1887

Chapter 19 : Molecular Adaptation to High Salt

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Adaptation to High Salt, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap19-2.gif

Abstract:

This chapter presents the insights into adaptation provided by the study of the four genomes of extreme halophiles sequenced to date. The focus then shifts to molecular adaptation of halophilic proteins, defined as proteins isolated from extreme halophiles. Different aspects concerning solvation, stabilization of the folded and associated assemblies of proteins, and salt effect is presented. Molecular adaptation of the iron translocation function to high salt would be obtained by the replacement of acidic side chains by the more basic His residues. A number of hyperthermophilic accumulates moderate salt concentration in their cytosol. The three-dimensional structures of their proteins share some of the features emphasized for halophilic proteins. The dynamics of soluble and membrane proteins from extreme halophiles has been studied extensively with the aim of understanding the molecular mechanisms leading to stability, solubility, and activity in highly concentrated salt environments. Studies reported in other sections of this chapter have shown that soluble proteins from extremely halophilic are active and soluble in a wide range of solvent salt conditions with varying stability. Extreme halophilic organisms require high salt concentrations for growth. They accumulate multimolar salt concentrations in their cytosol to counterbalance the high osmotic pressure of their environment.

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.42277288
0.42277288
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Mean-square fluctuations ‹ › in MalDH measured by neutron scattering. ‹ › values are plotted as a function of temperature for three different solvent conditions: 2 M NaCl DO (circles), 2 M KCl DO (triangles), and 2 M NaCl HO (diamonds). (Modified from , with permission from the publisher.)

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch19
1. Anton, J.,, A. Oren,, S. Benlloch,, F. Rodriguez-Valera,, R. Amann, and, R. Rossello-Mora. 2002. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52:485491.
2. Baliga, N. S.,, R. Bonneau,, M. T. Facciotti,, M. Pan,, G. Glusman,, E. W. Deutsch,, P. Shannon,, Y. Chiu,, R. S. Weng,, R. R. Gan,, P. Hung,, S. V. Date,, E. Marcotte,, L. Hood, and, W. V. Ng. 2004. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res. 14:22212234.
3. Bergqvist, S.,, R. O’Brien, and, J. E. Ladbury. 2001. Site-specific cation binding mediates TATA binding protein–DNA interaction from a hyperthermophilic archaeon. Biochemistry 40:24192425.
4. Bergqvist, S.,, M. A. Williams,, R. O’Brien, and, J. E. Ladbury. 2002. Reversal of halophilicity in a protein–DNA interaction by limited mutation strategy. Structure 10:629637.
5. Bergqvist, S.,, M. A. Williams,, R. O’Brien, and, J. E. Ladbury. 2003. Halophilic adaptation of protein–DNA interactions. Biochem. Soc. Trans. 31:677680.
6. Besir, H.,, K. Zeth,, A. Bracher,, U. Heider,, M. Ishibashi,, M. Tokunaga, and, D. Oesterhelt. 2005. Structure of a halophilic nucleo-side diphosphate kinase from Halobacterium salinarum. FEBS Lett. 579:65956600.
7. Bieger, B.,, L. O. Essen, and, D. Oesterhelt. 2003. Crystal structure of halophilic dodecin: a novel, dodecameric flavin binding protein from Halobacterium salinarum. Structure 11:375385.
8. Bohm, G.,, and R. Jaenicke. 1994. A structure-based model for the halophilic adaptation of dihydrofolate reductase from Halobacterium volcanii. Protein Eng. 7:213220.
9. Bonneté, F.,, C. Ebel,, H. Eisenberg, and, G. Zaccai. 1993. Biophysical study of halophilic malate dehydrogenase in solution: revised subunit structure and solvent interactions in native and recombinant enzyme. J. Chem. Soc. Faraday Trans. 89:26592666.
10. Bonneté, F.,, D. Madern, and, G. Zaccai. 1994. Stability against denaturation mechanisms in halophilic malate dehydrogenase “adapt” to solvent conditions. J. Mol. Biol. 244:436447.
11. Cendrin, F.,, H. M. Jouve,, J. Gaillard,, P. Thibault, and, G. Zaccai. 1994. Purification and properties of a halophilic catalaseperoxidase from Haloarcula marismortui. Biochim. Biophys. Acta 1209:19.
12. Collins, K. D. 1997. Charge density-dependent strength of hydration and biological structure. Biophys. J. 72:6576.
13. Costenaro, L.,, and C. Ebel. 2002. Thermodynamic relationships between protein–solvent and protein–protein interactions. Acta Crystallogr. D 58:15541559.
14. Costenaro, L.,, G. Zaccai, and, C. Ebel. 2001. Understanding protein crystallisation by dilution: the ternary NaCl–MPD–H2O system. J. Cryst. Growth 232:102113.
15. Costenaro, L.,, G. Zaccai, and, C. Ebel. 2002. Link between protein–solvent and weak protein–protein interactions gives insight into halophilic adaptation. Biochemistry 41:1324513252.
16. DeDecker, B. S.,, R. O’Brien,, P. J. Fleming,, J. H. Geiger,, S. P. Jackson, and, P. B. Sigler. 1996. The crystal structure of a hyperthermophilic archaeal TATA-box binding protein. J. Mol. Biol. 264:10721084.
17. Dill, K. A.,, T. M. Truskett,, V. Vlachy, and, B. Hribar-Lee. 2005. Modeling water, the hydrophobic effect, and ion solvation. Annu. Rev. Biophys. Biomol. Struct. 34:173199.
18. Dym, O.,, M. Mevarech, and, J. L. Sussman. 1995. Structural features that stabilize halophilic malate dehydrogenase from an archaebacterium. Science 267:13441346.
19. Ebel, C.,, W. Altekar,, J. Langowski,, C. Urbanke,, E. Forest, and, G. Zaccai. 1995. Solution structure of glyceraldehyde-3-phosphate dehydrogenase from Haloarcula vallismortis. Biophys. Chem. 54:219227.
20. Ebel, C.,, L. Costenaro,, M. Pascu,, P. Faou,, B. Kernel,, F. Proust-De Martin, and, G. Zaccai. 2002. Solvent interactions of halophilic malate dehydrogenase. Biochemistry 41:1323413244.
21. Ebel, C.,, P. Faou,, B. Kernel, and, G. Zaccai. 1999. Relative role of anions and cations in the stabilisation of halophilic malate dehydrogenase. Biochemistry 38:90399047.
22. Ebel, C.,, F. Guinet,, J. Langowski,, C. Urbanke,, J. Gagnon, and, G. Zaccai. 1992. Solution studies of elongation factor Tu from the extreme halophile Halobacterium marismortui. J. Mol. Biol. 223:361371.
23. Ebel, C.,, and G. Zaccai. 2004. Crowding in extremophiles: linkage between solvation and weak protein–protein interactions, stability and dynamics, provides insight into molecular adaptation. J. Mol. Recognit. 17:382389.
24. Eisenberg, H. 1976. Biological Macromolecules and Polyelectrolytes in Solution. Clarendon Press, Oxford, United Kingdom.
25. Eisenberg, H. 1981. Forward scattering of light, X-rays and neutrons. Q. Rev. Biophys. 14:141172.
26. Elcock, A. H.,, and J. A. McCammon. 1998. Electrostatic contributions to the stability of halophilic proteins. J. Mol. Biol. 280:731748.
27. Ermler, U.,, W. Grabarse,, S. Shima,, M. Goubeaud, and, R. K. Thauer. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:14571462.
28. Falb, M.,, F. Pfeiffer,, P. Palm,, K. Rodewald,, V. Hickmann,, J. Tittor, and, D. Oesterhelt. 2005. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 15:13361343.
29. Franzetti, B.,, G. Schoehn,, C. Ebel,, J. Gagnon,, R. W. Ruigrok, and, G. Zaccai. 2001. Characterization of a novel complex from halophilic archaebacteria, which displays chaperone-like activities in vitro. J. Biol. Chem. 276:2990629914.
30. Franzetti, B.,, G. Schoehn,, D. Garcia,, R. W. Ruigrok, and, G. Zaccai. 2002. Characterization of the proteasome from the extremely halophilic archaeon Haloarcula marismortui. Archaea 1:5361.
31. Frauenfelder, H.,, F. Parak, and, R. D. Young. 1988. Conformational substates in proteins. Annu. Rev. Biophys. Biophys. Chem. 17:451479.
32. Frolow, F.,, M. Harel,, J. L. Sussman,, M. Mevarech, and, M. Shoham. 1996. Insights into protein adaptation to a saturated salt environment from the crystal structure of a halophilic 2Fe–2S ferredoxin. Nat. Struct. Biol. 3:452458.
33. Gabel, F.,, D. Bicout,, U. Lehnert,, M. Tehei,, M. Weik, and, G. Zaccai. 2002. Protein dynamics studied by neutron scattering. Q. Rev. Biophys. 35:327367.
34. Grabarse, W.,, F. Mahlert,, S. Shima,, R. K. Thauer, and, U. Ermler. 2000. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J. Mol. Biol. 303:329344.
35. Grabarse, W.,, M. Vaupel,, J. A. Vorholt,, S. Shima,, R. K. Thauer,, A. Wittershagen,, G. Bourenkov,, H. D. Bartunik, and, U. Ermler. 1999. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Structure 7:12571268.
36. Hagemeier, C. H.,, S. Shima,, R. K. Thauer,, G. Bourenkov,, H. D. Bartunik, and, U. Ermler. 2003. Coenzyme F420-dependent methylenetetrahydromethanopterin dehydrogenase (Mtd) from Methanopyrus kandleri: a methanogenic enzyme with an unusual quarternary structure. J. Mol. Biol. 332:10471057.
37. Irimia, A.,, C. Ebel,, D. Madern,, S. B. Richard,, L. W. Cosenza,, G. Zaccai, and, F. M. Vellieux. 2003. The oligomeric states of Haloarcula marismortui malate dehydrogenase are modulated by solvent components as shown by crystallographic and biochemical studies. J. Mol. Biol. 326:859873.
38. Kosa, P. F.,, G. Ghosh,, B. S. DeDecker, and, P. B. Sigler. 1997. The 2.1-A crystal structure of an archaeal preinitiation complex: TATA-box-binding protein/transcription factor (II)B core/TATAbox. Proc. Natl. Acad. Sci. USA 94:60426047.
39. Langer, D.,, J. Hain,, P. Thuriaux, and, W. Zillig. 1995. Transcription in archaea: similarity to that in eucarya. Proc. Natl. Acad. Sci. USA 92:57685772.
40. Liao, J.,, M. Y. Liu,, T. Chang,, M. Li,, J. Le Gall,, L. L. Gui,, J. P. Zhang,, T. Jiang,, D. C. Liang, and, W. R. Chang. 2002. Three-dimensional structure of manganese superoxide dismutase from Bacillus halodenitrificans, a component of the so-called “green protein”. J. Struct. Biol. 139:171180.
41. Littlefield, O.,, Y. Korkhin, and, P. B. Sigler. 1999. The structural basis for the oriented assembly of a TBP/TFB/promoter complex. Proc. Natl. Acad. Sci. USA 96:1366813673.
42. Madern, D. 2002. Molecular evolution within the l-malate and l-lactate dehydrogenase super-family. J. Mol. Evol. 54:825840.
43. Madern, D.,, M. Camacho,, A. Rodriguez-Arnedo,, M. J. Bonete, and, G. Zaccai. 2004. Salt-dependent studies of NADP-dependent isocitrate dehydrogenase from the halophilic archaeon Haloferax volcanii. Extremophiles 8:377384.
44. Madern, D.,, C. Ebel, and, G. Zaccai. 2000a. Halophilic adaptation of enzymes. Extremophiles 4:9198.
45. Madern, D.,, C. Ebel,, M. Mevarech,, S. B. Richard,, C. Pfister, and, G. Zaccai. 2000b. Insights into the molecular relationships between malate and lactate dehydrogenases: structural and biochemical properties of monomeric and dimeric intermediates of a mutant of tetrameric L-[LDH-like] malate dehydrogenase from the halophilic archaeon Haloarcula marismortui. Biochemistry 39:10011010.
46. Madern, D.,, and G. Zaccai. 1997. Stabilisation of halophilic malate dehydrogenase from Haloarcula marismortui by divalent cations—effects of temperature, water isotope, cofactor and pH. Eur. J. Biochem. 249:607611.
47. Madern, D.,, and G. Zaccai. 2004. Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 86:295303.
48. Marg, B. L.,, K. Schweimer,, H. Sticht, and, D. Oesterhelt. 2005. A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea. Biochemistry 44:2939.
49. Maupin-Furlow, J. A.,, M. A. Gil,, I. M. Karadzic,, P. A. Kirkland, and, C. J. Reuter. 2004. Proteasomes: perspectives from the Archaea. Front. Biosci. 9:17431758.
50. Moelbert, S.,, B. Normand, and, P. De Los Rios. 2004. Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. Biophys. Chem. 112:4557.
51. Mongodin, E. F.,, K. E. Nelson,, S. Daugherty,, R. T. Deboy,, J. Wister,, H. Khouri,, J. Weidman,, D. A. Walsh,, R. T. Papke,, G. Sanchez Perez,, A. K. Sharma,, C. L. Nesbo,, D. MacLeod,, E. Bapteste,, W. F. Doolittle,, R. L. Charlebois,, B. Legault, and, F. Rodriguez-Valera. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102:1814718152.
52. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter, and, C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399:323329.
53. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. S. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschroder,, J. L. Spudich,, K. W. Jung,, M. Alam,, T. Freitas,, S. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omer,, H. Ebhardt,, T. M. Lowe,, P. Liang,, M. Riley,, L. Hood, and, S. DasSarma. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97:1217612181.
54. O’Brien, R.,, B. DeDecker,, K. G. Fleming,, P. B. Sigler, and, J. E. Ladbury. 1998. The effects of salt on the TATA binding protein–DNA interaction from a hyperthermophilic archaeon. J. Mol. Biol. 279:117125.
55. Oren, A. 2002. Halophilic Microorganisms and their Environments. Kluwer Academic, Dordrecht, Netherlands/Boston, MA.
56. Oren, A.,, M. Heldal,, S. Norland, and, E. A. Galinski. 2002. Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491498.
57. Ortenberg, R.,, O. Rozenblatt-Rosen, and, M. Mevarech. 2000. The extremely halophilic archaeon Haloferax volcanii has two very different dihydrofolate reductases. Mol. Microbiol. 35:14931505.
58. Pieper, U.,, G. Kapadia,, M. Mevarech, and, O. Herzberg. 1998. Structural features of halophilicity derived from the crystal structure of dihydrofolate reductase from the Dead Sea halophilic archaeon, Haloferax volcanii. Structure 6:7588.
59. Premkumar, L.,, H. M. Greenblatt,, U. K. Bageshwar,, T. Savchenko,, I. Gokhman,, J. L. Sussman, and, A. Zamir. 2005. Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proc. Natl. Acad. Sci. USA 102:74937498.
60. Pundak, S.,, H. Aloni, and, H. Eisenberg. 1981. Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 2. Inactivation, dissociation and unfolding at NaCl concentrations below 2 M. Salt, salt concentration and temperature dependence of enzyme stability. Eur. J. Biochem. 118:471477.
61. Richard, S.,, F. Bonneté,, O. Dym, and, G. Zaccai. 1995. Protocol 21: the MPD–NaCl–H2O system for the crystallization of halophilic proteins, p. 149–153. In S. Dassarma (ed.), Archaea: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, NY.
62. Richard, S. B.,, D. Madern,, E. Garcin, and, G. Zaccai. 2000. Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39:9921000.
63. Ruepp, A.,, W. Graml,, M. L. Santos-Martinez,, K. K. Koretke,, C. Volker,, H. W. Mewes,, D. Frishman,, S. Stocker,, A. N. Lupas, and, W. Baumeister. 2000. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508513.
64. Shima, S.,, E. Warkentin,, W. Grabarse,, M. Sordel,, M. Wicke,, R. K. Thauer, and, U. Ermler. 2000. Structure of coenzyme F(420) dependent methylenetetrahydromethanopterin reductase from two methanogenic archaea. J. Mol. Biol. 300:935950.
65. Tehei, M.,, B. Franzetti,, D. Madern,, M. Ginzburg,, B. Z. Ginzburg,, M. T. Giudici-Orticoni,, M. Bruschi, and, G. Zaccai. 2004. Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep. 5:6670.
66. Tehei, M.,, and G. Zaccai. 2005. Adaptation to extreme environments: macromolecular dynamics in complex system. Biochim. Biophys. Acta 1724:404410.
67. Tehei, M.,, D. Madern,, C. Pfister, and, G. Zaccai. 2001. Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability. Proc. Natl. Acad. Sci. USA 98:1435614361.
68. Timasheff, S. N. 1993. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct. 22:6797.
69. Wright, D. B.,, D. D. Banks,, J. R. Lohman,, J. L. Hilsenbeck, and, L. M. Gloss. 2002. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J. Mol. Biol. 323:327344.
70. Yamada, Y.,, T. Fujiwara,, T. Sato,, N. Igarashi, and, N. Tanaka. 2002. The 2.0 A crystal structure of catalase-peroxidase from Haloarcula marismortui. Nat. Struct. Biol. 9:691695.
71. Zaccai, G. 2000. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:16041607.
72. Zeth, K.,, S. Offermann,, L. O. Essen, and, D. Oesterhelt. 2004. Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. Proc. Natl. Acad. Sci. USA 101:1378013785.

Tables

Generic image for table
Table 1.

Halophilic proteins with available high-resolution structures

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19
Generic image for table
Table 2.

Ions detected and net charge of halophilic proteins with an X-ray structure

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19
Generic image for table
Table 3.

Salt-adapted proteins from nonextreme halophile with available high-resolution structures

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19
Generic image for table
Table 4.

Composition of the solvation shell of MalDH

Citation: Vellieux F, Madern D, Zaccai G, Ebel C. 2007. Molecular Adaptation to High Salt, p 240-253. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error