1887

Chapter 20 : Physiology and Ecology of Acidophilic Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Physiology and Ecology of Acidophilic Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap20-2.gif

Abstract:

Acidophilic microorganisms are distributed throughout the three domains of living organisms. Within the archaeal domain, both extremely acidophilic and are known, and a number of different bacterial phyla (, , and [α, β, and γ subphyla], , and ) also contain extreme acidophiles. Acidophilic microorganisms exhibit a range of energy-transforming reactions and means of assimilating carbon as neutrophiles. Entire genomes have been sequenced of the iron/sulfur-oxidizing bacterium and of the archaea , , , and , and more genome sequences of acidophiles are due to be completed in the near future. Currently, there are four recognized species of this genus that grow autotrophically on sulfur, sulfide, and reduced inorganic sulfur compounds (RISCs). is the most well studied of all acidophilic microorganisms and has often, though erroneously, been regarded as an obligate aerobe. In both natural and anthropogenic environments, acidophilic microorganisms live in communities that range from relatively simple (two to three dominant members) to highly complex, and within these, acidophiles interact positively or negatively with each other. In a study which examined slime biofilms and snotites that had developed on the exposed surface of a pyrite ore within the abandoned Richmond mine at Iron Mountain, the major microorganisms identified were spp. ( and smaller numbers of ) and , , and /-related species. Using a modified plating technique, the uncharacterized β-proteobacterium can be isolated in pure culture and shown to be a novel iron-oxidizing acidophile.

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20

Key Concept Ranking

Bacteria and Archaea
0.55964845
Restriction Fragment Length Polymorphism
0.41106647
0.55964845
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.
Figure 1.

Schematic representation of iron oxidation and CO fixation by a gram-negative acidophilic chemolithotrophic bacterium. Iron oxidation is mediated by a redox-active protein retained within the acidic periplasm. Electrons are transferred via soluble and/or membrane-bound cytochromes ultimately to cytochrome oxidase, where they are used, together with protons, to reduce oxygen to water. Carbon dioxide fixation is mediated by cytoplasmic ribisco.

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Oxidation of pyrite by consortia of acidophilic prokaryotes. The initial attack on the mineral is by ferric iron generated by iron-oxidizing prokaryotes that are either attached to the mineral within a biofilm [population (a1)] or free swimming [population (a2)]. Elemental sulfur and RISCs formed as intermediates of pyrite oxidation are oxidized to sulfuric acid by sulfur-oxidizing prokaryotes [population (b)]. A significant proportion of the carbon dioxide fixed by the chemoautotrophs is lost from cells as exudates and lysates. This dissolved organic carbon is metabolized by heterotrophic acidophiles [population (c)] and the carbon dioxide released may be reassimilated by the primary producers.

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch20
1. Alpers, S.-V.,, J. L. C. M. van de Vossenberg,, A. J. M. Driessen, and, W. N. Konings. 2001. Bioenergetics and solute uptake under extreme conditions. Extremophiles 5:285294.
2. Atkinson, T.,, S. Cairns,, D. A. Cowan,, M. J. Danson,, D. W. Hough,, D. B. Johnson,, P. R. Norris,, N. Raven,, R. Robson,, C. Robinson, and, R. J. Sharp. 2000. A microbiological survey of Montserrat island hydrothermal biotopes. Extremophiles 4:305313.
3. Bacelar-Nicolau, P.,, and D. B. Johnson. 1999. Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl. Environ. Microbiol. 65:585590.
4. Baker, B. J.,, M. A. Lutz,, S. C. Dawson,, P. L. Bond, and, J. F. Banfield. 2004. Metabolically active eukaryotic communities on extremely acidic mine drainage. Appl. Environ. Microbiol. 70:62646271.
5. Battaglia-Brunet, F.,, C. Joulian,, F. Garrido,, M.-C. Dictor,, D. Morin,, K. Coupland,, D. B. Johnson,, K. B. Hallberg, and, P. Baranger. 2006. Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Leeuwenhoek 89:99108.
6. Blake, R.,, and D. B. Johnson. 2000. Phylogenetic and biochemical diversity among acidophilic bacteria that respire on iron, p. 53–78. In D. R. Lovley (ed.), Environmental Microbe–Metal Interactions. ASM Press, Washington, DC.
7. Bond, P. L.,, G. K. Druschel, and, J. F. Banfield. 2000a. Comparison of acid mine drainage communities in physically and geo-chemically distinct ecosystems. Appl. Environ. Microbiol. 66:49624971.
8. Bond, P. L.,, S. P Smriga, and, J. F. Banfield. 2000b. Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl. Environ. Microbiol. 66:38423849.
9. Bond, P. L.,, and J. F. Banfield. 2001. Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb. Ecol. 41:149161.
10. Bridge, T. A. M.,, and D. B. Johnson. 2000. Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol. J. 17:193206.
11. Clark, D. A.,, and P. R. Norris. 1996. Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 141:785790.
12. Coram, N. J.,, and D. E. Rawlings. 2002. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial bioleaching tanks that operate at 40°C. Appl. Environ. Microbiol. 68:838845.
13. Coupland, K. 2005. A study of the geomicrobiology of acid mine drainage-impacted environments. Ph.D. thesis. University of Wales, United Kingdom.
14. Coupland, K.,, and D. B. Johnson. 2004 Geochemistry and microbiology of an impounded subterranean acidic water body at Mynydd Parys, Anglesey, Wales. Geobiology 2:7786.
15. Deneke, R. 2000. Review of rotifers and crustaceans in highly acidic environments of pH values ≤3. Hydrobiologia 433:167172.
16. Donahoe-Christiansen, J.,, S. D’Imperio,, C. R. Jackson,, W. P. Innskeep, and, T. R. McDermott. 2004. Arsenite-oxidizing Hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl. Environ. Microbiol. 70:18651868.
17. Dopson, M.,, C. Baker-Austin,, A. Hind,, J. P. Bowman, and, P. L. Bond. 2004. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol. 70:20792088.
18. Edwards, K. J.,, P. L. Bond,, T. M. Gihring, and, J. F. Banfield. 2000. An archaeal iron-oxidising extreme acidophile important in acid mine drainage. Science 287:17961799.
19. Gemmell, R. T.,, and C. J. Knowles. 2000. Utilisation of aliphatic compounds by acidophilic heterotrophic bacteria: the potential for bioremediation of acidic wastewaters contaminated with toxic organic compounds and heavy metals. FEMS Microbiol. Lett. 192:185190.
20. Ghosh, S.,, N. R. Mahapatra, and, P. C. Banerjee. 1997. Metal tolerance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl. Environ. Microbiol. 63:45234527.
21. Goebel, B. M.,, and E. Stackebrandt. 1994. Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Environ. Microbiol. 60:16141621.
22. Golovacheva, R. S.,, O. V. Golyshina,, G. I. Karavaiko,, A. G. Dorofeev,, T. A. Pivovarova, and, N. A. Chernykh. 1992. A new iron-oxidizing bacterium, Leptospirillum thermoferrooxidans, sp. nov. Microbiology 61:10561065 (English translation of Mikrobiologiya).
23. Golyshina, O. V.,, and K. N. Timmis. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7:12771288.
24. Golyshina, O. V.,, T. A. Pivovarova,, G. I. Karavaiko,, T. F.,, Kondrat’eva, E. R. B.,, Moore, W. R. Abraham,, H. Lunsdorf,, K. N. Timmis,, M. M. Yakimov, and, P. N. Golyshin. 2000. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 50:9971006.
25. Gross, S.,, and E. I. Robbins. 2000. Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91109.
26. Gross, W. 2000. Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433:3137.
27. Hallberg, K. B.,, D. B. Johnson, and, P. A. Williams. 1999. A novel metabolic phenotype among acidophilic bacteria: aromatic degradation and the potential use of these microorganisms for the treatment of wastewater containing organic and inorganic pollutants, p. 719–728. In R. Amils,, and A. Ballester (ed.), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Process Metallurgy 9A. Elsevier, Amsterdam, The Netherlands.
28. Hallberg, K. B.,, K. Coupland,, S. Kimura, and, D. B. Johnson. 2006. Macroscopic streamer growths in acidic, metal-rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl. Environ. Microbiol. 72:20222030.
29. Hawkes, R. B.,, P. D. Franzmann, and, J. J. Plumb. 2005. Moderate thermophiles including “Ferroplasma cyprexacervatum” sp. nov., dominate an industrial scale chalcocite heap bioleaching operation, p. 657–666. In S. T. L. Harrison,, D. E. Rawlings,, and J. Petersen (ed.), Proceedings of the 16th International Biohydrometallurgy Symposium. University of Cape Town, South Africa.
30. He, Z.-G.,, H. Zhong, and, Y. Li. 2004. Acidianus tengchongensis sp. nov., a new species of acidothermophilic archaeon isolated from an acidothermal spring. Curr. Microbiol. 48:159163.
31. Johnson, D. B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27:307317.
32. Johnson, D. B. 2001. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy 59:147158.
33. Johnson, D. B.,, and L. Rang. 1993. Effects of acidophilic protozoa on populations of metal-mobilising bacteria during the leaching of pyritic coal. J. Gen. Microbiol. 139:14171423.
34. Johnson, D. B.,, and T. A. M. Bridge. 2002. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp. J. Appl. Microbiol. 92:315321.
35. Johnson D. B.,, P. Bacelar-Nicolau,, N. Okibe,, A. Yahya, and, K. B. Hallberg. 2001. Role of pure and mixed cultures of Gram-positive eubacteria in mineral leaching, p. 461–470. In V. S. T. Ciminelli,, and O. Garcia, Jr. (ed.), Biohydrometallurgy: Fundamentals, Technology and Sustainable Development, Process Metallurgy 11A. Elsevier, Amsterdam, The Netherlands.
36. Johnson, D. B.,, N. Okibe, and, F. F. Roberto. 2003. Novel thermoacidophiles isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch. Microbiol. 180:6068.
37. Johnson, D. B.,, B. Stallwood,, S. Kimura, and, K. B. Hallberg. 2006. Isolation and characterization of Acidicaldus organovorus, gen. nov., sp. nov.; a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic proteobacterium. Arch. Microbiol. 185:212221.
38. Karavaiko, G. I.,, T. P Tourova,, T. F. Kondrat’eva,, A. M. Lysenko,, T. V. Kolganova,, S. N. Ageeva,, L. N. Muntyan, and, T. A. Pivovarova. 2003. Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans. Int. J. Syst. Evol. Microbiol. 53:113119.
39. Karavaiko, G. I.,, T. I. Bogdanova,, T. P. Tourova,, T. F. Kondrat’eva,, I. A. Tsaplina,, M. A. Egorova,, E. N. Krasnol’nikova, and, L. M. Zakharchuk. 2005. Reclassification of “Sulfobacillus thermosulfidooxidans subsp. thermotolerans” strain K1 as Alicyclo-bacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al 1996 as Alicyclobacillus disulfidooxidans comb. nov., and amended description of the genus Alicyclobacillus. Int. J. Syst. Evol. Microbiol. 55:941947.
40. Kelly, D. P. 1978. Bioenergetics of chemolithotrophic bacteria, p. 363–386. In A. T. Bull,, and P. M. Meadow (ed.), Companion to Microbiology. Longman, London, United Kingdom.
41. Kelly, D. P.,, and A. P. Wood. 2000. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermothiobacillus gen. nov. Int. J. Syst. Evol. Microbiol. 50:511516.
42. Kimura, S.,, K. B. Hallberg, and, D. B. Johnson. 2006. Sulfidogenesis in low pH (3.8–4.2) media by a mixed population of acidophilic bacteria. Biodegradation 17:5765.
43. Kishimoto, N.,, F. Fukaya,, K. Inagaki,, T. Sugio,, H, Tanaka, and, T. Tano. 1995. Distribution of bacteriochlorophyll a among aerobic and acidophilic bacteria and light-enhanced CO2-incorporation in Acidiphilium rubrum. FEMS Microbiol. Ecol. 16:291296.
44. Lane, D. J.,, A. P. Harrison, Jr.,, D. Stahl,, B. Pace,, S. J. Giovannoni,, G. J. Olsen, and, N. R. Pace. 1992. Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J. Bacteriol. 174:269278.
45. Lopez-Archilla, A. I.,, E. Gerard,, D. Moreira, and, P. Lopez-Garcia. 2004. Macrofilamentous microbial communities in the metal-rich and acidic River Tinto, Spain. FEMS Microbiol. Lett. 235:221228.
46. Matin, A. 1999. pH homeostasis in acidophiles, p. 152–166. In Bacterial Responses to pH. Novartis Foundation Symposium 221. Wiley, Chichester, United Kingdom.
47. Melamud, V. S.,, T. A. Pivovarova,, T. P. Tourova,, T. V. Kolganova,, G. A. Osipov,, A. M. Lysenko,, T. F. Kondrat’eva, and, G. Karavaiko. 2003. Sulfobacillus sibiricus sp. nov., a new moderately thermophilic bacterium. Microbiology 72:605612 (English translation of Mikrobiologiya).
48. Nordstrom, D. K.,, C. N. Alpers,, C. J. Ptacek, and, D. W. Blowes. 2000. Negative pH and extremely acidic minewaters from Iron Mountain, California. Environ. Sci. Technol. 34:254258.
49. Norris, P. R.,, and W. J. Ingledew. 1992. Acidophilic bacteria: adaptations and applications, p. 115–142. In R. A. Herbert,, and R. J. Sharp (ed.), Molecular Biology and Biotechnology of Extremophiles. Blackie, Glasgow, United Kingdom.
50. Norris, P. R.,, D. A. Clark,, J. P. Owen, and, S. Waterhouse. 1996. Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral sulphide-oxidizing bacteria. Microbiology 142:775783.
51. Norris, P. R.,, N. P. Burton, and, N. A. M. Foulis. 2000. Acidophiles in bioreactor mineral processing. Extremophiles 4:7176.
52. Okibe, N.,, and D. B. Johnson. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: the significance of microbial interactions. Biotechnol. Bioeng. 87:574583.
53. Okibe, N.,, M. Gericke,, K. B. Hallberg, and, D. B. Johnson. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl. Environ. Microbiol. 69:19361943.
54. Packroff. G.,, and S. Woelfl. 2000. A review on the occurrence and taxonomy of heterotrophic protists in extreme acidic environments of pH values ≤3. Hydrobiologia 433:153156.
55. Pronk, J. T.,, K. Liem,, P. Bos, and, J. G. Kuenen. 1991. Energy transduction by anaerobic ferric iron reduction in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 57:20632068.
56. Rohwerder, T.,, T. Gehrke,, K. Kinzler, and, W. Sand. 2003. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sufide oxidation. Appl. Microbiol. Biotechnol. 63:239248.
57. Schleper, C.,, G. Puehler,, B. Kuhlmorgen, and, W. Zillig. 1995. Life at extremely low pH. Nature 375:741742.
58. Segerer, A. H.,, T. A. Langworthy, and, K. O. Stetter. 1988. Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst. Appl. Microbiol. 10:161171.
59. Stumm, W.,, and J. J. Morgan. 1981. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley, New York, NY.
60. Tyson, G. W.,, J. Chapman,, P. Hugenholtz,, E. E. Allen,, R. J. Ram,, P. M. Richardson,, V. V. Solovyev,, E. M. Rubin,, D. S. Rokhsar, and, J. F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:3743.
61. Tyson, G. W.,, I. Lo,, B. J. Baker,, E. E. Allen,, E. E.,, P. Hugenholtz, and, J. F. Banfield. 2005. Genome-directed isolation of the key nitrogen-fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl. Environ. Microbiol. 71:63196324.
62. Yahya, A.,, and D. B. Johnson. 2002. Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy 63:181188.
63. Yahya, A.,, F. F. Roberto, and, D. B. Johnson. 1999. Novel mineral-oxidising bacteria from Montserrat (W.I.): physiological and phylogenetic characteristics, p. 729–740. In R. Amils,, and A. Ballester (ed.), Biohydrometallurgy and the Environment Toward the Mining of the 21st Century, Process Metallurgy 9A. Elsevier, Amsterdam, The Netherlands.

Tables

Generic image for table
Table 1.

Water chemistries of representative acidic geothermal and mine waters

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20
Generic image for table
Table 2.

Phenotypic characteristics of spp.

Citation: Johnson D. 2007. Physiology and Ecology of Acidophilic Microorganisms, p 257-270. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error