1887

Chapter 25 : Microbial Adaptation to High Pressure

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Adaptation to High Pressure, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap25-2.gif

Abstract:

Piezomicrobiology is one of the lesser studied areas in extremophilic microbiology, although it constitutes a significant field of research, considering that piezophilic microorganisms reside in the largest habitat on Earth—the deep sea. High-pressure microbial habitats include the abyssal and hadal deep-sea environments, which are typified by low temperatures, darkness, sporadic nutrient inputs, and high diversity (low biomass) of invertebrate and vertebrate life. The abyssal plain is commonly thought of as a barren desert, punctuated by the presence of reducing environments such as hydrothermal vents, cold seeps, and whale falls. Culture-independent analyses of microbial diversity in low-temperature deep-ocean habitats have indicated the presence of particular groups of , , and . One of the classic responses of mesophilic microbial cells to growth-permissive elevated pressure is the impairment of cell division. The SOS regulon includes genes whose products repair DNA damage as well as prevent cell division. In order to gain further insight into the nature of elevated pressure as a stress, the response of to pressure has been examined. Many DNA-binding proteins display pressure-sensitive binding properties, and in many instances, this is due to hydration effects. Translation is another pressure-sensitive cellular process involving nucleic acid-protein interactions. Among the ribosome structures present throughout the elongation cycle the most pressure-sensitive one appears to be the posttranslocational complex. The description of genes required for high-pressure growth is now remarkably small but is likely to be greatly expanded as a result of ongoing genetic and genomic studies.

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25

Key Concept Ranking

Bacterial Proteins
0.54176587
Gene Expression and Regulation
0.46839857
Type II Secretion System
0.40722522
0.54176587
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

(Upper Tree) Phylogenetic tree of bacterial piezophiles. All of the strains listed belong to the γ-proteobacteria except for , which belong to the γ-proteobacteria, and , which is a member of the . (Lower Tree) Phylogenetic tree of archaeal piezophiles. All of the species listed are within the except for , which is within the . Both trees were reconstructed using the neighbor-joining algorithm.

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematic of one of the most pressure-sensitive components of a mesophilic bacterial cell: a flagellum.

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

morphology at low and high pressure. Deconvolved fluorescence image of cells incubated at atmospheric pressure (left) and elevated pressure (right). The membrane has been stained with the fluorescent stain FM4-64 and the DNA with 4′,6′-diamidino-2-phenylindole (DAPI).

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Schematic of one of the most pressure-sensitive components of a mesophilic bacterial cell: a ribosome.

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch25
1. Abe, F.,, and K. Horikoshi. 1998. Analysis of intracellular pH in the yeast Saccharomyces cerevisiae under elevated hydrostatic pressure: a study in baro- (piezo-)physiology. Extremophiles 2:223228.
2. Abe, F.,, and K. Horikoshi. 2000. Tryptophan permease gene TAT2 confers high-pressure growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:80988102.
3. Aertsen, A.,, P. De Spiegeleer,, K. Vanoirbeek,, M. Lavilla, and, C. W. Michiels. 2005. Induction of oxidative stress by high hydrostatic pressure in Escherichia coli. Appl. Environ. Microbiol. 71:22262231.
4. Aertsen, A.,, and C. W. Michiels. 2005a. Mrr instigates the SOS response after high pressure stress in Escherichia coli. Mol. Microbiol. 58:13811391.
5. Aertsen, A.,, and C. W. Michiels. 2005b. SulA-dependent hyper-sensitivity to high pressure and hyperfilamentation after high-pressure treatment of Escherichia coli lon mutants. Res. Microbiol. 156:233237.
6. Aertsen, A.,, R. Van Houdt,, K. Vanoirbeek, and, C. W. Michiels. 2004. An SOS response induced by high pressure in Escherichia coli. J. Bacteriol. 186:61336141.
7. Alain, K.,, V. G. Marteinsson,, M. L. Miroshnichenko,, E. A. Bonch-Osmolovskaya,, D. Prieur, and, J.-L. Birrien. 2002. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydro-thermal vent. Int. J. Syst. Evol. Microbiol. 52:13311339.
8. Alazard, D.,, S. Dukan,, A. Urios,, F. Verhe,, N. Bouabida,, F. Morel,, P. Thomas,, J. L. Garcia, and, B. Ollivier. 2003. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int. J. Syst. Evol. Microbiol. 53:173178.
9. Allen, E. E.,, and D. H. Bartlett. 2000. FabF is required for piezoregulation of cis-vaccenic acid levels and piezophilic growth of the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 182:12641271.
10. Allen, E. E.,, and D. H. Bartlett. 2002. Structure and regulation of the omega-3 polyunsaturated fatty acid synthase from the deep-sea bacterium Photobacterium profundum strain SS9. Microbiology 148:19031913.
11. Allen, E. E.,, D. Facciotti, and, D. H. Bartlett. 1999. Monounsaturated but not polyunsaturated fatty acids are required for growth at high pressure and low temperature in the deep-sea bacterium Photobacterium profundum strain SS9. Appl. Environ. Microbiol. 65:17101720.
12. Alpas, H.,, J. Lee,, F. Bozoglu, and, G. Kaletunç. 2003. Evaluation of high hydrostatic pressure sensitivity of Staphylococcus aureus and Escherichia coli O157:H7 by differential scanning calorimetry. Int. J. Food Microbiol. 87:229237.
13. Aluwihare, L. I.,, S. P. Pantoja,, C. G. Johnson, and, D. J. Repeta. 2005. Two chemically distinct pools of organic nitrogen accumulate in the ocean. Science 308:10071010.
14. Attard, G. S.,, R. H. Templer,, W. S. Smith,, A. N. Hunt, and, S. Jack-owski. 2000. Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proc. Natl. Acad. Sci. USA. 97:90329036.
15. Bale, S. J.,, K. Goodman,, P. A. Rochelle,, J. R. Marchesi,, J. C. Fry,, A. J. Weightman, and, R. J. Parkes. 1997. Desulfovibrio profundus sp nov, a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Syst. Bacteriol. 47:515521.
16. Balny, C. 2006. What lies in the future of high-pressure bioscience? Biochim. Biophys. Acta 1764:632639.
17. Barnes, S. P.,, S. D. Bradbrook,, B. A. Cragg,, J. R. Marchesi,, A. J. Weightman,, J. C. Fry, and, R. J. Parkes. 1998. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiology 15:6783.
18. Bartlett, D. H. 1992. Microbial life at high pressures. Sci. Prog. 76:479496.
19. Bartlett, D. H. 1999. Microbial adaptations to the psychrosphere/piezosphere. J. Mol. Microbiol. Biotechnol. 1:93100.
20. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
21. Bartlett, D. H. 2005. Extremophilic Vibrionaceae, p. 156–171. In F. Thompson,, B. Austin,, and J. Swings (ed.), The Biology of Vibrios. ASM Press, Washington, D.C.
22. Bartlett, D. H.,, and K. A. Bidle. 1999. Membrane-based adaptations of deep-sea piezophiles., p. 501–512. In J. Seckbach (ed.), Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Publishing, Dordrecht, The Netherlands.
23. Bartlett, D.,, M. Wright,, A. Yayanos, and, M. Silverman. 1989. Isolation of a gene regulated by hydrostatic pressure. Nature 342:572574.
24. Bartosik, A. A.,, and G. Jagura-Burdzy. 2005. Bacterial chromosome segregation. Acta Biochim Pol. 52:134.
25. Bernhardt, G.,, R. Jaenicke,, H.-D. Ludemann,, H. Koning, and, K. O. Stetter. 1988. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl. Environ. Microbiol. 54:12581261.
26. Bidle, K. A.,, and D. H. Bartlett. 1999. RecD function is required for high pressure growth in a deep-sea bacterium. J. Bacteriol. 181:23302337.
27. Bidle, K. A.,, and D. H. Bartlett. 2001. RNA arbitrarily primed PCR survey of genes regulated by ToxR and ToxS in the deep-sea bacterium Photobacterium profundum strain SS9. J. Bacteriol. 183:16881693.
28. Bina, J.,, J. Zhu,, M. Dziejman,, S. Faruque,, S. Calderwood, and, J. J. Mekalanos. 2003. ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc. Natl. Acad. Sci. USA 100:28012806.
29. Boone, D. R.,, Y. Liu,, Z. J. Zhao,, D. L. Balkwill,, G. R. Drake,, T. O. Stevens, and, H. C. Aldrich. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441448.
30. Boonyaratanakornkit, B. B.,, and D. S. Clark. Physiology and biochemistry of Methanocaldococcus jannaschii at elevated pressures. In A. Aertsen,, D. H. Bartlett,, C. W. Michiels,, and A. A. Yayanos (ed.), High Pressure Microbiology, in press. ASM Press, Washington, D.C.
31. Braganza, L. F.,, and D. L. Worcester. 1986. Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25:74847488.
32. Bult, C. J.,, O. White,, G. J. Olsen,, L. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. FitzGerald,, R. A. Clayton,, J. D. Gocayn,, A. R. Kerlavage,, B. A. Dougherty,, J.-F. Tomb,, M. D. Adams,, C. I. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Wein-stock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N. S. M. Geoghagen,, J. F. Weidman,, J. L. Fuhrmann,, D. Nguyen,, T. R. Utterback,, J. M. Kelley,, J. D. Peterson,, P. W. Sadow,, M. C. Hanna,, M. D. Cotton,, K. M. Roberts,, M. A. Hurst,, B. P. Kaine,, M. Borodovsky,, H.-P. Klenk,, C. M. Fraser,, H. O. Smith,, C. R. Woese, and, J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:10581073.
33. Campanaro, S.,, A. Vezzi,, N. Vitulo,, F. M. Lauro,, M. D’Angeo,, F. Simonato,, A. Cestaro,, G. Malacrida,, G. Bertoloni,, G. Valle, and, D. H. Bartlett. 2005. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics 6:122.
34. Canganella, F.,, J. M. Gonzalez,, M. Yanagibayashi,, C. Kato, and, H. K. Horikoshi. 1997. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch. Microbiol. 168:17.
35. Casadei, M. A.,, P. Mañas,, G. Niven,, E. Needs, and, B. M. Mackey. 2002. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl. Environ. Microbiol. 68:59655972.
36. Chi, E.,, and D. H. Bartlett. 1995. An rpoE-like locus controls outer membrane protein synthesis and growth at cold temperatures and high pressures in the deep-sea bacterium Photobacterium SS9. Mol. Microbiol. 17:713726.
37. Chilukuri, L. N.,, and D. H. Bartlett. 1997. Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth. Microbiology 143:11631174.
38. Chilukuri, L. N.,, D. H. Bartlett, and, P. A. G. Fortes. 2002. Comparison of high pressure-induced dissociation of single-stranded DNA-binding protein (SSB) from high pressure-sensitive and high pressure-adapted marine Shewanella species. Extremophiles 6:377383.
39. Chilukuri, L. N.,, P. A. G. Fortes, and, D. H. Bartlett. 1995. High pressure modulation of DNA gyrase activity. Biochim. Biophys. Res. Comm. 239:552556.
40. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson, and, J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3:570577.
41. Damare, S.,, C. Raghukumar, and, S. Raghukumar. 2006. Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res. I 53:1427.
42. Delaney, J. M.,, D. Ang, and, C. Georgopoulos. 1992. Isolation and characterization of the Escherichia coli htrD gene, whose product is required for growth at high temperatures. J. Bacteriol. 174:12401247.
43. DeLong, E. F. 1992. High pressure habitats, p. 405–417. In J. Lederberg (ed.), Encyclopedia of Microbiology, Volume 2. Academic Press, San Diego, CA.
44. DeLong, E. F.,, and A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228:11011103.
45. DeLong, E. F.,, and A. A. Yayanos. 1986. Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl. Environ. Microbiol. 51:730737.
46. DeLong, E. F.,, D. G. Franks, and, A. A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63:21052108.
47. DeLong, E. F.,, C. M. Preston,, T. Mincer,, V. Rich,, S. J. Hallam,, N. U. Frigaard,, A. Martinez,, M. B. Sullivan,, R. Edwards,, B. R. Brito,, S. W. Chisholm, and, D. M. Karl. 2006. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496503.
48. Edgcomb, V. P.,, D. T. Kysela,, A. Teske,, A. de Vera Gomez, and, M. L. Sogin. 2002. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. Acad. Sci. USA. 99:76587662.
49. Finch, E. D.,, and L. A. Kiesow. 1979. Pressure, anesthetics, and membrane structure: a spin-probe study. Undersea Biomed. Res. 6:4153.
50. Francis, C. A.,, K. J. Roberts,, J. M. Berman, and, A. E. Santoro. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA. 102:1468314688.
51. Friedberg, E. C.,, G. C. Walker, and, W. Siede. 1995. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.
52. Fuhrman, J. A.,, and A. A. Davis. 1997. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar. Ecol. Prog. Ser. 150:275285.
53. Gillett, M. B.,, J. R. Suko,, F. O. Santoso, and, P. H. Yancey. 1997. Elevated levels of trimethylamine oxide in muscles of deep-sea gadiform teleosts: a high-pressure adaptation? J. Exp. Zool. 279:386391.
54. Gross, M.,, and R. Jaenicke. 1990. Pressure-induced dissociation of tight couple ribosomes. FEBS Lett. 267:239241.
55. Gross, M.,, K. Lehle,, R. Jaenicke, and, K. H. Nierhaus. 1993. Pressure-induced dissociation of ribosomes and elongation cycle intermediates. Stabilizing conditions and identification of the most sensitive functional state. Eur. J. Biochem. 218:463468.
56. Guisbert, E.,, C. Herman,, C. Z. Lu, and, C. A. Gross. 2004. A chaperone network controls the heat shock response in E. coli. Genes Dev. 18:28122821.
57. Hata, K.,, R. Kono,, M. Fujisawa,, R. Kitahara,, Y. O. Kamatari,, K. Akasaka, and, Y. Xu. 2004. High pressure NMR study of dihydrofolate reductase from a deep-sea bacterium Moritella profunda. Cell. Mol. Biol. 50:311316.
58. Hauben, K. J. A.,, D. H. Bartlett,, C. C. F. Soontjens,, K. Cornelis,, E. Y. Wuytack, and, C. W. Michiels. 1997. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. Environ. Microbiol. 63:945950.
59. Huber, H.,, M. Thomm,, G. König,, G. Thies, and, K. O. Stetter. 1982. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132:4750.
60. Ingalls, A. E.,, S. R. Shah,, R. L. Hansman,, L. I. Aluwihare,, G. M. Santos,, E. R. Druffel, and, A. Pearson. 2006. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon. Proc. Natl. Acad. Sci. USA 103:6442.
61. Ishii, A.,, T. Oshima,, T. Sato,, K. Nakasone,, H. Mori, and, C. Kato. 2005. Analysis of hydrostatic pressure effects on transcription in Escherichia coli by DNA microarray procedure. Extremophiles 9:6573.
62. Ishii, A.,, T. Sato,, M. Wachi,, K. Nagai, and, C. Kato. 2004. Effects of high hydrostatic pressure on bacterial cytoskeleton FtsZ polymers in vivo and in vitro. Microbiology 150:19651972.
63. Jaenicke, R.,, G. Bernhardt,, H.-D. Ludemann, and, K. O. Stetter. 1988. Pressure-induced alterations in the protein pattern of the thermophilic archaebacterium Methanococcus thermolithotrophicus. Appl. Environ. Microbiol. 54:23752380.
64. Jannasch, H. W. 1987. Effects of hydrostatic pressure on growth of marine bacteria, p. 1–15. In H. W. Jannasch,, R. E. Marquis,, and A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, Toronto, Ontario.
65. Jannasch, H. W.,, and C. D. Taylor. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38:487514.
66. Jannasch, H. W.,, and C. O. Wirsen. 1982. Microbial activities in undecompressed and decompressed deep sea water samples. Appl. Environ. Microbiol. 43:11161124.
67. Jones, P. G.,, M. Cashel,, G. Glaser, and, F. C. Neidhardt. 1992. Function of a relaxed-like state following temperature down-shifts in Escherichia coli. J. Bacteriol. 174:39033914.
68. Kamimura, K.,, H. Fuse,, O. Takimura, and, Y. Yamaoka. 1993. Effects of growth pressure and temperature on fatty acid composition of a barotolerant deep-sea bacterium. Appl. Environ. Microbiol. 59:924926.
69. Kaminoh, Y.,, H. Kamaya,, C. Tashiro, and, I. Ueda. 1998. The effects of temperature and pressure on the thermodynamic activity of anesthetics. Toxicol. Lett. 100-101:353357.
70. Kaneshiro, S. M.,, and D. S. Clark. 1995. Pressure effects on the composition and thermal behavior of lipids from the deep-sea thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 177:36683772.
71. Kanso, S.,, A. C. Greene, and, B. K. Patel. 2002. Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int. J. Syst. Evol. Microbiol. 52:869874.
72. Karner, M. B.,, E. F. DeLong, and, D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
73. Kato, C.,, and D. H. Bartlett. 1997. The molecular biology of barophilic bacteria. Extremophiles 1:111116.
74. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamaoka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
75. Kato, C.,, L. Li,, J. Tamaoka, and, K. Horikoshi. 1997. Molecular analyses sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117123.
76. Kato, C.,, N. Masui, and, K. Horikoshi. 1996a. Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin Trench. J. Mar. Biotech. 4:9699.
77. Kato, C.,, and M. H. Qureshi. 1999. Pressure response in deep-sea piezophilic bacteria. J. Mol. Microbiol. Biotechnol. 1:8789.
78. Kato, C.,, T. Sato, and, K. Horikoshi. 1995. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers. Conserv. 4:19.
79. Kato, C.,, H. Tamegai,, A. Ikegami,, R. Usami, and, K. Horikoshi. 1996b. Open reading frame 3 of the barotolerant bacterium strain DSS12 is complementary with cydD in Escherichia coli—CydD functions are required for cell stability at high pressure. J. Biochem. 120:301305.
80. Kawano, H.,, K. Nakasone,, M. Natsumoto,, Y. Yoshida,, R. Usami,, C. Kato, and, F. Abe. 2004. Differential pressure resistance in the activity of RNA polymerase isolated from Shewanella violacea and Escherichia coli. Extremophiles 8:367375.
81. Kawarai, T.,, M. Wachi,, H. Ogino,, S. Furukawa,, K. Suzuki,, H. Ogihara, and, M. Yamasaki. 2004. SulA-independent filamentation of Escherichia coli during growth after release from high hydrostatic pressure treatment. Appl. Mirobiol. Biotechnol. 64:255262.
82. Kelly, R. H.,, and P. H. Yancey. 1999. High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates, and decapod crustaceans. Biol. Bull. 196:1825.
83. Konneke, M.,, A. E. Bernhard,, J. R. de la Torre,, C. B. Walker,, J. B. Waterbury, and, D. A. Stahl. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543546.
84. Kuzminov, A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63:751813.
85. Landau, J. V. 1967. Induction, transcription, and translation in Escherichia coli: a hydrostatic pressure study. Biochim. Biophys. Acta 149:506512.
86. Lauro, F. M.,, G. Bertoloni,, A. Obraztsova,, C. Kato,, B. M. Tebo, and, D. H. Bartlett. 2004. Pressure effects on Clostridium strains isolated from a cold deep-sea environment. Extremophiles 8:169173.
87. Li, L.,, J. Guezennec,, P. Nichols,, P. Henry,, M. Yanagibayashi, and, C. Kato. 1999a. Microbial diversity in Nankai Trough sediments at a depth of 3,843 m. J. Oceanogr. 55:635642.
88. Li, L. N.,, C. Kato, and, K. Horikoshi. 1999b. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 8:659677.
89. Li, L.,, C. Kato,, Y. Nogi, and, K. Horikoshi. 1998. Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiol. Lett. 159:159166.
90. Lochte, K.,, and C. M. Turley. 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature 333:6770.
91. Lockhart, A.,, and J. Kendrick-Jones. 1998. Interaction of the N-terminal domain of MukB with the bacterial tubulin homologue FtsZ. FEBS Lett. 430:278282.
92. López-García, P.,, A. Lopez-Lopez,, D. Moreira, and, F. Rodriguez-Valera. 2001a. Diversity of free-living prokaryotes from a deep-sea site at the Antarctic Polar Front. FEMS Microbiol. Ecol. 36:193202.
93. López-García, P.,, D. Moreira,, A. López-López, and, F. F. Rodríguez-Valera. 2001c. A novel haloarchaeal-related lineage is widely distributed in deep oceanic regions. Environ. Microbiol. 3:7278.
94. López-García, P.,, F. Rodriguez-Valera,, C. Pedros-Alio, and, D. Moreira. 2001b. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603607.
95. Lynch, T. W.,, and S. G. Sligar. 2002. Experimental and theoretical high pressure strategies for investigating protein–nucleic acid assemblies. Biochim. Biophys. Acta. 1595:277282.
96. MacDonald, A. G.,, and B. Martinac. 2005. Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur. Biophys. J. 34:434441.
97. Marquis, R. E. 1982. Microbial barobiology. BioScience 32:267271.
98. Marquis, R. E.,, and G. R. Bender. 1987. Barophysiology of prokaryotes and proton-translocating ATPases, p. 65–73. In R. E. Marquis, and A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
99. Marteinsson, V. T.,, J. L. Birrien,, A. L. Reysenbach,, M. Vernet,, D. Marie,, A. Gambacorta,, P. Messner,, U. Sleytr, and, D. Prieur. 1999a. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 49:351359.
100. Marteinsson, V. T.,, P. Moulin,, J.-L. Birrien,, A. Gambacorta,, M. Vernet, and, D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63:12301236.
101. Marteinsson, V. T.,, A.-L. Reysenbach,, J.-L. Birrien, and, D. Prieur. 1999b. A stress protein is induced in the deep-sea barophilic hyperthermophile Thermococcus barophilus when grown under atmospheric pressure. Extremophiles 3:277282.
102. Martin, D. D.,, D. H. Bartlett, and, M. E. Roberts. 2002. Solute accumulation in the deep-sea bacterium Photobacterium profundum. Extremophiles 6:507514.
103. Meganathan, R.,, and R. E. Marquis. 1973. Loss of bacterial motility under pressure. Nature 246:526527.
104. Metz, J. G.,, P. Roessler,, D. Facciotti,, C. Levering,, F. Dittrich,, M. Lassner,, R. Valentine,, K. Lardizabal,, F. Domergue,, A. Yamada,, K. Yazawa,, V. Knauf, and, J. Browse. 2001. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290293.
105. Miller, J. F.,, N. N. Shah,, C. M. Nelson,, J. M. Lulow, and, D. S. Clark. 1988. Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 54:30393042.
106. Miura, T.,, F. Abe,, A. Inoue,, R. Usami, and, K. Horikoshi. 2001. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol. Lett. 23:20272034.
107. Molina-Hoppner, A.,, T. Sato,, C. Kato,, M. G. Ganzle, and, R. F. Vogel. 2003. Effects of pressure on cell morphology and cell division of lactic acid bacteria. Extremophiles 7:511516.
108. Moon-van der Staay, S. Y.,, R. De Wachter, and, D. Vaulot. 2001. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607610.
109. Morita, R. Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p. 279–298. In R. G. Gray, and J. R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, MA.
110. Morita, T. 2003. Structure-based analysis of high pressure adaptation of alpha-actin. J. Biol. Chem. 278:2806028066.
111. Moser, D. P.,, T. M. Gihring,, F. J. Brockman,, J. K. Fredrickson,, D. L. Balkwill,, M. E. Dollhopf,, B. S. Lollar,, L. M. Pratt,, E. Boice,, G. Southam,, G. Wanger,, B. J. Baker,, S. M. Pfiffner,, L. H. Lin, and, T. C. Onstott. 2005. Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl. Environ. Microbiol. 71:87738783.
112. Nakasone, K.,, A. Ikegami,, C. Kato,, R. Usami, and, K. Horikoshi. 1998. Mechanisms of gene expression controlled by pressure in deep-sea microorganisms. Extremophiles 2:149154.
113. Nakasone, K.,, A. Ikegami,, H. Kawano,, C. Kato,, R. Usami, and, K. Horikoshi. 2002. Transcriptional regulation under pressure conditions by RNA polymerase sigma54 factor with a two-component regulatory system in Shewanella violacea. Extremophiles 6:8995.
114. Nakayama, H. 2005. Escherichia coli RecQ helicase: a player in thymineless death. Mutat. Res. 577:228236.
115. Nichols, D. S.,, P. D. Nichols, and, T. A. McMeekin. 1993. Polyun-saturated fatty acids in Antarctic bacteria. Antarct. Sci. 5:149160.
116. Niven, G. W.,, C. A. Miles, and, B. M. Mackey. 1999. The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: an in vivo study using differential scanning calorimetry. Microbiology 145:419425.
117. Nogi, Y.,, S. Hosoya,, C. Kato, and, K. Horikoshi. 2004. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int. J. Syst. Evol. Microbiol. 54:16271631.
118. Nogi, Y.,, and C. Kato. 1999. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3:7177.
119. Nogi, Y.,, C. Kato, and, K. Horikoshi. 1998a. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan trench sediment. J. Gen. Appl. Microbiol. 44:289295.
120. Nogi, Y.,, C. Kato, and, K. Horikoshi. 2002. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int. J. Syst. Evol. Microbiol. 52:15271532.
121. Nogi, Y.,, N. Masui, and, C. Kato. 1998b. Photobacterium profundum sp. nov., a new moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:17.
122. Nogi, Y.,, N. Masui, and, C. Kato. 1998c. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new moderately barophilic bacterial species. Arch. Microbiol. 170:331338.
123. Norris, V.,, T. Onoda,, H. Pollaert, and, G. Grehan. 1999. The mechanical advantages of DNA. Biosystems 49:7178.
124. Orr, N.,, E. Yavin,, M. Shinitzky, and, D. S. Lester. 1990. Application of high-pressure to subfractionate membrane protein–lipid complexes: a case study of protein kinase C. Anal. Biochem. 191:8085.
125. Park, C. B.,, and D. S. Clark. 2002. Rupture of the cell envelope by decompression of the deep-sea methanogen Methanococcus jannaschii. Appl. Environ. Microbiol. 68:14581463.
126. Pavlovic, M.,, S. Hormann,, R. F. Vogel, and, M. A. Ehrmann. 2005. Transcriptional response reveals translation machinery as target for high pressure in Lactobacillus sanfranciscensis. Arch. Microbiol. 184:1117.
127. Phadtare, S. 2004. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6:125136.
128. Phadtare, S.,, V. Tadigotla,, W. H. Shin,, A. Sengupta, and, K. Severinov. 2006. Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE. J. Bacteriol. 188:25212527.
129. Prieur, D. 1992. Physiology and biotechnological potential of deep-sea bacteria, p. 163–202. In R. A. Herbert, and R. J. Sharp (ed.), Molecular Biology and Biotechnology of Extremophiles. Chapman Hall, New York, NY.
130. Raghukumar, C.,, and S. Raghukumar. 1998. Barotolerance of fungi isolated from deep-sea sediments of the Indian Ocean. Aquat. Microb. Ecol. 15:153163.
131. Regnard, P. 1884. Note sur les conditions de la vir dans les profondeurs de la mer. Compt. Rend. Soc. Biol. 36:164168.
132. Robey, M.,, A. Benito,, R. H. Hutson,, C. Pascual,, S. F. Park, and, B. M. Mackey. 2001. Variation in resistance to high pressure and rpoS heterogeneity in natural isolates of Escherichia coli 0157:H7. Appl. Environ. Microbiol. 67:49014907.
133. Saito, R.,, C. Kato, and, A. Nakayama. 2006. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. J. Gen. Appl. Microbiol. 52:919.
134. Saito, R.,, and A. Nakayam. 2004. Differences in malate dehydrogenases from obligately piezophilic deep-sea bacterium Moritella sp. strain 2d2 and the psychrophilic bacterium Moritella sp. strain 5710. FEMS Microbiol. Lett. 233:165172.
135. Savelsbergh, A.,, V. I. Katunin,, D. Mohr,, F. Peske,, M. V. Rodnina, and, W. Wintermeyer. 2003. An elongation factor G-induced ribosome rearrangement precedes tRNA–mRNA translocation. Mol. Cell 11:15171523.
136. Savelsbergh, A.,, D. Mohr,, U. Kothe,, W. Wintermeyer, and, M. V. Rodnina. 2005. Control of phosphate release from elongation factor G by ribosomal protein L7/L12. EMBO J. 24:43164323.
137. Schulz, E.,, H.-D. Ludemann, and, R. Jaenicke. 1976. High pressure equilibrium studies on the dissociation–association of E. coli ribosomes. FEBS Lett. 64:4043.
138. Siegele, D. D.,, and R. Kolter. 1993. Isolation and characterization of an Escherichia coli mutant defective in resuming growth after starvation. Genes Dev. 7:26292640.
139. Silva, J. L.,, D. Foguel, and, C. A. Royer. 2001. Pressure provides new insights into protein folding, dynamics and structure. Trends Biochem. Sci. 26:612618.
140. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. Nazina,, M. Miroshnichenko, and, E. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
141. Stella, S.,, M. Falconi,, M. Lammi,, C. O. Gualerzi, and, C. L. Pon. 2006. Environmental control of the in vivo oligomerization of nucleoid protein H–NS. J. Mol. Biol. 355:169174.
142. Takai, K.,, A. Inoue, and, K. Horikoshi. 1999. Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int. J. Syst. Bacteriol. 49:619628.
143. Takai, K.,, A. Sugai,, T. Itoh, and, K. Horikoshi. 2000. Palaeococcus ferrophilus gen. nov., sp nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 50:489500.
144. Takami, H.,, A. Inoue,, F. Fuji, and, K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152:279285.
145. Takami, H.,, S. Nishi,, J. Lu,, S. Shimamura, and, Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351356.
146. Tamegai, H.,, L. Li,, N. Masui, and, C. Kato. 1997. A denitrifying bacterium from the deep sea at 11,000-m depth. Extremophiles 1:207211.
147. Tamura, Y.,, K. Gekko,, K. Yoshioka,, F. Vonderviszt, and, K. Namba. 1997. Adiabatic compressibility of flagellin and flagellar filament of Salmonella typhimurium. Biochim. Biophys. Acta 1335:120126.
148. Tang, G.-Q.,, N. Tanaka, and, S. Kunugi. 1998. In vitro increases in plasmid DNA supercoiling by hydrostatic pressure. Biochim. Biophys. Acta 1443:364368.
149. Thom, S. R.,, and R. E. Marquis. 1987. Free radical reactions and the inhibitory and lethal actions of high-pressure gases. Undersea Biomed. Res. 14:485501.
150. Toffin, L.,, K. Zink,, C. Kato,, P. Pignet,, A. Bidault,, N. Bienvenu,, J. L. Birrien, and, D. Prieur. 2005. Marinilactibacillus piezotolerans sp. nov., a novel marine lactic acid bacterium isolated from deep sub-seafloor sediment of the Nankai Trough. Int. J. Syst. Evol. Microbiol. 55:345351.
151. Treusch, A. H.,, S. Leininger,, A. Kletzin,, S. C. Schuster,, H. P. Klenk, and, C. Schleper. 2005. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ. Microbiol. 7:19851995.
152. Turley, C. M.,, A. J. Gooday, and, J. C. Green. 1993. Maintenance of abyssal benthic foraminifera under high pressure and low temperature: Some preliminary results. I. Deep-Sea Res. I 40:643652.
153. Turley, C. M.,, K. Lochte, and, D. J. Patterson. 1988. A barophilic flagellate isolated from 4500 meters in the mid-North Atlantic. Deep-Sea Res. A 35:10791092.
154. Valentine, R. C.,, and D. L. Valentine. 2004. Omega-3 fatty acids in cellular membranes: a unified concept. Prog. Lipid Res. 43:383402.
155. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, F. M. Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi,, D. H. Bartlett, and, G. Valle. 2005. Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:14591461.
156. Welch, T. J.,, and D. H. Bartlett. 1996. Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J. Bacteriol. 178:50275031.
157. Welch, T. J.,, and D. H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27:977985.
158. Welch, T. J.,, A. Farewell,, F. C. Neidhardt, and, D. H. Bartlett. 1993. Stress response in Escherichia coli induced by elevated hydrostatic pressure. J. Bacteriol. 175:71707177.
159. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:65786583.
160. Worden, A. Z.,, M. L. Cuvelier, and, D. H. Bartlett. 2006. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14:331336.
161. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rueger,, D. De Kegel, and, N. Glansdorff. 2003a. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:533538.
162. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Rueger,, D. De Kegel, and, N. Glansdorff. 2003b. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:527532.
163. Yanagibayashi, M.,, Y. Nogi,, L. Li, and, C. Kato. 1999. Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. FEMS Microbiol. Lett. 170:271279.
164. Yancey, P. H.,, A. L. Fyfe-Johnson,, R. H. Kelly,, V. P. Walker, and, M. T. Auñon. 2001. Trimethylamine oxide counteracts effects of hydrostatic pressure on proteins of deep-sea teleosts. J. Exp. Zool. 289:172176.
165. Yano, Y.,, A. Nakayama, and, K. Yoshida. 1997. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 63:25722577.
166. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA. 83:95429546.
167. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
168. Yayanos, A. A. 2001. Deep-sea piezophilic bacteria. Methods Microbiol. 30:615637.
169. Yayanos, A. A.,, and E. F. DeLong. 1987. Deep-sea bacterial fitness to environmental temperatures and pressures, p. 17–32. In H. W. Jannasch,, R. E. Marquis,, and A. M. Zimmerman (ed.), Current Perspectives in High Pressure Biology. Academic Press, Toronto, Ontario.
170. Yayanos, A. A.,, A. S. Dietz, and, R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana trench. Proc. Natl. Acad. Sci. USA 78:52125215.
171. Yayanos, A. A.,, and E. C. Pollard. 1969. A study of the effects of hydrostatic pressure on macromolecular synthesis in Escherichia coli. Biophys. J. 9:14641482.
172. ZoBell, C. E. 1970. Pressure effects on morphology and life processes of bacteria, p. 85–130. In A. Zimmerman (ed.), High Pressure Effects on Cellular Processes. Academic Press, London, United Kingdom/New York, NY.
173. ZoBell, C. E.,, and A. B. Cobet. 1963. Filament formation by Escherichia coli at increased hydrostatic pressures. J. Bacteriol. 87:710719.

Tables

Generic image for table
Table 1.

Piezophilic and

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25
Generic image for table
Table 2.

Genes influencing high-pressure (HP) resistance or high-pressure growth in or in

Citation: Bartlett D, Lauro F, Eloe E. 2007. Microbial Adaptation to High Pressure, p 333-348. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error