1887

Chapter 21 : Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap21-2.gif

Abstract:

Acidophiles are microorganisms belonging to eubacteria, archaea, and eukaryotes that need to grow in environments of low pH (<3). Other microorganisms are highly tolerant to extremely acidic conditions but can also grow at neutral pH. Ecological success in any given environment is termed fitness, a measure of the ability of one genotype to reproduce in comparison with another. Hot, acidic, and metal-rich environments are often dominated by archaeal members of the family. Volcanic activities contributed to a constant supply of arsenic that was mainly in the form of arsenite under the prevailing reducing conditions. Acidophiles are not intrinsically arsenic or metal resistant but often achieve high levels of resistance through plasmids and/or transposons. Mercury resistance in acidophiles has been studied extensively in . In various strains of , an additional mercury volatilization system that is dependent on iron oxidation can be found. The mechanisms characterized to date are very similar to those found in organisms that grow at neutral pH, and their genes are often found to be located on either plasmids or transposons that would facilitate their spread by interspecies gene transfer.

Citation: Franke S, Rensing C. 2007. Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity, p 271-278. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch21

Key Concept Ranking

Environmental Microbiology
0.6413339
Fourier Transform Infrared Spectroscopy
0.43660635
0.6413339
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Arsenic resistance mechanisms in acidophiles. only contains encoding an As(III)-responsive repressor ArsR and , encoding the putative As(III) efflux pump ArsB. The operon of contains two additional genes, and , encoding the arsenate reductase and possibly an arsenite oxidase, respectively. The operon from also encodes the ArsA, As(III)-, and Sb(III)-ATPase and the putative As(III)- and Sb(III)-chaperone ArsD.

Citation: Franke S, Rensing C. 2007. Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity, p 271-278. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Mercury resistance mechanisms in acidophiles. Mercury resistance in acidophiles was first reported in containing . MerR is a mercury-dependent activator, MerC a transporter involved in Hg(II) uptake, and MerA the mercuric reductase. MerE could be an alternative Hg(II) uptake system. Other strains contain determinants with encoding a putative Hg(II) uptake system. MerP is a periplasmic Hg(II)-binding protein, and MerT is thought to accept Hg(II) from MerP and deliver it to MerA. In some strains, iron-dependent reduction of mercury was shown to be dependent on mercury-resistant cytochrome oxidase.

Citation: Franke S, Rensing C. 2007. Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity, p 271-278. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch21
1. Alvarez, S.,, and C. A. Jerez. 2004. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 70:51775182.
2. Amaral-Zettler, L. A.,, F. Gomez,, E. Zettler,, B. G. Keenan,, R. Amils, and, M. L. Sogin. 2002. Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137.
3. Amaral-Zettler, L. A.,, M. A. Messerli,, A. D. Laatsch,, P. J. Smith, and, M. L. Sogin. 2003. From genes to genomes: beyond biodiversity in Spain’s Rio Tinto. Biol. Bull. 204:205209.
4. Bada, J. L.,, and A. Lazcano. 2002. Origin of life: some like it hot, but not the first biomolecules. Science 296:19821983.
5. Baker, B. J.,, M. A. Lutz,, S. C. Dawson,, P. L. Bond, and, J. F. Banfield. 2004. Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl. Environ. Microbiol. 70:62646271.
6. Barkay, T.,, S. M. Miller, and, A. O. Summers. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS. Microbiol. Rev. 27:355384.
7. Barreto, M.,, R. Quatrini,, S. Bueno,, C. Arriagada,, J. Valdes,, S. Silver,, E. Jedlicki, and, D. S. Holmes. 2003. Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy 71:97105.
8. Butcher, B. G.,, S. M. Deane, and, D. E. Rawlings. 2000. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl. Environ. Microbiol. 66:18261833.
9. Butcher, B. G.,, and D. E. Rawlings. 2002. The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:39833992.
10. Changela, A.,, K. Chen,, Y. Xue,, J. Holschen,, C. E. Outten,, T. V. O’Halloran, and, A. Mondragon. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:13831387.
11. Chen, L.,, K. Brugger,, M. Skovgaard,, P. Redder,, Q. She,, E. Torarinsson,, B. Greve,, M. Awayez,, A. Zibat,, H. P. Klenk, and, R. A. Garrett. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187:49924999.
12. Das, A.,, J. M. Modak, and, K. A. Natarajan. 1997. Studies on multi-metal ion tolerance of Thiobacillus ferrooxidans. Miner. Eng. 10:743749.
13. DeSilva, T. M.,, G. Veglia,, F. Porcelli,, A. M. Prantner, and, S. J. Opella. 2002. Selectivity in heavy metal-binding to peptides and proteins. Biopolymers 64:189197.
14. Di Giulio, M. 2005. Structuring of the genetic code took place at acidic pH. J. Theor. Biol. 237:219226.
15. Dopson, M.,, C. Baker-Austin,, P. R. Koppineedi, and, P. L. Bond. 2003. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic microorganisms. Microbiology 149:19591970.
16. Futterer, O.,, A. Angelov,, H. Liesegang,, G. Gottschalk,, C. Schleper,, B. Schepers,, C. Dock,, G. Antranikian, and, W. Liebl. 2004. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc. Natl. Acad. Sci. USA 101:90919096.
17. Galtier, N.,, N. Tourasse, and, M. Gouy. 1999. A nonhyperthermophilic common ancestor to extant life forms. Science 283:220221.
18. Ghosh, S.,, N. R. Mahapatra, and, P. C. Banerjee. 1997. Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl. Environ. Microbiol. 63:45234527.
19. Gihring, T. M.,, P. L. Bond,, S. C. Peters, and, J. F. Banfield. 2003. Arsenic resistance in the archaeon “Ferroplasma acidarmanus”: new insights into the structure and evolution of the ars genes. Extremophiles 7:123130.
20. Golyshina, O. V.,, and K. N. Timmis. 2005. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 7:12771288.
21. Hopmans, E. C.,, S. Schouten,, R. D. Pancost,, M. T. van der Meer, and, J. S. Sinninghe-Damste. 2000. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14:585589.
22. Inoue, C.,, K. Sugawara, and, T. Kusano. 1991. The merR regulatory gene in Thiobacillus ferrooxidans is spaced apart from the mer structural genes. Mol. Microbiol. 5:27072718.
23. Iwahori, K.,, F. Takeuchi,, K. Kamimura, and, T. Sugio. 2000. Ferrous iron-dependent volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 66:38233827.
24. Johnson, D. B.,, and K. B. Hallberg. 2003. The microbiology of acidic mine waters. Res. Microbiol. 154:466473.
25. Kalyaeva, E. S.,, G. Y. Kholodii,, I. A. Bass,, Z. M. Gorlenko,, O. V. Yurieva, and, V. G. Nikiforov. 2001. Tn5037, a Tn21-like mercury resistance transposon from Thiobacillus ferrooxidans. Russ. J. Genet. 37:972975.
26. Kassen, R.,, and P. B. Rainey. 2004. The ecology and genetics of microbial diversity. Annu. Rev. Microbiol. 58:207231.
27. Leduc, L. G.,, J. T. Ferroni, and, J. T. Trevors. 1997. Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 13:453455.
28. Lund, P. A.,, S. J. Ford, and, N. L. Brown. 1986. Transcriptional regulation of the mercury-resistance genes of transposon Tn501. J. Gen. Microbiol. 132:465480.
29. Macalady, J. L.,, M. M. Vestling,, D. Baumler,, N. Boekelheide,, C. W. Kaspar, and, J. F. Banfield. 2004. Tetraether-linked membrane monolayers in Ferroplasma spp: a key to survival in acid. Extremophiles 8:411419.
30. Mahapatra, N. R.,, S. Ghosh,, C. Deb, and, P. C. Banerjee. 2002. Resistance to cadmium and zinc in Acidiphilium symbioticum KM2 is plasmid mediated. Curr. Microbiol. 45:180186.
31. Mergeay, M.,, S. Monchy,, T. Vallaeys,, V. Auquier,, A. Benotmane,, P. Bertin,, S. Taghavi,, J. Dunn,, D. van der Lelie, and, R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS. Microbiol. Rev. 27:385410.
32. Mukhopadhyay, R.,, B. P. Rosen,, L. T. Phung, and, S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS. Microbiol. Rev. 26:311325.
33. Nisbet, E. G.,, and N. H. Sleep. 2001. The habitat and nature of early life. Nature 409:10831091.
34. Osborn, A. M.,, K. D. Bruce,, P. Strike, and, D. A. Ritchie. 1997. Distribution, diversity and evolution of the bacterial mercury resistance (mer) operon. FEMS. Microbiol. Rev. 19:239262.
35. Remonsellez, F.,, A. Orell, and, C. A. Jerez. 2006. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism. Microbiology 152:5966.
36. Rensing, C.,, and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS. Microbiol. Rev. 27:197213.
37. Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol. 7:207212.
38. Russell, M. J.,, and A. J. Hall. 1997. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154:377402.
39. Schelert, J.,, V. Dixit,, V. Hoang,, J. Simbahan,, M. Drozda, and, P. Blum. 2004. Occurrence and characterization of mercury resistance in the hyperthermophilic archaeon Sulfolobus solfataricus by use of gene disruption. J. Bacteriol. 186:427437.
40. Shiratori, T.,, C. Inoue,, K. Sugawara,, T. Kusano, and, Y. Kitagawa. 1989. Cloning and expression of Thiobacillus ferrooxidans mercury ion resistance genes in Escherichia coli. J. Bacteriol. 171:34583464.
41. Simbahan, J.,, R. Drijber, and, P. Blum. 2004. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA. Int. J. Syst. Evol. Microbiol. 54:17031707.
42. Simbahan, J.,, E. Kurth,, J. Schelert,, A. Dillman,, E. Moriyama,, S. Jovanovich, and, P. Blum. 2005. Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Appl. Environ. Microbiol. 71:88368845.
43. Starkley, R. L.,, and S. A. Waksman. 1943. Fungi tolerant to extreme acidity and high concentrations of copper sulfate. J. Bacteriol. 45:509519.
44. Sugio, T.,, M. Fujii,, F. Takeuchi,, A. Negishi,, T. Maeda, and, K. Kamimura. 2003. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1. Biosci. Biotechnol. Biochem. 67:15371544.
45. Suzuki, K.,, N. Wakao,, Y. Sakurai,, T. Kimura,, K. Sakka, and, K. Ohmiya. 1997. Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl. Environ. Microbiol. 63:20892091.
46. Takeuchi, F.,, A. Negishi,, S. Nakamura,, T. Kanao,, K. Kamimura, and, T. Sugio. 2005. Existence of an iron-oxidizing bacterium Acidithiobacillus ferrooxidans resistant to organomercurial compounds. J. Biosci. Bioeng. 99:586591.
47. Travisano, M.,, and P. B. Rainey. 2000. Studies of adaptive radiation using model microbial systems. Am. Nat. 156:3544.
48. Tuffin, I. M.,, P. de Groot,, S. M. Deane, and, D. E. Rawlings. 2005. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151:30273039.
49. Tuffin, I. M.,, S. B. Hector,, S. M. Dean, and, D. E. Rawlings. 2006. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl. Environ. Microbiol. 72:22472253.
50. Wang, G.,, S. P. Kennedy,, S. Fasiludeen,, C. Rensing, and, S. DasSarma. 2004. Arsenic resistance in Halobacterium sp. strain NRC-1 examined by using an improved gene knockout system. J. Bacteriol. 186:31873194.
51. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
52. Yang, H. C.,, J. Cheng,, T. M. Finan,, B. P. Rosen, and, H. Bhattacharjee. 2005. Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J. Bacteriol. 187:69916997.

Tables

Generic image for table
Table 1.

Upper-level concentrations of some metals in a variety of acidophiles where metabolic activity has been recorded (from )

Citation: Franke S, Rensing C. 2007. Acidophiles: Mechanisms To Tolerate Metal and Acid Toxicity, p 271-278. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error