1887

Chapter 17 : Biodiversity in Highly Saline Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biodiversity in Highly Saline Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap17-2.gif

Abstract:

This chapter explores the world of high salt environments worldwide and the diversity of microorganisms that inhabit these environments. Highly saline environments can be encountered on all continents. Coastal solar salterns, found worldwide in dry tropical and subtropical climates, are man-made, thalassohaline hypersaline environments in which sea-water is evaporated for the production of salt. It is therefore not surprising that these saltern ecosystems have become popular objects for the study of microbial biodiversity and community dynamics at high salt concentrations, and much of one's understanding of the biology of halophilic microorganisms is based on studies of the saltern environment and in-depth studies of microorganisms isolated from such salterns. When soon afterward the organism, a rod-shaped red aerobic bacterium, was brought into culture, the organism appeared to be extremely interesting, and its study has deepened the understanding of phylogenetic as well as physiological and metabolic diversity in the world of halophiles. More extensive molecular ecological studies have been made in the Alicante salterns along the salt gradient, to obtain a more complete picture of the development of the microbial diversity as the salinity increases during the gradual evaporation of seawater.

Citation: Oren A. 2007. Biodiversity in Highly Saline Environments, p 223-231. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch17

Key Concept Ranking

Fermented Food Products
0.5346968
Pulsed-Field Gel Electrophoresis
0.41036165
16s rRNA Sequencing
0.40136838
0.5346968
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The small subunit rRNA sequence-based tree of life. Branches that harbor organisms able to grow at salt concentrations above 100 g/liter are highlighted. Based in part on Fig. 11.13 in .

Citation: Oren A. 2007. Biodiversity in Highly Saline Environments, p 223-231. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch17
1. Antón, J.,, E. Llobet-Brossa,, F. Rodríguez-Valera, and, R. Amann. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1:517523.
2. Antón, J.,, R. Rosselló-Mora,, F. Rodríguez-Valera, and, R. Amann. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66:30523057.
3. Antón, J.,, A. Oren,, S. Benlloch,, F. Rodríguez-Valera,, R. Amann, and, R. Rosselló-Mora. 2002. Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52:485491.
4. Baxter, B. K.,, C. D. Litchfield,, K. Sowers,, J. D. Griffith,, P. Arora DasSarma, and, S. DasSarma. 2005. Microbial diversity of Great Salt Lake, p. 11–25. In N. Gunde-Cimerman,, A. Oren,, and A. Plemenitaš (ed.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, The Netherlands.
5. Benlloch, S.,, A. J. Martínez-Murcia, and, F. Rodríguez-Valera. 1995. Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst. Appl. Microbiol. 18:574581.
6. Benlloch, S.,, S. G. Acinas,, J. Antón,, A. López-López,, S. P. Luz, and, F. Rodríguez-Valera. 2001. Archaeal biodiversity in crystallizer ponds from a solar saltern: culture versus PCR. Microb. Ecol. 41:1219.
7. Benlloch, S.,, A. López-López,, E. O. Casamajor,, L. Øvreas,, V. Goddard,, F. L. Dane,, G. Smerdon,, R. Massana,, I. Joint,, F. Thingstd,, C. Pedrós-Alió, and, F. Rodríguez-Valera. 2002. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4:349360.
8. Bolhuis, H.,, E. M. te Poele, and, F. Rodríguez-Valera. 2004. Isolation and cultivation of Walsby’s square archaeon. Environ. Microbiol. 6:12871291.
9. Burns, D. G.,, H. M. Camakaris,, P. H. Janssen, and, M. L. Dyall-Smith. 2004a. Cultivation of Walsby’s square haloarchaeon. FEMS Microbiol. Lett. 238:469473.
10. Burns, D. G.,, H. M. Camakaris,, P. H. Janssen, and, M. L. Dyall-Smith. 2004b. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 70:52585265.
11. Butinar, L.,, I. Spencer-Martins,, S. Santos,, A. Oren, and, N. Gunde-Cimerman. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 244:229234.
12. Casamajor, E. O.,, R. Massana,, S. Benlloch,, L. Øvreas,, B. Diez,, V. J. Goddard,, J. M. Gasol,, I. Joint,, F. Rodríguez-Valera, and, C. Pedrós-Alió. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4:338348.
13. Cayol, J.-L.,, B. Ollivier,, B. K. C. Patel,, G. Prensier,, J. Guezennec, and, J.-L. Garcia. 1994. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44:534540.
14. Diez, B.,, J. Antón,, N. Guixa-Boixereu,, C. Pedrós-Alió, and, F. Rodríguez-Valera. 2000. Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int. Microbiol. 3:159164.
15. Dundas, I. 1998. Was the environment for primordial life hypersaline? Extremophiles 2:375377.
16. Eder, W.,, W. Ludwig, and, R. Huber. 1999. Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch. Microbiol. 172:213218.
17. Fish, S. A.,, T. J. Shepherd,, T. J. McGenity, and, W. D. Grant. 2002. Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432436.
18. Guixa-Boixareu, N.,, J. I. Caldéron-Paz,, M. Heldal,, G. Bratbak, and, C. Pedrós-Alió, C. 1996. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11:213227.
19. Gunde-Cimerman, N.,, P. Zalar,, G. S. de Hoog, and, A. Plemenitaš. 2000. Hypersaline water in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32:235240.
20. Gunde-Cimerman, N.,, P. Zalar,, U. Petrovič,, M. Turk,, T. Kogej,, S. de Hoog, and, A. Plemenitaš. 2004. Fungi in the salterns, p. 103–111. In A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Berlin, Germany.
21. Hauer, G.,, and A. Rogerson. 2005. Heterotrophic protozoa from hypersaline environments. In N. Gunde-Cimerman,, A. Oren,, and A. Plemenitaš (ed.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya, p. 521539. Springer, Dordrecht, The Netherlands.
22. Humayoun, S. B.,, N. Bano, and, J. T. Hollibaugh. 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl. Environ. Microbiol. 69:10301042.
23. Javor, B. 1989. Hypersaline Environments. Microbiology and Biogeochemistry. Springer-Verlag, Berlin, Germany.
24. Leuko, S.,, A. Legat,, S. Fendrihan,, H. Wieland,, C. Radax,, C. Gruber,, M. Pfaffenhuemer,, G. Weidler, and, H. Stan-Lotter. 2005. Isolation of viable haloarchaea from ancient salt deposits and application of fluorescent stains for in situ detection of halophiles in hypersaline environmental samples and model fluid inclusions, p. 93–104. In N. Gunde-Cimerman,, A. Oren,, and A. Plemenitaš (ed.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, The Netherlands.
25. Madigan, M. T.,, J. M. Martinko, and, J. Parker. 2003. Brock Biology of Microorganisms. Pearson Education., Inc., Upper Saddle River, NJ.
26. Mongodin, E. F.,, K. E. Nelson,, S. Daugherty,, R. T. deBoy,, J. Wister,, H. Khouri,, J. Weidman,, D. A. Walsh,, R. T. Papke,, G. Sanchez Perez,, A. K. Sharma,, C. L. Nesbó,, D> MacLeod,, E. Bapteste,, W. F. Doolittle,, R. L. Charlebois,, B. Legault, and, F. Rodríguez-Valera. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102:1814718152.
27. Mouné, S.,, P. Caumette,, R. Matheron, and, J. C. Willison. 2002. Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol. Ecol. 44:117130.
28. Oren, A. 1988. The microbial ecology of the Dead Sea, p. 193–229. In K. C. Marshall (ed.), Advances in Microbial Ecology, vol. 10. Plenum Publishing Company, New York, NY.
29. Oren, A. 1999a. Microbiological studies in the Dead Sea: future challenges toward the understanding of life at the limit of salt concentrations. Hydrobiologia 405:19.
30. Oren, A. 1999b. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 63:334348.
31. Oren, A. 2000. Life at high salt concentrations. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.1, 20 January 2000. Springer-Verlag, New York, NY, http://link.springer-ny.com/link/service/books/10125.
32. Oren, A. 2001a. The order Halobacteriales. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.2, 25 July 2001. Springer-Verlag, New York, NY, http://link.springer-ny.com/link/service/books/10125.
33. Oren, A. 2001b. The order Haloanaerobiales. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.2, 25 July 2001. Springer-Verlag, New York, NY, http://link.springer-ny.com/link/service/books/10125.
34. Oren, A. 2002a. Halophilic Microorganisms and their Environments. Kluwer Scientific Publishers, Dordrecht, The Netherlands.
35. Oren, A. 2002b. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Indust. Microbiol. Biotechnol. 28:5663.
36. Oren, A. 2002c. Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol. Ecol. 39:17.
37. Oren, A. 2004. The genera Rhodothermus, Thermonema, Hymenobacter and Salinibacter. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.17, 31 August 2004. Springer-Verlag, New York, NY, http://link.springer-ny.com/link/service/books/10125/.
38. Oren, A. 2005. Microscopic examination of microbial communities along a salinity gradient in saltern evaporation ponds: a ‘halophilic safari’, p. 43–57. In N. Gunde-Cimerman,, A. Oren,, and A. Plemenitaš (ed.), Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Springer, Dordrecht, The Netherlands.
39. Oren, A.,, S. Duker, and, S. Ritter. 1996. The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol. Lett. 138:135140.
40. Oren, A.,, G. Bratbak, and, M. Heldal. 1997. Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143149.
41. Oren, A.,, M. Heldal,, S. Norland, and, E. A. Galinski. 2002. Intra-cellular ion and organic solute concentrations of the extremely halophilic Bacterium Salinibacter ruber. Extremophiles 6:491498.
42. Oren, A.,, F. Rodríguez-Valera,, J. Antón,, S. Benlloch,, R. Rosselló-Mora,, R. Amann,, J. Coleman, and, N. J. Russell. 2004. Red, extremely halophilic, but not archaeal: the physiology and ecology of Salinibacter ruber, a bacterium isolated from saltern crystallizer ponds, p. 63–76. In A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Berlin, Germany.
43. Park, J. S.,, H. Kim,, D. H. Choi, and, B. C. Cho. 2003. Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat. Microb. Ecol. 33:173179.
44. Post, F. J. 1977. The microbial ecology of the Great Salt Lake. Microb. Ecol. 3:143165.
45. Rothschild, L. J.,, and R. L. Mancinelli. 2001. Life in extreme environments. Nature 409:10921101.
46. Simon, R. D.,, A. Abeliovich, and, S. Belkin. 1994. A novel terrestrial halophilic environment: the phylloplane of Atriplex halimus, a salt-excreting plant. FEMS Microbiol. Ecol. 14:99110.
47. van der Wielen, P. W. J. J.,, H. Bolhuis,, S. Borin,, D. Daffonchio,, C. Corselli,, L. Giuliano,, G. D’Auria,, G. J. de Lange,, A. Huebner,, S. P. Varnavas,, J. Thomson,, C. Tamburini,, D. Marty,, T. J. McGenity,, K. N. Timmis, and the BioDeep Scientific Party. 2005. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121123.
48. Ventosa, A.,, J. J. Nieto, and, A. Oren. 1998. Biology of aerobic moderately halophilic bacteria. Microbiol. Mol. Biol. Rev. 62:504544.
49. Vreeland, R. H.,, W. D. Rosenzweig, and, D. W. Powers. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897900.
50. Walsby, A. E. 1980. A square bacterium. Nature 283:6971.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error