaturase. Mol. Microbiol. 45:13791388.
21. Cybulski, L. E.,, G. del Solar,, P. O. Craig,, M. Espinosa, and, D. de Mendoza. 2004. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J. Biol. Chem. 17:3934039347.
22. Datta, P. P.,, and R. K. Bhadra. 2003. Cold shock response and major cold shock proteins of Vibrio cholerae. Appl. Environ. Microbiol. 69:63616369.
23. De Mendoza, D.,, and J. E. Cronan, Jr. 1983. Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci. 8:4952.
24. de Wulf, P.,, B. J. Akerley, and, E. C. Lin. 2000. Presence of the Cpx system in bacteria. Microbiology 146:247248.
25. Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5:301309.
26. Denich, T. J.,, L. A. Beaudette,, H. Lee, and, J. T. Trevors. 2003. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52:149182.
27. Diaz, A. R.,, M. C. Mansilla,, A. J. Vila, and, D. de Mendoza. 2002. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J. Biol. Chem. 277:4809948106.
28. Diefenbach, R.,, and H. Keweloh. 1994. Synthesis of trans unsaturated fatty acids in Pseudomonas putida P8 by direct isomerization of the double bond of lipids. Arch. Microbiol. 162:120125.
29. Diefenbach, R.,, H. J. Heipieper, and, H. Keweloh. 1992. The conversion of cis- into trans-unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl. Microbiol. Biotechnol. 38:382387.
30. Dorman, C. J.,, J. C. D. Hinton, and, A. Free. 1999. Domain organization and oligomerization among H–NS-like nucleoid-associated proteins in bacteria. Trends Microbiol. 7:124128.
31. Drlica, K. 1992. Control of bacterial DNA supercoiling. Mol. Microbiol. 6:425433.
32. Epand, R. M. 1998. Lipid polymorphism and protein–lipid interactions. Biochim. Biophys. Acta 1376:353368.
33. Eriksson, S.,, R. Hurme, and, M. Rhen. 2002. Low temperature sensors in bacteria. Philos. Trans. R. Soc. Lond. B. 357:887893.
34. Falconi, M.,, B. Colonna,, G. Prosseda,, G. Micheli, and, C. O. Gualerzi. 1998. Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H–NS. EMBO J. 17:70337043.
35. Feller, G.,, and C. Gerday. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1:200208.
36. Fujii, D. K.,, and A. J. Fulco. 1977. Biosynthesis of unsaturated fatty acids by Bacilli. Hyperinduction and modulation of desaturase synthesis. J. Biol. Chem. 252:36603670.
37. Fulco, A. J. 1969. The biosynthesis of unsaturated fatty acids by Bacilli. I. Temperature induction of the desaturation reaction. J. Biol. Chem. 244:889895.
38. Gabrielska, J.,, and W. I. Gruszecki. 1996. Zeaxanthin (dihydroxy-beta-carotene) but not beta-carotene rigidifies lipid membranes: a 1H-NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim. Biophys. Acta 1285:167174.
39. Garwin, J. L.,, and J. E. Cronan, Jr. 1980. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J. Bacteriol. 141:14571459.
40. Garwin, J. L.,, A. L. Klages, and, J. E. Cronan, Jr. 1980. Structural, enzymatic and genetic studies of beta-ketoacyl-acyl carrier protein synthases I and II of Escherichia coli. J. Biol. Chem. 255:1194911956.
41. Georlette, D.,, V. Blaise,, T. Collins,, S. D’Amico,, E. Gratia,, A. Hoyoux,, J. C. Marx,, G. Sonan,, G. Feller, and, C. Gerday. 2004. Some like it cold: biocatalysis at low temperatures. FEMS Microbiol. Rev. 28:2542.
42. Goldstein, J.,, N. S. Pollitt, and, M. Inouye. 1990. Major cold-shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87:283287.
43. Goodchild, A.,, N. F. W. Saunders,, H. Ertan,, M. Raftery,, M. Guilhaus,, P. M. G. Curmi, and, R. Cavicchioli. 2004. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 53:309321.
44. Grau, R.,, and D. de Mendoza. 1993. Regulation of the synthesis of unsaturated fatty acids by growth temperature in Bacillus subtilis. Mol. Microbiol. 8:535542.
45. Grau, R.,, D. Gardiol,, G. C. Glikin, and, D. de Mendoza. 1994. DNA supercoiling and thermal regulation of unsaturated fatty acid synthesis in Bacillus subtilis. Mol. Microbiol. 11:933941.
46. Graumann, P. L.,, and M. A. Marahiel. 1999. Cold shock response in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:203209.
47. Graumann, P.,, T. M. Wendrich,, M. H. Weber,, K. Schröder, and, M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25:741756.
48. Gulig, P. A.,, H. Danbara,, D. G. Guiney,, A. J. Lax,, F. Norel, and, M. Rhen. 1993. Molecular analysis of spv virulence genes of the Salmonella virulence plasmid. Mol. Microbiol. 7:825830.
49. Gupta, P.,, G. S. N. Reddy,, D. Delille, and, S. Shivaji. 2004. Arthrobacter gangotriensis sp. nov. and Arthrobacter kerguelensis sp. nov. from Antarctica. Int. J. Syst. Evol. Microbiol. 54:23752378.
50. Hasegawa, Y.,, N. Kawada, and, Y. Nosho. 1980. Change in chemical composition of membrane of Bacillus caldotenax after shifting the growth temperature. Arch. Microbiol. 126:103108.
51. Heath, R. J.,, and C. O. Rock. 2002. The Claisen condensation in biology. Nat. Prod. Rep. 19:581596.
52. Heipieper, H. J.,, and J. A. M. De Bont. 1994. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 60:44404444.
53. Heipieper, H. J.,, R. Diefenbach, and, H. Keweloh. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58:18471852.
54. Heipieper, H. J.,, F. J. Weber,, J. Sikkema,, H. Keweloh,, J. A. M. de Bont. 1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12:409414.
55. Heipieper, H. J.,, F. Meinhardt, and, A. Segura. 2003. The cistrans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 229:17.
56. Hellingwerf, K. J.,, W. C. Crielaard,, M. J. Teixeira de Mattos,, W. D. Hoff,, R. Kort,, D. T. Verhamme, and, C. Avignone-Rossa. 1998. Current topics in signal transduction in bacteria. Antonie Leeuwenhoek 74:211227.
57. Hoch, J. A. 2000. Two component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3:165170.
58. Hoe, N. P.,, and J. D. Gougen. 1993. Temperature sensing in Yersinia pestis: translation of the LerF activator protein is thermally regulated. J. Bacteriol. 175:79017909.
59. Hurme, R.,, and M. Rhen. 1998. Temperature sensing in bacterial gene regulation—what it all boils down to. Mol. Microbiol. 30:16.
60. Hurme, R.,, K. Berndt,, D. Namork, and, M. Rhen. 1996. DNA binding exerted by a bacterial gene regulator with extensive coiled coil domains. J. Biol. Chem. 272:1262612631.
61. Hurme, R.,, K. Berndt,, S. J. Normark, and, M. Rhen. 1997. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90:5564.
62. Inaba, M.,, I. Suzuki,, B. Szalontai,, Y. Kanesaki,, D. A. Los,, H. Hayashi, and, N. Murata. 2003. Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J. Biol. Chem. 278:1219112198.
63. Jagannadham, M. V.,, V. Jayathirtha Rao, and, S. Shivaji. 1991. The major carotenoid pigment of a psychrotrophic Micrococcus roseus: purification, structure and interaction of the pigment with synthetic membranes. J. Bacteriol. 173:79117917.
64. Jagannadham, M. V.,, M. K. Chattopadhyay, and, S. Shivaji. 1996a. The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: fluorescence properties of the pigment and its binding to membranes. Biochem. Biophys. Res. Commun. 220:724728.
65. Jagannadham, M. V.,, K. Narayanan,, Ch. Mohan Rao, and, S. Shivaji. 1996b. In vivo characteristics and localisation of carotenoid pigments in psychrotrophic and mesophilic Micrococcus roseus using photoacoustic spectroscopy. Biochem. Biophys. Res. Commun. 227:221226.
66. Jagannadham, M. V.,, M. K. Chattopadhyay,, C. Subbalakshmi,, M. Vairamani,, K. Narayanan,, Ch. Mohan Rao, and, S. Shivaji. 2000. Carotenoids of an Antarctic psychrotolerant bacterium Sphingobacterium antarcticus and a mesophilic bacterium Sphingobacterium multivorum. Arch. Microbiol. 173:418424.
67. Jiang, W.,, Y. Hou, and, M. Inouye. 1997. CspA, the major cold shock protein of Escherichia coli is an RNA chaperone. J. Biol. Chem. 272:196202.
68. Jones, P. G.,, and M. Inouye. 1994. The cold shock response: a hot topic. Mol. Microbiol. 11:811818.
69. Jones, P. G.,, R. A. VanBogelan, and, F. C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:20922095.
70. Junker, F.,, and J. L. Ramos. 1999. Involvement of the cis/ trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J. Bacteriol. 181:56935700.
71. Kaan, T.,, G. Homuth,, U. Mäder,, J. Bandow, and, T. Schweder. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148:34413455.
72. Kaneda, T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol. Rev. 55:288302.
73. Kasamo, K. 2003. Regulation of plasma membrane H+-ATPase activity by the membrane environment. J. Plant Res. 116:517523.
74. Kenyon, C. N. 1972. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. l09:827834.
75. Kenyon, C. N.,, R. Rippka, and, R. Y. Stanier. 1972. Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch. Mikrobiol. 83:216236.
76. Keweloh, H.,, and H. J. Heipieper. 1996. Trans-unsaturated fatty acids in bacteria. Lipids 31:129137.
77. Kiran, M. D.,, J. S. S. Prakash,, S. Annapoorni,, S. Dube,, T. Kusano,, H. Okuyama,, N. Murata, and, S. Shivaji. 2004. Psychrophilic Pseudomonas syringae required trans monounsaturated fatty acid for growth at higher temperature. Extremophiles 8:401410.
78. Kiran, M. D.,, S. Annapoorni,, I. Suzuki,, N. Murata, and, S. Shivaji. 2005. Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117125.
79. Klein, W.,, M. H. Weber, and, M. A. Marahiel. 1999. Cold shock response of Bacillus subtilis: isoleucine dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures. J. Bacteriol. 181:53415349.
80. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Albertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Borriss,, L. Boursier,, A. Brans,, M. Brauwn,, S. C. Brignell,, S. Born,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S. K. Choi,, J. J. Codani,, I. F. Connerton,, A. Danchin et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249256.
81. Lai, E. C. 2003. RNA sensors and riboswitches: self-regulating messages. Curr. Biol. 13:R285R291.
82. Lease, R. A.,, and M. Belfort. 2000. A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl. Acad. Sci. USA 97:99199924.
83. Lee, S. J.,, A. Xie,, W. Jiang,, J. P. Etchegaray,, P. G. Jones, and, M. Inouye. 1994. Family of the major cold-shock protein, CspA (CS7.4) of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol. Microbiol. 11:833839.
84. Los, D. A.,, and N. Murata. 2000. Regulation of enzymatic activity and gene expression by membrane fluidity. Science’s STKE 2000:pe1. doi: 10.1126/stke.2000.62.pe1.
85. Majdalani, N.,, C. Cunning,, D. Sledjeski,, T. Elliot, and, S. Gottesman. 1998. DsrA RNA regulates translation of RpoS message by an anti–antisense mechanism independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA 95:1246212467.
86. Majdalani, N.,, C. K. Vanderpool, and, S. Gottesman. 2005. Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. 40:93113.
87. Makula, R. A. 1978. Phospholipid composition of methane-utilizing bacteria. J. Bacteriol. 134:771777.
88. Mansilla, M. C.,, P. S. Aguilar,, D. Albanesi,, L. E. Cybulski,, S. Altabe, and, D. de Mendoza. 2003. Regulation of fatty acid desaturation in Bacillus subtilis. Prostaglandins Leukot. Essent. Fatty Acids 68:187190.
89. Mansilla, M. C.,, L. E. Cybulski,, D. Albanesi, and, D. de Mendoza. 2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186:66816688.
90. Marr, A. G.,, and J. J. Ingraham. 1962. Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 84:12601267.
91. Marx, J. C.,, V. Blaise,, T. Collins,, S. D’Amico,, D. Delille,, E. Gratia,, A. Hoyoux,, A. L. Huston,, G. Sonan,, G. Feller, and, C. Gerday. 2004. A perspective on cold enzymes: current knowledge and frequently asked questions. Cell. Mol. Biol. 50:643655.
92. McElhaney, R. N. 1982. Effects of membrane lipids on transport and enzymic activities. Curr. Top. Membr. Transp. 17:317380.
93. Mikami, K.,, I. Suzuki, and, N. Murata. 2003. 4 sensors of abiotic stress in Synechocystis. Topics Curr. Gen. 4:103119.
94. Mizuno, T. 1997. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res. 4:161168.
95. Mizuno, T.,, T. Kaneko, and, S. Tabata. 1996. Compilation of all genes encoding bacterial two-component signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803. DNA Res. 3:407414.
96. Morita, N.,, A. Shibahara,, K. Yamamoto,, K. Shinkai,, G. Kajimoto, and, H. Okuyama. 1993. Evidence for cistrans isomerization of a double bond in the fatty acids of the psychrophilic bacterium Vibrio sp. strain ABE-1. J. Bacteriol. 175:916918.
97. Murata, N. 1989. Low temperature effects of cyanobacterial membranes. J. Bioenerg. Biomembr. 21:6175.
98. Murata, N.,, and H. Wada. 1995. Acyl lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem. J. 308:18.
99. Murata, N.,, and L. A. Los. 1997. Membrane fluidity and temperature perception. Plant Physiol. 115:875879.
100. Murata, N.,, H. Wada, and, Z. Gombos. 1992. Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol. 33:933941.
101. Narberhaus, F.,, T. Waldminghaus, and, S. Chowdhury. 2005. RNA thermometers. FEMS Microbiol. Rev. 20:114.
102. Newkirk, K.,, W. Feng,, W. Jiang,, R. Tejero,, S. D. Emerson,, M. Inouye, and, G. Montelione. 1994. Solution NMR structure of the major cold-shock proteins (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc. Natl. Acad. Sci. USA 91:51145118.
103. Nishida, I.,, and N. Murata. 1996. Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:541568.
104. Okuyama, H.,, S. Sasaki,, S. Higashi, and, N. Murata. 1990. A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1. J. Bacteriol. 172:35153518.
105. Okuyama, H.,, N. Okajima,, S. Sasaki,, S. Higashi, and, N. Murata. 1991. The cis/trans isomerization of the double bond of a fatty acid as a strategy for adaptation to changes in ambient temperature in the psychrophilic bacterium, Vibrio sp. strain ABE-1. Biochim. Biophys. Acta 1084:1320.
106. Orlova, I. V.,, T. S. Serebriiskaya,, V. Popov,, N. Merkulova,, A. M. Nosov,, T. I. Trunova,, V. D. Tsydendambaev, and, D. A. Los. 2003. Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants. Plant Cell Physiol. 44:447450.
107. Park, H.,, S. K. Saha, and, M. Inouye. 1998. Two-domain reconstitution of a functional protein histidine kinase. Proc. Natl. Acad. Sci. USA 95:67286732.
108. Phadtare, S.,, J. Alsina, and, M. Inouye. 1999. Cold-shock response and cold-shock proteins. Curr. Opin. Microbiol. 2:175180.
109. Prabagaran, S. R.,, K. Suresh,, R. Manorama,, D. Delille, and, S. Shivaji. 2005. Marinomonas ushuaiensis sp. nov., isolated from coastal seawater in Ushuaia, Argentina, Sub-Antarctica. Int. J. Syst. Evol. Microbiol. 55:309313.
110. Price, P. B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97:12471251.
111. Quinn, P. J. 1981. The fluidity of cell membranes and its regulation. Prog. Biophys. Mol. Biol. 38:1104.
112. Ray, M. K.,, G. Seshu Kumar, and, S. Shivaji. 1994a. Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiology 140:32173223.
113. Ray, M. K.,, G. Seshu Kumar, and, S. Shivaji. 1994b. Tyrosine phosphorylation of a cytosolic protein from the antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol. Letts. 122:4954.
114. Ray, M. K.,, G. Seshu Kumar, and, S. Shivaji. 1994c. Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation. J. Bacteriol. 176:42434249.
115. Ray, M. K.,, G. Seshukumar,, K. Janiyani,, K. Kannan,, P. Jagtap,, M. K. Basu, and, S. Shivaji. 1998. Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J. Biosci. 23:423435.
116. Reddy, G., S. N.,, R. K. Aggarwal,, G. I. Matsumoto, and, S. Shivaji. 2000. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol. 50:15531561.
117. Reddy, G., S. N.,, J. S. S. Prakash,, M. Vairamani,, S. Prabhakar,, G. I. Matsumoto, and, S. Shivaji. 2002a. Planococcus antarcticus and Planococcus psychrophilus spp. nov. isolated from cyanobacterial mat samples collected from ponds in Antarctica. Extremophiles 6:253261.
118. Reddy, G., S. N.,, J. S. S. Prakash,, G. I. Matsumoto,, E. Stackebrandt, and, S. Shivaji. 2002b. Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int. J. Syst. Evol. Microbiol. 52:10171021.
119. Reddy, G., S. N.,, P. U. M. Raghavan,, N. B. Sarita,, J. S. S. Prakash,, N. Nagesh,, D. Delille, and, S. Shivaji. 2003a. Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7:5561.
120. Reddy, G., S. N.,, J. S. S. Prakash,, R. Srinivas,, G. I. Matsumoto, and, S. Shivaji. 2003b. Leifsonia rubra sp. nov. and Leifsonia aurea sp. nov. psychrophilic species isolated from a pond in Antarctica. Int. J. Syst. Evol. Microbiol. 53:977984.
121. Reddy, G., S. N.,, J. S. S. Prakash,, V. Prabahar,, G. I. Matsumoto,, E. Stackebrandt, and, S. Shivaji. 2003c. Kocuria polaris sp. nov., an orange pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int. J. Syst. Evol. Microbiol. 53:183187.
122. Reddy, G., S. N.,, G. I. Matsumoto,, P. Schumann,, E. Stackebrandt, and, S. Shivaji. 2004. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 54:713719.
123. Romby, P.,, and C. Ehresmann. 2003. At the flick of a switch: a Listeria mRNA turns on and off its own expression in response to temperature. The ELSO Gazette, http://www.the-elsogazette.org/magazines/issue14/mreviews/mreviews1.asp.
124. Rowbury, R. J. 2003. Temperature effects on biological systems: introduction. Sci. Prog. 86:18.
125. Russell, N. J. 1984. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 9:108112.
126. Russel, N. J. 1990. Cold adaptation of micro-organisms. Philos. Trans. R. Soc. Lond. B. 326:595611.
127. Sakamoto, T.,, and N. Murata. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5:206210.
128. Sakamoto, T.,, G. Shen,, S. Higashi,, N. Murata, and, D. A. Bryant. 1998. Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation. Arch. Microbiol. 169:2028.
129. Sato, N.,, and N. Murata. 1980. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. The central role of diacylmonogalactosylglycerol in thermo-adaptation. Biochim. Biophys. Acta 619:353366.
130. Sato, N.,, N. Murata,, Y. Miura, and, N. Ueta. 1979. Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim. Biophys. Acta 572:1928.
131. Schindler, T.,, P. L. Graumann,, D. Perl,, S. Ma,, F. X. Schmid, and, M. A. Marahiel. 1999. The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J. Biol. Chem. 274:34073413.
132. Shivaji, S. 2005. Microbial diversity and molecular basis of cold adaptation in Antarctic bacteria, p. 3–24. In T. Satyanarayana and, B. N. Johri (ed.), Microbial Diversity: Current Perspectives and Potential Applications. I.K. International Pvt. Ltd., New Delhi, India.
133. Shivaji, S.,, and M. K. Ray. 1995. Survival of strategies of psychrotrophic bacteria and yeasts of Antarctica. Indian J. Microbiol. 35:263281.
134. Shivaji, S.,, N. S. Rao,, L. Saisree,, V. Sheth,, G. S. N. Reddy, and, P. M. Bhargava. 1988. Isolation and identification of Micrococcus roseus and Planococcus sp. from Schirmacher Oasis, Antarctica. J. Biosci. 13:409414.
135. Shivaji, S.,, M. K. Ray,, N. Shyamala Rao,, L. Saisree,, M. V. Jagannadham,, G. Seshu Kumar,, G. S. N. Reddy, and, P. M. Bhargava. 1992. Sphingobacterium antarcticus sp. nov. a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int. J. Syst. Bacteriol. 42:102116.
136. Shivaji, S.,, G. S. N. Reddy,, P. U. M. Raghavan,, N. B. Sarita, and, D. Delille. 2004. Psychrobacter salsus sp. nov. and Psychrobacter adeliensis sp. nov. isolated from fast ice from Adelie Land, Antarctica. Syst. Appl. Microbiol. 27:628635.
137. Shivaji, S.,, G. S. N. Reddy,, R. P. Aduri,, R. Kutty, and, K. Raven-schlag. 2005. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cell. Mol. Biol. 50:525536.
138. Sledjeski, D. D.,, A. Gupta, and, S. Gottesman. 1996. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J. 15:39934000.
139. Sommerville, J.,, and M. Ladomery. 1996. Masking of mRNA by Y-box proteins. FASEB J. 10:435443.
140. Sonnenfield, J. M.,, C. M. Burns,, C. F. Higgins, and, J. Hinton. 2001. The nucleoid-associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie 83:243249.
141. Stetter, K. O. 1996. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18:49158.
142. Straley, S.,, and R. D. Perry. 1995. Environmental modulation of gene expression and pathogenesis in Yersinia. Trends Microbiol. 3:310317.
143. Subczynski, W. K.,, E. Markowska,, W. I. Gruszecki, and, J. Sielewiesiuk. 1992. Effect of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim. Biophys. Acta 1105:97108.
144. Suutari, M.,, and S. Laakso. 1992. Changes in fatty acid branching and unsaturation of Streptomyces griseus and Brevibacterium fermentans as a response to growth temperature. Appl. Environ. Microbiol. 58:23382343.
145. Suutari, M.,, and S. Laakso. 1994. Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 20:285328.
146. Suzuki, I.,, D. A. Los,, Y. Kanesaki,, K. Mikami, and, N. Murata. 2000a. The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J. 19:13271334.
147. Suzuki, I.,, D. A. Los, and, N. Murata. 2000b. Perception and transduction of low temperature signals to induce desaturation of fatty acids. Biochem. Soc. Trans. 28:626630.
148. Suzuki, I.,, Y. Kanasaki,, K. Mikami,, M. Kanehisa, and, N. Murata. 2001. Cold regulated genes under the control of cold sensor hik33 in Synechocystis. Mol. Microbiol. 40:235245.
149. Szalontai, B.,, Y. Nishiyaina,, Z. Gombos, and, N. Murata. 2000. Membrane dynamics as seen by Fourier transform infrared spectroscopy in a cyanobacterium, Synechocystis PCC 6803. The effects of lipid unsaturation and the protein-to-lipid ratio. Biochim. Biophys. Acta 1509:409419.
150. Takeuchi, Y.,, S. I. Ohnishi,, M. Ishinaga, and, M. Kito. 1978. Spin-labeling of Escherichia coli membrane by enzymatic synthesis of phosphatidylglycerol and divalent cation-induced interaction of phosphatidylglycerol with membrane proteins. Biochim. Biophys. Acta 506:5463.
151. Takeuchi, Y.,, S. I. Ohnishi,, M. Ishinaga, and, M. Kito. 1981. Dynamic states of phospholipids in Escherichia coli B membrane. Electron spin resonance studies with biosynthetically generated phospholipid spin labels. Biochim. Biophys. Acta 646:119125.
152. Tasaka, Y.,, Z. Gombos,, Y. Nishiyama,, P. Mohanty,, T. Ohba,, K. Ohki, and, N. Murata. 1996. Targeted mutagenesis of acyllipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J. 15:64166425.
153. Taylor, B. L.,, and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential and light. Microbiol. Mol. Biol. Rev. 63:479506.
154. Tobe, T.,, M. Yoshokawa,, T. Mizuno, and, C. Sasakawa. 1993. Transcriptional control of the invasion regulatory gene virB of Shigella exneri: activation by VirF and repression by H–NS. J. Bacteriol. 175:61426149.
155. Tse-Dinh, Y.-C.,, H. Qi, and, R. Menzel. 1997. DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol. 5:323326.
156. Vigh, L.,, D. A. Los,, I. Horvath, and, N. Murata. 1993. The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc. Natl. Acad. Sci. USA 90:90909094.
157. von Wallbrunn, A.,, H. H. Richnow,, G. Neumann,, F. Meinhardt, and, H. J. Heipieper. 2003. Mechanism of cistrans isomerization of unsaturated fatty acids in Pseudomonas putida. J. Bacteriol. 185:17301733.
158. Wada, H.,, and N. Murata. 1989. Synechocystis sp. PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol. 30:971978.
159. Wada, H.,, and N. Murata. 1990. Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol. 92:10621069.
160. Wada, H.,, Z. Gombos, and, N. Murata. 1990. Enhancement of a chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347:200203.
161. Weber, M., H. W., and, A. M. Marahiel. 2003. Bacterial cold shock responses. Sci. Prog. 86:975.
162. Williams, R. M.,, and S. Rimsky. 1997. Molecular aspects of the E. coli nucleoid protein, H-NS: a central controller of gene regulatory networks. FEMS Microbiol. Lett. 156:175185.
163. Xia, B.,, H. Ke,, U. Shinde, and, M. Inouye. 2003. The role of RbfA in 16S rRNA processing and cell growth at low temperature in Escherichia coli. J. Mol. Biol. 332:575584.
164. Xu, Y.,, G. Feller,, C. Gerday, and, N. Glansdorff. 2003. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J. Bacteriol. 185:21612168.
165. Zhang, W.,, and L. Shi. 2005. Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiology 151:21592173.

Tables

Generic image for table
Table 1.

Comparison of the fatty acid composition of psychrophilic bacteria (boldface) with their nearest mesophilic phylogenetic neighbor

Citation: Shivaji S, Kiran M, Chintalapati S. 2007. Perception and Transduction of Low Temperature in Bacteria, p 194-207. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch15
Generic image for table
Table 2.

Fatty acid composition of total glycerolipids from wild type and mutant cells of sp. PCC 6803 and sp. PCC 7002

Citation: Shivaji S, Kiran M, Chintalapati S. 2007. Perception and Transduction of Low Temperature in Bacteria, p 194-207. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch15
Generic image for table
Table 3.

Quantitative changes in the carotenoid content of grown at 5°C and 25°C

Citation: Shivaji S, Kiran M, Chintalapati S. 2007. Perception and Transduction of Low Temperature in Bacteria, p 194-207. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error