1887

Chapter 18 : Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap18-2.gif

Abstract:

Haloarchaea are highly specialized for life under extreme conditions. They can grow in saturated sodium chloride concentrations, and most of them require a minimum of 1.5 to 3M NaCl and 0.005 to 0.04M magnesium salts for growth. The description of different haloarchaeal genomes has created new means of understanding the biology of this group of organisms. The transcriptional response to different osmotic conditions appears to be quite widespread over the genome. The authors have distinguished specific high-salt and low-salt responses, as well as more general stress behaviors such as responses to both low and high salt and to both osmotic stress and heat shock, which may help to understand the osmoadaptation processes and the connection between different networks of adaptation to environmental conditions. Organization of genes in gene clusters, not necessarily cotranscribed nor organized in operons, may allow global regulatory mechanisms such as DNA topology to play an effective role in adaptation to the environment. A general stress behavior, with response to heat shock, has also been observed for certain sequences responding to low-salt conditions, while it has not been observed for specific high-salt responses. Furthermore, the overlap of responses to heat shock and osmotic stress, particularly hypoosmotic stress, seems to be a frequent feature within the haloarchaeal genome. In fact, in haloarchaea, both hypoosmotic stress and heat shock would promote haloarchaeal protein destabilization and aggregation.

Citation: Juez G, Fenosa D, Gonzaga A, Soria E, Mojica F. 2007. Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms, p 232-239. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch18

Key Concept Ranking

General Stress Response
0.41611502
0.41611502
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Transcriptional map of the genome. The figure shows an overview of differentially transcribed regions in the chromosome and the pHV4 megaplasmid. Symbols are not drawn to scale and represent a summary of the most representative responses. Genome transcription analysis was mainly based on the use of cDNA probes to hybridize against restriction fragments of the cosmid clones of a genomic library of the organism ( ). Transcriptionally induced regions, over the whole genome, in cells growing in low (12% salts) and high (30% salts) salinity conditions were described previously ( ). Two genomic stretches, indicated by boxes, have been the subject of a more extensive analysis through the detection of transcripts arising from genomic regions (by Northern blot hybridization) and including the long-term response in cultures growing at different salinities (8, 10, 12, 15, 20, 25, 30, and 35% salt medium), as well as the immediate response after a downshift (30 to 10% salt medium), an upshift (10 to 30% salt medium) and a heat shock (37 to 55°C in 20% salt medium, indicated by asterisks) ( ; Soria and Juez, unpublished). A mixture of salts in the proportions found in seawater (30% salts containing in w/v: 23.4% NaCl, 1.95% MgCl, 2.9% MgSO, 0.12% CaCl, 0.6% KCl, 0.03% NaHCO, and 0.075% NaBr) was used, as described previously ( ). The map also includes minor and major signals (indicated as empty and solid circles, respectively) of heat-shock responses, as well as FII AT-rich regions containing IS elements (indicated by solid black bars below the distance scale), previously reported by ). A kilobase-pair distance scale and cosmid clones representing the genome are shown.

Citation: Juez G, Fenosa D, Gonzaga A, Soria E, Mojica F. 2007. Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms, p 232-239. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Protein sequence alignment of the DnaK chaperone. Conserved domains among the different types of organisms (external dashed boxed) and distinctive amino acid substitutions for haloarchaea and other (internal boxes) are indicated. A consensus sequence is also shown. For simplicity, a limited central region of the protein and sequences from representatives of different archaeal and bacterial genera are shown. Conserved domains (domains 4 to 8) correspond to Hsp70 signature (TVPAYFND), connect 1 (NEPTAA), phosphate 2 (LGGGTFD), Hinge residue (E), and nuclear localization signal (NLS), respectively.

Citation: Juez G, Fenosa D, Gonzaga A, Soria E, Mojica F. 2007. Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms, p 232-239. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Protein sequence alignment of the DnaJ cochaperone. A central region of the protein, including the zinc-finger sequences (CxxCxGxG) (indicated by external dashed boxes), is shown. Distinctive amino acid substitutions for haloarchaea and other (internal boxes) and a consensus sequence are also indicated.

Citation: Juez G, Fenosa D, Gonzaga A, Soria E, Mojica F. 2007. Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms, p 232-239. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch18
1. Baliga, N. S.,, S. J. Bjork,, R. Bonneau,, M. Pan,, C. Iloanusi,, M. C. H. Kottemann,, L. Hood, and, J. DiRuggiero. 2004a. Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res. 14:10251035.
2. Baliga, N. S.,, R. Bonneau,, M. T. Facciotti,, M. Pan,, G. Glusman,, E. W. Deutsch,, P. Shannon,, Y. Chiu,, R. S. Weng,, R. R. Gan,, P. Hung,, S. V. Date,, E. Marcotte,, L. Hood, and, W. V. Ng. 2004b. Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Res. 14:22212234.
3. Charlebois, R. L.,, L. C. Schalkwyk,, J. D. Hofman, and, W. F. Doolittle. 1991. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J. Mol. Biol. 222:509524.
4. Christian, J. H. B.,, and J. A. Waltho. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. Biophys. Acta 65:506508.
5. Daniels, C. J.,, A. H. Z. McKee, and, W. F. Doolittle. 1984. Archae-bacterial heat-shock proteins. EMBO J. 3:745749.
6. Danson, M. J.,, and D. W. Hough. 1997. The structural basis of halophilicity. Comp. Biochem. Physiol. 117A:307312.
7. Dennis, P. P.,, and L. C. Shimmin. 1997. Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol. Mol. Biol. Rev. 61:90104.
8. Deppenmeier, U.,, A. Johann,, T. Hartsch,, R. Merkl,, R. A. Schmitz,, R. Martinez-Arias,, A. Henne,, A. Wiezer,, S. Baumer,, C. Jacobi,, H. Bruggemann,, T. Lienard,, A. Christmann,, M. Bomeke,, S. Steckel,, A. Bhattacharyya,, A. Lykidis,, R. Overbeek,, H. P. Klenk,, R. P. Gunsalus,, H. J. Fritz, and, G. Gottschalk. 2002. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J. Mol. Microbiol. Biotechnol. 4:453461.
9. Englert, C.,, M. Horne, and, F. Pfeifer. 1990. Expression of the major gas vesicle protein gene in the halophilic archaebacterium Haloferax mediterranei is modulated by salt. Mol. Gen. Genet. 222:225232.
10. Falb, M.,, F. Pfeiffer,, P. Palm,, K. Rodewald,, V. Hickmann,, J. Tittor, and, D. Oesterhelt. 2005. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 15:13361343.
11. Ferrer, C.,, F. J. M. Mojica,, G. Juez, and, F. Rodriguez-Valera. 1996. Differentially transcribed regions of Haloferax volcanii genome depending on the medium salinity. J. Bacteriol. 178:309313.
12. Franzetti, B.,, G. Schoehn,, C. Ebel,, J. Gagnon,, R. W. Ruigrok, and, G. Zaccai. 2001. Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. J. Biol. Chem. 276:2990629914.
13. Gibbons, N. E. 1974. Halobacteriaceae fam.nov., p. 269–272. In R. E. Buchanan, and N. E. Gibbons (ed.), Bergey’s Manual of Determinative Bacteriology, 8th ed. Williams and Wilkins, Baltimore, MD.
14. Ginzburg, M.,, L. Sachs, and, B. Z. Ginzburg. 1970. Ion metabolism in a halobacterium. I. Influence of age of culture on intracellular concentrations. J. Gen. Physiol. 55:187207.
15. Gribaldo, S.,, V. Lumia,, R. Creti,, E. C. de Macario,, A. Sanangelantoni, and, P. Cammarano. 1999. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol. 181:434443.
16. Gupta, R. S. 1998. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62:14351491.
17. Gupta, R. S.,, and B. Singh. 1992. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene. J. Bacteriol. 174:45944605.
18. Juez, G. 1982. Aislamiento, estudio taxonómico, ultraestructural y molecular de nuevos grupos de halófilos extremos. Ph.D. thesis. University of Alicante, Alicante, Spain.
19. Juez, G. 1988. Taxonomy of extremely halophilic archaebacteria, vol. II, p. 3–24. In F. Rodríguez-Valera (ed.), Halophilic Bacteria. CRC Press, Boca Raton, FL.
20. Juez, G. 2004. Extremely halophilic Archaea: Insights into their response to environmental conditions, p. 243–253. In A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Heidelberg, Germany.
21. Kuo, Y. P.,, D. K. Thompson,, A. St Jean,, R. L. Charlebois, and, C. J. Daniels. 1997. Characterization of two heat shock genes from Haloferax volcanii: a model system for transcription regulation in the Archaea. J. Bacteriol. 179:63186324.
22. Lanyi, J. K. 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 38:272290.
23. Leroux, M. R.,, M. Fändrich,, D. Klunker,, K. Siegers,, A. N. Lupas,, J. R. Brown,, E. Schiebel,, C. M. Dobson, and, F. U. Hartl. 1999. MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J. 18:67306743.
24. Macario, A. J. L.,, M. Lange,, B. K. Ahring, and, E. Conway de Macario. 1999. Stress genes and proteins in the Archaea. Microbiol. Mol. Biol. Rev. 63:923967.
25. Mescher, M. F.,, and J. L. Strominger. 1976. Structural (shape-maintaining) role of the cell surface glycoprotein of Halobacterium salinarium. Proc. Natl. Acad. Sci. USA 73:26872691.
26. Mojica, F. J. M.,, E. Cisneros,, C. Ferrer,, F. Rodriguez-Valera, and, G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes: the Bacterium Halomonas elongata and the Archaeon Haloferax volcanii. J. Bacteriol. 179:54715481.
27. Mojica, F. J. M.,, C. Diez-Villaseñor,, E. Soria, and, G. Juez. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36:244246.
28. Mojica, F. J. M.,, C. Ferrer,, G. Juez, and, F. Rodriguez-Valera. 1995. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17:8593.
29. Mojica, F. J. M.,, G. Juez, and, F. Rodriguez-Valera. 1993. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified Pst I sites. Mol. Microbiol. 9:613621.
30. Muller, J. A.,, and S. DasSarma. 2005. Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. J. Bacteriol. 187:16591667.
31. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. S. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschroder,, J. L. Spudich,, K.-H. Jung,, M. Alam,, T. Freitas,, S. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omer,, H. Ebhardt,, T. M. Lowe,, P. Liang,, M. Riley,, L. Hood, and, S. DasSarma. 2000. Genome sequence of Halo-bacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97:1217612181.
32. Okochi, M.,, T. Yoshida,, T. Maruyama,, Y. Kawarabayasi,, H. Kikuchi, and, M. Yohda. 2002. Pyrococcus prefoldin stabilizes protein-folding intermediates and transfer them to chaperonins for correct folding. Biochem. Biophys. Res. Commun. 291:769774.
33. Oren, A. (ed). 1999. Microbiology and Biogeochemistry of Hypersaline Environments. CRC Press, Boca Raton, FL.
34. Philippe, H.,, K. Budin, and, D. Moreira. 1999. Horizontal transfers confuse the prokaryotic phylogeny based on the HSP70 protein family. Mol. Microbiol. 31:10071009.
35. Rodríguez-Valera, F. (ed). 1988. Halophilic Bacteria. CRC Press, Boca Raton, FL.
36. Rodríguez-Valera, F.,, F. Ruiz-Berraquero, and, A. Ramos-Cormenzana. 1980. Behaviour of mixed populations of halophilic bacteria in continuous cultures. Can. J. Microbiol. 26:12591263.
37. Steber, J.,, and K. H. Schleifer. 1975. Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch. Microbiol. 105:173177.
38. Tindall, B. J.,, and H. G. Trüper. 1986. Ecophysiology of the aerobic halophilic archaeabacteria. Syst. Appl. Microbiol. 7:202212.
39. Torreblanca, M.,, F. Rodríguez-Valera,, G. Juez,, A. Ventosa,, M. Kamekura, and, M. Kates. 1986. Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst. Appl. Microbiol. 8:8999.
40. Trent, J. D. 1996. A review of acquired thermotolerance, heat-shock proteins and molecular chaperones in archaea. FEMS Microbiol. Rev. 18:249258.
41. Trieselmann, B. A.,, and R. L. Charlebois. 1992. Transcriptionally active regions in the genome of the archaebacterium Haloferax volcanii. J. Bacteriol. 174:3034.
42. Yang, C.-F.,, and S. DasSarma. 1990. Transcriptional induction of purple membrane and gas vesicle synthesis in the archaebacterium Halobacterium halobium is blocked by a DNA gyrase inhibitor. J. Bacteriol. 172:41184121.
43. Yang, C.-F.,, J.-M. Kim,, E. Molinari, and, S. DasSarma. 1996. Genetic and topological analysis of the bop promoter of Halo-bacterium halobium: Stimulation by DNA supercoiling and non-B-DNA structure. J. Bacteriol. 178:840–845.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error