1887

Chapter 24 : Bioenergetic Adaptations That Support Alkaliphily

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bioenergetic Adaptations That Support Alkaliphily, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap24-2.gif

Abstract:

Two themes that run through this chapter are the whole-cell, systems biology aspects of alkaliphile bioenergetics and the diverse ion transporters, pumps, and channels that participate in this system, many of which were first discovered in alkaliphiles and many of which have alkaliphile-specific roles or adaptations. All alkaliphiles examined to date, including both anaerobes and aerobes, do indeed maintain a cytoplasmic pH much lower than the external pH. The growing amount of comparative genomic data between alkaliphiles and neutrophiles has made it much easier to identify putative alkaliphile-specific deviations in conserved and functionally important residues or motifs in proteins of bioenergetic interest. Compelling genomic and biochemical evidence attest to the fact that extreme alkaliphiles experience a low proton motive force (PMF) at high pH. Alkaliphily in bacteria depends upon one or more Na/H antiporters that catalyze proton uptake in exchange for cytoplasmic Na. The specific properties of the antiporters of alkaliphilic that support its functions are not yet clear, but antiporter properties of interest in relation to alkaliphily have emerged for a different alkaliphile. The proton transfer might involve direct protein–protein interactions with a respiratory chain complex, as suggested by for mitochondria, and/or involve the abundant cardiolipin of the alkaliphile membrane.

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24

Key Concept Ranking

Bacteria and Archaea
0.76727897
Bacillus thuringiensis
0.44485855
Bacillus megaterium
0.44485855
Bacillus thuringiensis
0.44485855
0.76727897
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

The cytoplasmic pH, doubling time, and proton motive force of alkaliphilic OF4 growing at pH values from 7.5 to 11.2 in pH-controlled continuous cultures. Cells were grown in continuous cultures on malate-containing semidefined medium at the indicated, rigorously maintained pH values. Assays of the proton motive force parameters were conducted as described ( ). The closed and open circles indicate the doubling times (in minutes) in relation to the cytoplasmic pH at different growth pH; the numbers in parentheses are the values of the ΔpH, acid inside relative to the medium. The Δψ (closed triangles) and Δ (PMF in millivolt, open triangles) are also shown. (Modified from , with permission from Blackwell Publishing Ltd.)

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Growth curves of wild-type alkaliphilic OF4 and a mutant disrupted in the S-layer-encoding gene . The two strains were compared at two concentrations, an optimal Na concentration, and a suboptimally low Na concentration at three different pH values on semidefined malate-containing medium at 30°C. Although not shown, the wild-type strain grew negligibly at pH 7.5 when the added Na was at 5 mM, a concentration that supported growth well at pH 10.5. (Modified from , with permission from the publisher.)

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

A diagrammatic representation of the Na and proton cycles that support alkaline pH homeostasis, solute transport, and motility in extreme facultative alkaliphiles such as C-125 and OF4. Oxidative phosphorylation by OF4 is one of two processes that depend upon inward proton movements, as it utilizes a H-proton-pumping respiratory chain and a H-coupled ATP synthase; these complexes have alkaliphilic-specific features and function in a membrane that has a high content of cardiolipin (CL); the dashed lines around OXPHOS elements indicate a hypothesized use of kinetically sequestered proton transfers during OXPHOS at very high pH. The Δψ generated by respiration energizes a complement of Na/H antiporters: Mrp is shown as a multisub-unit antiporter and has a dominant role in pH homeostasis ( ), to which NhaC has also been shown to contribute ( ). Genomic evidence suggests that CPA1-type (Na/H) and MleN-type (2H malate/Na lactate) antiporters also contribute to alkaline pH homeostasis ( ). Na-coupled solute uptake and motility, as well as the voltage-gated channel Na BP play roles in Na reentry in support of pH homeostasis ( ). Na BP also has a role in motility and chemo-taxis ( ); the ABC transporter, NatCAB ( ), presumably plays a role under excessively high Na conditions; and AmhT has a role during growth on high-amine media but the transport mechanism is not yet established ( ).

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

The Mrp Na/H antiporter system. (A) The operon structure of a group 1 Mrp system that is encoded by a seven-gene operon ( ). (B) Unrooted tree (TreeView) of ClustalW (DSGene) analysis indicating that alkaliphiles contain a group 1 Mrp system that shows closer sequence similarity to each other than to Mrp systems from other gram-positive bacteria and to second Mrp systems found, in some cases, in the alkaliphiles themselves.

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

The Na-coupled MotPS of alkaliphilic bacilli. (A) The operon of the two extreme alkaliphiles, C 125 and OF4. No stem loop is found between and in these two alkaliphiles, for which MotPS is the sole Mot (based, respectively, on genomic and genetic evidence; ). The stem loop is found in less alkaliphilic and nonalkaliphilic strains that also possess MotAB; the stem loop reduces transcription read-through between and (Terahara et al., submitted for publication). (B) Unrooted tree (TreeView) of ClustalW (DSGene) analysis of MotP from alkaliphiles is shown to cluster relative to homologous PomA from a Na-coupled Mot of and H-coupled MotA from moderately alkaliphilic and other bacilli.

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Alkaliphile-specific features of the ATP synthase and subunits. (A) A model indicating how features of the ATP synthase could contribute to kinetically sequestered movements of protons from the respiratory chain to the ATP synthase of an extremely alkaliphilic at pH ≥9.2. Protons in the bulk external phase are hypothesized to be blocked (hatched arrow) from entering the ATP synthase at pH ≥9.2 by gating that depends upon -subunit lysine and glycine. This gating prevents proton loss through the ATP synthase when extremely high-pH, low-PMF conditions prevail and accounts for failure of an imposed potential to energize ATP synthesis above pH 9.2. Protons are pumped into the bulk by both Complex III and Cta (the -type cytochrome oxidase), but some protons, as shown for cytochrome oxidase, are hypothesized to reach the ATP synthase without equilibration with the bulk, assisted by some combination of: (i) the alkaliphile-specific ATP synthase features (which are detailed in B–E and one of which is shown here as a cup-like proton-gathering element); (ii) special features of the cytochrome oxidase (indicated by the negatively charged region of CtaC, see Fig. 8 ); (iii) and the negatively charged membrane lipid environment (CL, cardiolipin). (B) Topological models illustrate positions of both the - and the -subunit features that are boxed. (Modified from Wang et al., 2004 , with permission from the publisher.). The features are: -loop, K180, G212, TMH1, T33, and P51. (C) Kyte–Doolittle hydropathy plots (Gene Runner) of different subunits. The boxed region is the hypothesized periplasmic loop between TMH2 and TMH3 (designated as “-loop”) corresponding to residues 128–137 ( Valiyaveetil and Fill-ingame, 1998 ), according to the ClustalW alignment (DS Gene). (D) An alignment showing the single, but probably interacting, amino acid features in TMH4 and TMH5 of the subunit, K180, and G212. (E) An alignment illustrating the features in the subunit displayed only by extreme alkaliphiles. Shown are a TMH1 feature, in which the glycines of the conserved XGXGXGXGX region are largely or completely replaced by alanines, the T33 residue instead of a conserved alanine, and P51 in place of a glycine or alanine in other bacteria. Numbering refers to OF4 at the top and to at the bottom. The accession numbers for the data shown are: AF330160, OF4; NP_244627, C-125 subunit; NP_244626, C-125 subunit; M84712, ; NC_006582, subunit; NC_006582, subunit; AF533147, . sp. strain TA2.A1; NP_693903, subunit; NP_693902, subunit; M20255, ; Z28592, ; NC_005957, subunit; NC_005957, subunit; NC_006510, subunit; NC_006510, subunit; NP_290377, subunit; NP_290376, subunit. (Modified from Wang et al., 2004 .)

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Segments of alkaliphile membrane proteins just outside the membrane surface, including a functionally important segment of cytochrome oxidase, show evident sequence adaptations relative to homologous regions from nonalkaliphiles. The content of acidic and basic residues and overall charge is displayed for the external segments of: the stress protein FtsH; the CtaC subunit of the -type cytochrome oxidase; and the smaller subunit, MotB (nonalkaliphiles except for ) or MotP (alkaliphiles) of the membrane-embedded flagellar stator-force generator.

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

An imposed potential of the same magnitude as respiration-generated Δψ values energizes ATP synthesis by OF4 below but not above pH 9.2, whereas respiration-energized ATP synthesis is more robust and resistant to small drops in the Δψ>pH 9.2 than below. (A) The efficacy of an imposed potential (a valinomycin-mediated K+ diffusion potential of –160 mV) to energize ATP synthesis, AIB uptake, and Na efflux (an assessment of aggregate Na/H antiport) in energy-depleted whole cells that are reenergized by addition of malate. (Modified from Guffanti and Krulwich, 1992 , with permission from the publisher.) (B) The effect of downward titration of the Δψ on respiration-dependent ATP synthesis by ADP + P-loaded membrane vesicles from OF4 at pH 7.8 or 9.5. Ascorbate-phenazine methosulfate is the electron donor, potassium-containing buffers are present both inside and outside the vesicles, and Δψ is reduced by addition of the concentrations of valinomycin shown in parentheses. (Modified from Guffanti and Krulwich, 1994 ,)

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch24
1. Alper, S. L. 2002. Genetic diseases of acid-base transporters. Annu. Rev. Physiol. 64:899923.
2. Aono, R.,, M. Ito, and, T. Machida. 1999. Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J. Bacteriol. 181:66006606.
3. Aono, R.,, H. Ogino, and, K. Horikoshi. 1992. pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci. Biotechnol. Biochem. 56:4853.
4. Aono, R.,, and M. Ohtani. 1990. Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem. J. 266:933936.
5. Berg, H. C. 2003. The rotary motor of bacterial flagella. Annu. Rev. Biochem. 72:1954.
6. Berry, R. M. 2000. Theories of rotary motors. Philos. Trans. R. Soc. Lond. B 355:503509.
7. Blankenhorn, D.,, J. Phillips, and, J. L. Slonczewski. 1999. Acid- and base-induced proteins during aerobic and anaerobic growth of Escherichia coli revealed by two-dimensional gel electrophoresis. J. Bacteriol. 181:22092216.
8. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359378.
9. Booth, I. R.,, M. D. Edwards,, E. Murray, and, S. Miller. 2005. The role of bacterial channels in cell physiology, p. 291–312. In A. Kubalski, and B. Marinac (ed.), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC.
10. Bordi, C.,, L. Theraulaz,, V. Mejean, and, C. Jourlin-Castelli. 2003. Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol. Microbiol. 48:211223.
11. Busch, W.,, and M. H. Saier, Jr. 2002. The transporter classification (TC) system, 2002. Crit. Rev. Biochem. Mol. Biol. 37:287337.
12. Cao, M.,, T. Wang,, R. Ye, and, J. D. Helmann. 2002. Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis sigma(W) and sigma(M) regulons. Mol. Microbiol. 45:12671276.
13. Chahine, M.,, S. Pilote,, V. Pouliot,, H. Takami, and, C. Sato. 2004. Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J. Membr. Biol. 201:924.
14. Cherepanov, D. A.,, B. A. Feniouk,, W. Junge, and, A. Y. Mulkidjanian. 2003. Low dielectric permittivity of water at the membrane interface: effect on the energy coupling mechanism in biological membranes. Biophys. J. 85:13071316.
15. Clejan, S.,, T. A. Krulwich,, K. R. Mondrus, and, D. Seto-Young. 1986. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 168:334340.
16. Cook, G. M.,, S. Keis,, H. W. Morgan,, C. von Ballmoos,, U. Matthey,, G. Kaim, and, P. Dimroth. 2003. Purification and biochemical characterization of the F1 F0-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J. Bacteriol. 185:44424449.
17. Cook, G. M.,, J. B. Russell,, A. Reichert, and, J. Wiegel. 1996. The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl. Environ. Microbiol. 62:45764579.
18. Cramer, W. A.,, and D. B. Knaff. 1990. Membrane structure and storage of free energy, p. 124–130, Energy Transduction in Biological Membranes. Springer-Verlag, New York, NY.
19. Dimroth, P.,, and G. M. Cook. 2004. Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv. Microb. Physiol. 49:175218.
20. Drose, S.,, A. Galkin, and, U. Brandt. 2005. Proton pumping by complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica reconstituted into proteoliposomes. Biochim. Biophys. Acta 1710:8795.
21. Dubnovitsky, A. P.,, E. G. Kapetaniou, and, A. C. Papageorgiou. 2005. Enzyme adaptation to alkaline pH: atomic resolution (1.08 A) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci. 14:97110.
22. Durell, S. R.,, and H. R. Guy. 2001. A putative prokaryote voltage-gated Ca2+ channel with only one 6TM motif per subunit. Biochem. Biophys. Res. Commun. 281:741746.
23. Epstein, W. 2003. The roles and regulation of potassium in bacteria. Prog. Nucleic Acids Res. Mol. Biol. 75:293320.
24. Falb, M.,, F. Pfeiffer,, P. Palm,, K. Rodewald,, V. Hickmann,, J. Tittor, and, D. Oesterhelt. 2005. Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis. Genome Res. 15:13361343.
25. Fillingame, R. H.,, C. M. Angevine, and, O. Y. Dmitriev. 2003. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555:2934.
26. Friedrich, T.,, S. Stolpe,, D. Schneider,, B. Barquera, and, P. Hellwig. 2005. Ion translocation by the Escherichia coli NADH:ubiquinone oxidoreductase (complex I). Biochem. Soc. Trans. 33:836839.
27. Fujisawa, M.,, A. Kusomoto,, Y. Wada,, T. Tsuchiya, and, M. Ito. 2005. NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis. Arch. Microbiol. 183:411420.
28. Garland, P. B. 1977. Energy transduction and transmission in microbial systems, p. 1–21. In B. A. Haddock, and W. A. Hamilton (ed.), Microbial Energetics: Twenty-Seventh Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, MA.
29. Gilmour, R.,, and T. A. Krulwich. 1997. Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd. J. Bacteriol. 179:863870.
30. Gilmour, R.,, P. Messner,, A. A. Guffanti,, R. Kent,, A. Scheberl,, N. Kendrick, and, T. A. Krulwich. 2000. Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J. Bacteriol. 182:59695981.
31. Guffanti, A. A.,, and D. B. Hicks. 1991. Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J. Gen. Microbiol. 137:23752379.
32. Guffanti, A. A.,, and T. A. Krulwich. 1992. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4. J. Biol. Chem. 267:95809588.
33. Guffanti, A. A.,, and T. A. Krulwich. 1994. Oxidative phosphorylation by ADP + Pi-loaded membrane vesicles of alkaliphilic Bacillus firmus OF4. J. Biol. Chem. 269:2157621582.
34. Haines, T. H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 40:299324.
35. Haines, T. H.,, and N. A. Dencher. 2002. Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett. 528:3539.
36. Hamamoto, T.,, M. Hashimoto,, M. Hino,, M. Kitada,, Y. Seto,, T. Kudo, and, K. Horikoshi. 1994. Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol. Microbiol. 14:939946.
37. Harold, F. M.,, and J. Van Brunt. 1977. Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197:372373.
38. Hartzog, P. E.,, and B. D. Cain. 1994. Second-site suppressor mutations at glycine 218 and histidine 245 in the α-subunit of F1 F0 ATP synthase in Escherichia coli. J. Biol. Chem. 269:3231332317.
39. Hicks, D. B.,, and T. A. Krulwich. 1990. Purification and reconstitution of the F1 F0-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J. Biol. Chem. 265:2054720554.
40. Hicks, D. B.,, and T. A. Krulwich. 1995. The respiratory chain of alkaliphilic bacteria. Biochim. Biophys. Acta 1229:303314.
41. Hiramatsu, T.,, K. Kodama,, T. Kuroda,, T. Mizushima, and, T. Tsuchiya. 1998. A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J. Bacteriol. 180:66426648.
42. Hirota, N.,, and Y. Imae. 1983. Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J. Biol. Chem. 258:1057710581.
43. Hirota, N.,, M. Kitada, and, Y. Imae. 1981. Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett. 132:278280.
44. Hoffmann, A.,, and P. Dimroth. 1991a. The electrochemical proton potential of Bacillus alcalophilus. Eur. J. Biochem. 201:467473.
45. Hoffmann, A.,, and P. Dimroth. 1991b. The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur. J. Biochem. 196:493497.
46. Horikoshi, K. 1991. Microorganisms in alkaline environments. VCH Publishers Inc., New York, NY.
47. Horikoshi, K. 1999. Alkaliphiles: some applications of their products for biotechnology. Microbiol. Mol. Biol. Rev. 63:735750.
48. Hosler, J. P. 2004. The influence of subunit III of cytochrome c oxidase on the D pathway, the proton exit pathway and mechanism-based inactivation in subunit I. Biochim. Biophys. Acta 1655:332339.
49. Ito, M. 2002. Aerobic alkaliphiles, p. 133–140. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology, vol. 1. Wiley, New York, NY.
50. Ito, M.,, B. Cooperberg, and, T. A. Krulwich. 1997a. Diverse genes of alkaliphilic Bacillus firmus OF4 that complement K+-uptakedeficient Escherichia coli include an ftsH homologue. Extremophiles 1:2228.
51. Ito, M.,, A. A. Guffanti,, B. Oudega, and, T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J. Bacteriol. 181:23942402.
52. Ito, M.,, A. A. Guffanti,, W. Wang, and, T. A. Krulwich. 2000. Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J. Bacteriol. 182:56635670.
53. Ito, M.,, A. A. Guffanti,, J. Zemsky,, D. M. Ivey, and, T. A. Krulwich. 1997b. Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4. J. Bacteriol. 179:38513857.
54. Ito, M.,, D. B. Hicks,, T. M. Henkin,, A. A. Guffanti,, B. Powers,, L. Zvi,, K. Uematsu, and, T. A. Krulwich. 2004a. MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol. Microbiol. 53:10351049.
55. Ito, M.,, N. Terahara,, S. Fujinami, and, T. A. Krulwich. 2005. Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J. Mol. Biol. 352:396408.
56. Ito, M.,, H. Xu,, A. A. Guffanti,, Y. Wei,, L. Zvi,, D. E. Clapham, and, T. A. Krulwich. 2004b. The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA 101:1056610571.
57. Ivey, D. M.,, and T. A. Krulwich. 1991. Organization and nucleotide sequence of the atp genes encoding the ATP synthase from alkaliphilic Bacillus firmus OF4. Mol. Gen. Genet. 229:292300.
58. Ivey, D. M.,, and T. A. Krulwich. 1992. Two unrelated alkaliphilic Bacillus species possess identical deviations in sequence from those of other prokaryotes in regions of F0 proposed to be involved in proton translocation through the ATP synthase. Res. Microbiol. 143:467470.
59. Jung, H. 2001. Towards the molecular mechanism of Na+/solute symport in prokaryotes. Biochim. Biophys. Acta 1505:131143.
60. Kamo, N.,, K. Shimono,, M. Iwamoto, and, Y. Sudo. 2001. Photo-chemistry and photoinduced proton-transfer by pharaonis phoborhodopsin. Biochemistry (Mosc) 66:12771282.
61. Kashyap, D.,, L. M. Botero,, C. Lehr,, D. J. Hassett, and, T. R. McDermott. 2006. A Na+:H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens. J. Bacteriol. 188:15771584.
62. Kitada, M.,, S. Kosono, and, T. Kudo. 2000. The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253258.
63. Klare, J. P.,, V. I. Gordeliy,, J. Labahn,, G. Buldt,, H. J. Steinhoff, and, M. Engelhard. 2004. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer. FEBS Lett. 564:219224.
64. Koch, A. L. 1986. The pH in the neighborhood of membranes generating a protonmotive force. J. Theor. Biol. 120:7384.
65. Koishi, R.,, H. Xu,, D. Ren,, B. Navarro,, B. W. Spiller,, Q. Shi, and, D. E. Clapham. 2004. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem. 279:95329538.
66. Kojima, S.,, and D. F. Blair. 2004. The bacterial flagellar motor: structure and function of a complex molecular machine. Int. Rev. Cytol. 233:93134.
67. Kosono, S.,, K. Asai,, Y. Sadaie, and, T. Kudo. 2004. Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol. Lett. 232:9399.
68. Kosono, S.,, K. Haga,, R. Tomizawa,, Y. Kajiyama,, K. Hatano,, S. Takeda,, Y. Wakai,, M. Hino, and, T. Kudo. 2005. Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J. Bacteriol. 187:52425248.
69. Kosono, S.,, Y. Ohashi,, F. Kawamura,, M. Kitada, and, T. Kudo. 2000. Function of a principal Na+/H+ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182:898904.
70. Krulwich, T. A. 1995. Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol. Microbiol. 15:403410.
71. Krulwich, T. A. 2003. Alkaliphily. In C. Gerday (ed.), Extremophiles (Life Under Extreme Environmental Conditions). Eolss Publishers, Oxford, United Kingdom.
72. Krulwich, T. A.,, J. G. Federbush, and, A. A. Guffanti. 1985. Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus. J. Biol. Chem. 260:40554058.
73. Krulwich, T. A.,, A. A. Guffanti, and, M. Ito. 1999. pH tolerance in Bacillus: alkaliphile vs. non-alkaliphile, p. 167–182, Mechanisms by which bacterial cells respond to pH. Novartis Found. Symp. 221, Wiley, Chichester.
74. Krulwich, T. A.,, M. Ito,, R. Gilmour,, D. B. Hicks, and, A. A. Guffanti. 1998. Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv. Microb. Physiol. 40:401438.
75. Kuzmenkin, A.,, F. Bezanilla, and, A. M. Correa. 2004. Gating of the bacterial sodium channel, NaChBac: voltage-dependent charge movement and gating currents. J. Gen. Physiol. 124:349356.
76. Larsen, S. H.,, J. Adler,, J. J. Gargus, and, R. W. Hogg. 1974. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc. Natl. Acad. Sci. USA 71:12391243.
77. Laubinger, W.,, and P. Dimroth. 1989. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations. Biochemistry 28:71947198.
78. Lewinson, O.,, E. Padan, and, E. Bibi. 2004. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc. Natl. Acad. Sci. USA 101:1407314078.
79. Lewis, R. J.,, S. Belkina, and, T. A. Krulwich. 1980. Alkalophiles have much higher cytochrome contents than conventional bacteria and than their own non-alkalophilic mutant derivatives. Biochem. Biophys. Res. Commun. 95:857863.
80. Lewis, R. J.,, T. A. Krulwich,, B. Reynafarje, and, A. L. Lehninger. 1983. Respiration-dependent proton translocation in alkalophilic Bacillus firmus RAB and its non-alkalophilic mutant derivative. J. Biol. Chem. 258:21092111.
81. Lewis, R. J.,, R. C. Prince,, P. L. Dutton,, D. B. Knaff, and, T. A. Krulwich. 1981. The respiratory chain of Bacillus alcalophilus and its nonalkalophilic mutant derivative. J. Biol. Chem. 256:1054310549.
82. Liu, J.,, Y. Xue,, Q. Wang,, Y. Wei,, T. H. Swartz,, D. B. Hicks,, M. Ito,, Y. Ma, and, T. A. Krulwich. 2005. The activity profile of the NhaD-type Na+ (Li+)/H+ antiporter from the soda lake haloalkaliphile Alkalimonas amylolytica is adaptive for the extreme environment. J. Bacteriol. 187:75897595.
83. Lolkema, J. S.,, G. Speelmans, and, W. N. Konings. 1994. Na+-coupled versus H+-coupled energy transduction in bacteria. Biochim. Biophys. Acta 1187:211215.
84. Lu, J.,, Y. Nogi, and, H. Takami. 2001. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol. Lett. 205:291297.
85. Ma, Y.,, Y. Xue,, W. D. Grant,, N. C. Collins,, A. W. Duckworth,, R. P. Van Steenbergen, and, B. E. Jones. 2004. Alkalimonas amylolytica gen. nov., sp. nov., and Alkalimonas delamerensis gen. nov., sp. nov., novel alkaliphilic bacteria from soda lakes in China and East Africa. Extremophiles 8:193200.
86. Macnab, R. M.,, and A. M. Castle. 1987. A variable stoichiometry model for pH homeostasis in bacteria. Biophys. J. 52:637647.
87. Marantz, Y.,, E. Nachliel,, A. Aagaard,, P. Brzezinski, and, M. Gutman. 1998. The proton collecting function of the inner surface of cytochrome c oxidase from Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA 95:85908595.
88. Mathiesen, C.,, and C. Hagerhall. 2002. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta 1556:121132.
89. Mathiesen, C.,, and C. Hagerhall. 2003. The ‘antiporter module’ of respiratory chain Complex I includes the MrpC/NuoK subunit—a revision of the modular evolution scheme. FEBS Lett. 5459:713.
90. Maurer, L. M.,, E. Yohannes,, S. S. Bondurant,, M. Radmacher, and, J. L. Slonczewski. 2005. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J. Bacteriol. 187:304319.
91. McCarter, L. L. 2001. Polar flagellar motility of the Vibrionaceae. Microbiol. Mol. Biol. Rev. 65:445462.
92. McCarter, L. L. 2004. Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7:1829.
93. McLaggan, D.,, M. H. Selwyn, and, A. P. Sawson. 1984. Dependence of Na+ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett. 165:254258.
94. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144148.
95. Mulkidjanian, A. Y.,, D. A. Cherepanov,, J. Heberle, and, W. Junge. 2005. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Mosc) 70:251256.
96. Muller, V.,, and A. Oren. 2003. Metabolism of chloride in halophilic prokaryotes. Extremophiles 7:261266.
97. Muntyan, M. S.,, D. A. Bloch,, V. S. Ustiyan, and, L. A. Drachev. 1993. Kinetics of CO binding to H+-motive oxidases of the caa3-type from Bacillus FTU and of the o-type from Escherichia coli. FEBS Lett. 327:351354.
98. Muntyan, M. S.,, I. V. Popova,, D. A. Bloch,, E. V. Skripnikova, and, V. S. Ustiyan. 2005. Energetics of alkalophilic representatives of the genus Bacillus. Biochemistry (Mosc) 70:137142.
99. Nakamura, T.,, S. Kawasaki, and, T. Unemoto. 1992. Roles of K+ and Na+ in pH homeostasis and growth of the marine bacterium Vibrio alginolyticus. J. Gen. Microbiol. 138:12711276.
100. Nakamura, T.,, H. Tokuda, and, T. Unemoto. 1984. K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium, Vibrio alginolyticus. Biochim. Biophys. Acta 776:330336.
101. Olsson, K.,, S. Keis,, H. W. Morgan,, P. Dimroth, and, G. M. Cook. 2003. Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J. Bacteriol. 185:461465.
102. Padan, E.,, E. Bibi,, M. Ito, and, T. A. Krulwich. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717:6788.
103. Padan, E.,, and T. A. Krulwich. 2000. Sodium stress, p. 117–130. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Response. ASM Press, Washington, DC.
104. Padan, E.,, D. Zilberstein, and, S. Schuldiner. 1981. pH homeostasis in bacteria. Biochim. Biophys. Acta 650:151166.
105. Pfeiffer, K.,, V. Gohil,, R. A. Stuart,, C. Hunte,, U. Brandt,, M. L. Greenberg, and, H. Schagger. 2003. Cardiolipin stabilizes respiratory chain supercomplexes. J. Biol. Chem. 278:5287352880.
106. Pourcher, T.,, S. Leclercq,, G. Brandolin, and, G. Leblanc. 1995. Melibiose permease of Escherichia coli: large scale purification and evidence that H+, Na+, and Li+ sugar symport is catalyzed by a single polypeptide. Biochemistry 34:44124420.
107. Qiu, Z. H.,, L. Yu, and, C. A. Yu. 1992. Spin-label electron para-magnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry 31:32973302.
108. Ren, D.,, B. Navarro,, H. Xu,, L. Yue,, Q. Shi, and, D. E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science 294:23722375.
109. Riesle, J.,, D. Oesterhelt,, N. A. Dencher, and, J. Heberle. 1996. D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry 35:66356643.
110. Rivera-Torres, I. O.,, R. D. Krueger-Koplin,, D. B. Hicks,, S. M. Cahill,, T. A. Krulwich, and, M. E. Girvin. 2004. p Ka of the essential Glu54 and backbone conformation for subunit c from the H+-coupled F1 F0 ATP synthase from an alkaliphilic Bacillus. FEBS Lett. 575:131135.
111. Romero, M. F.,, and W. F. Boron. 1999. Electrogenic Na+/HCO3 cotransporters: cloning and physiology. Annu. Rev. Physiol. 61:699723.
112. Seto, Y.,, M. Hashimoto,, R. Usami,, T. Hamamoto,, T. Kudo, and, K. Horikoshi. 1995. Characterization of a mutation responsible for an alkali-sensitive mutant, 18224, of alkaliphilic Bacillus sp. strain C-125. Biosci. Biotechnol. Biochem. 59:13641366.
113. Skulachev, V. P. 1989. The sodium cycle: a novel type of bacterial energetics. J. Bioenerg. Biomembr. 21:635647.
114. Speelmans, G.,, B. Poolman,, T. Abee, and, W. N. Konings. 1993. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA 90:79757979.
115. Spudich, J. L.,, and H. Luecke. 2002. Sensory rhodopsin II: functional insights from structure. Curr. Opin. Struct. Biol. 12:540546.
116. Stancik, L. M.,, D. M. Stancik,, B. Schmidt,, D. M. Barnhart,, Y. N. Yoncheva, and, J. L. Slonczewski. 2002. pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J. Bacteriol. 184:42464258.
117. Stock, D.,, C. Gibbons,, I. Arechaga,, A. G. Leslie, and, J. E. Walker. 2000. The rotary mechanism of ATP synthase. Curr. Opin. Struct. Biol. 10:672679.
118. Sturr, M. G.,, A. A. Guffanti, and, T. A. Krulwich. 1994. Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J. Bacteriol. 176:31113116.
119. Sugiyama, S.,, H. Matsukura, and, Y. Imae. 1985. Relationship between Na+-dependent cytoplasmic pH homeostasis and Na+-dependent flagellar rotation and amino acid transport in alkalophilic Bacillus. FEBS Lett. 182:265268.
120. Swartz, T. H.,, S. Ikewada,, O. Ishikawa,, M. Ito, and, T. A. Krulwich. 2005a. The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345354.
121. Swartz, T. H.,, M. Ito,, D. B. Hicks,, M. Nuqui,, A. A. Guffanti, and, T. A. Krulwich. 2005b. The Mrp Na+/H+ antiporter increases the activity of the malate:quinone oxidoreductase of an Escherichia coli respiratory mutant. J. Bacteriol. 187:388391.
122. Takami, H.,, K. Nakasone,, Y. Takaki,, G. Maeno,, R. Sasaki,, N. Masui,, F. Fuji,, C. Hirama,, Y. Nakamura,, N. Ogasawara,, S. Kuhara, and, K. Horikoshi. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res. 28:43174331.
123. Takami, H.,, Y. Takaki, and, I. Uchiyama. 2002. Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res. 30:39273935.
124. Terahara, N.,, M. Fujisawa,, B. D. Powers,, T. M. Henkin,, T. A. Krulwich, and, M. Ito. 2006. An intergenic stem-loop mutation in the Bacillus subtilis cccp-motPS operon increases motPS transcription and the MotPS contribution to motility. J. Bacteriol. 188:27012705.
125. Tokuda, H.,, and T. Unemoto. 1985. The Na+-motive respiratory chain of marine bacteria. Microbiol. Sci. 2:6566.
126. Tolner, B.,, B. Poolman, and, W. N. Konings. 1997. Adaptation of microorganisms and their transport systems to high temperatures. Comp. Biochem. Physiol. A. Physiol. 118:423428.
127. Valiyaveetil, F. I.,, and R. H. Fillingame. 1998. Transmembrane topography of subunit a in the Escherichia coli F1 F0 ATP synthase. J. Biol. Chem. 273:1624116247.
128. van der Laan, J. C.,, G. Gerritse,, L. J. Mulleners,, R. A. van der Hoek, and, W. J. Quax. 1991. Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl. Environ. Microbiol. 57:901909.
129. Wang, Z.,, D. B. Hicks,, A. A. Guffanti,, K. Baldwin, and, T. A. Krulwich. 2004. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J. Biol. Chem. 279:2654626554.
130. Wei, Y.,, A. A. Guffanti, and, T. A. Krulwich. 1999. Sequence analysis and functional studies of a chromosomal region of alkaliphilic Bacillus firmus OF4 encoding an ABC-type transporter with similarity of sequence and Na+ exclusion capacity to the Bacillus subtilis NatAB transporter. Extremophiles 3:113120.
131. Wei, Y.,, T. W. Southworth,, H. Kloster,, M. Ito,, A. A. Guffanti,, A. Moir, and, T. A. Krulwich. 2003. Mutational loss of a K+ and NH4+ transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J. Bacteriol. 185:51335147.
132. West, I. C.,, and P. Mitchell. 1974. Proton/sodium ion antiport in Escherichia coli. Biochem. J. 144:8790.
133. Williams, R. J. 1977. Fundamental features of proton-coupled transport. Biochem. Soc. Trans. 5:2932.
134. Williams, R. J. 1978. The multifarious couplings of energy transduction. Biochim. Biophys. Acta 505:144.
135. Yorimitsu, T.,, and M. Homma. 2001. Na+-driven flagellar motor of Vibrio. Biochim. Biophys. Acta 1505:8293.
136. Yue, L.,, B. Navarro,, D. Ren,, A. Ramos, and, D. E. Clapham. 2002. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120:845853.
137. Yumoto, I. 2002. Bioenergetics of alkaliphilic Bacillus spp. J. Biosci. Bioeng. 93:342353.
138. Yumoto, I. 2003. Electron transport system in alkaliphilic Bacillus spp. Recent Res. Devel. Bacteriol. 1:131149.
139. Yumoto, I.,, Y. Fukumori, and, T. Yamanaka. 1991. Purification and characterization of two membrane-bound c-type cytochromes from a facultative alkalophilic Bacillus. J Biochem. (Tokyo) 110:267273.
140. Zhang, M.,, E. Mileykovskaya, and, W. Dowhan. 2002. Gluing the respiratory chain together. J. Biol. Chem. 277:4355343556.
141. Zhang, M.,, E. Mileykovskaya, and, W. Dowhan. 2005. Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J. Biol. Chem. 280:2940329408.
142. Zilberstein, D.,, V. Agmon,, S. Schuldiner, and, E. Padan. 1984. Escherichia coli intracellular pH, membrane potential, and cell growth. J. Bacteriol. 158:246252.

Tables

Generic image for table
Table 1.

Alkaliphilic OF4 pH homeostasis after a sudden alkaline shift in the external pH

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24
Generic image for table
Table 2.

Alkaliphile-specific sequence features of the and subunits of ATP synthase are required for robust OXPHOS at high pH and prevention of proton loss to the outside

Citation: Krulwich T, Hicks D, Swartz T, Ito M. 2007. Bioenergetic Adaptations That Support Alkaliphily, p 311-329. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error