1887

Chapter 26 : Astrobiology and the Search for Life in the Universe

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Astrobiology and the Search for Life in the Universe, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap26-2.gif

Abstract:

Astrobiology is the search for the origin, evolution, distribution, and future of life in the universe. This chapter examines the requirements for life as we know it. With these constraints as guidelines, the chapter then examines potential habitats for life in our solar system and, finally, elaborates on a strategy to search for life in the universe. Environmental requirements and limitations for active life on Earth have been discussed in the chapter. Most life forms on Earth (including most bacteria, all fungi, and all animals) are heterotrophs that live off energy captured by autotrophic organisms. Salinity affects biological activity, in part, because it controls water availability. The two solar system bodies beyond Earth that have elicited the most interest as potential habitats for life are Mars and Europa because both have clearly been subjected to aqueous processes. The chapter examines these two solar-system bodies in detail. In principle, there are three potential habitats for active life: the surface of planetary bodies, its subsurface, and its atmosphere. Advantages for subsurface life include stable temperatures and vapor pressures and protection from damaging radiation and meteoritic impacts. In the search for life in our solar system, important resources for life (liquid water, readily available energy, and organic compounds), constraints for life, biosignatures, and geosignatures are appropriate criteria. In the search for life beyond our solar system, attention should focus on (i) energy (especially solar) sources, (ii) liquid water, (iii) complex organic chemistry, (iv) the presence of an atmosphere, and (v) O (O) disequilibrium.

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26

Key Concept Ranking

Bacteria and Archaea
0.5211195
0.5211195
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Untitled
Untitled

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815813.ch26
1. Abe, F.,, C. Kato, and, K. Horikoshi. 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 7:447453.
2. Akasofu, S. 1999. Auroral spectra as a tool for detecting extraterrestrial life. EOS 35:397.
3. Bachofen, R. 1986. Microorganisms in extreme environments: introduction. Experientia 42:11791182.
4. Bains, W. 2004. Many chemistries could be used to build living systems. Astrobiology 4:137167.
5. Baumstark-Khan, C.,, and R. Facius. 2002. Life under conditions of ionizing radiation, p. 261–284. In G. Horneck, and C. Baumstark-Khan (ed.), Astrobiology: The Quest for the Conditions of Life. Springer, Berlin, Germany.
6. Benner, S. A.,, A. Ricardo, and, M. A. Carrigan. 2004. Is there a common chemical model for life in the universe? Curr. Opin. Cell Biol. 8:672689.
7. Cabrol, N. A.,, D. D. Wynn-William,, D. A. Crawford, and, E. A. Grin. 2001. Recent aqueous environments in Martian impact craters: an astrobiological perspective. Icarus 154:98112.
8. Cano, R. J.,, and M. K. Borucki. 1995. Revival and identification of bacterial spores in 25- to 40-million-year-old Dominican amber. Science 268:10601064.
9. Chyba, C. F. 2000. Energy for microbial life on Europa. Nature 403:381382.
10. Chyba, C. F.,, and K. P. Hand. 2001. Life without photosynthesis. Science 292:20262027.
11. Chyba, C. F.,, and C. B. Phillips. 2001. Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. USA 98:801804.
12. Couzin, J. 2002. Weight of the world on microbes’ shoulders. Science 295:14441445.
13. Diaz, B.,, and D. Schulze-Makuch. 2005. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-irradiation conditions, and their relevance to possible Martian life. Astrobiology 6:332347.
14. Dose, K.,, A. Bieger-Dose,, B. Ernst,, U. Feister,, B. Gomez-Silva,, A. Klein,, S. Risi, and, C. Stridde. 2001. Survival of microorganisms under the extreme conditions of the Atacama Desert. Orig. Life Evol. Biosph. 31:287303.
15. Duckworth, A. W.,, W. D. Grant,, B. E. Jones, and, R. van Steenbergen. 1996. Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol. Ecol. 19:181191.
16. Edwards, K. J.,, T. M. Gihring, and, J. F. Banfield. 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Appl. Environ. Microbiol. 65:36273632.
17. Fernandez-Remolar D. C.,, N. Rodriquez, and, F. Gomez. 2003. Geological record of an acidic environment driven by iron hydrochemistry: the Tinto River system. J. Geophys. Res. 108:5080. doi:10.1029/2002JE001918.
18. Fischman, J. 1995. Have 25-million-year-old bacteria returned to life? Science 268:977.
19. Fisk, M. R.,, and S. J. Giovannoni. 1999. Sources of nutrients and energy for a deep biosphere on Mars. J. Geophys. Res. 104:1180511811, 11815.
20. Foing, B. H. 2002. Space activities in exo-astrobiology, p. 389–398. In G. Horneck and, C. Baumstark-Khan (ed.), Astrobiology: The Quest for the Conditions of Life. Springer, Berlin, Germany.
21. Frey, H. U.,, and D. Lummerzheim. 2002. Can conditions for life be inferred from optical emissions of extra-solar-system planets, p. 381–388. In M. Mendillo,, A. Nagy,, and J. H. Waite (ed.), Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monograph 130. American Geophysical Union, Washington, DC.
22. Gaidos, E. J.,, K. H. Nealson, and, J. L. Kirschvink. 1999. Life in ice-covered oceans. Science 284:16311633.
23. Gibson, Jr.,, E. K.,, D. S. McKay,, K. Thomas-Keprta, and, C. S. Romanek. 1997. The case for relic life on Mars. Sci. Am. 277:5865.
24. Gilichinsky, D. A. 2002. Permafrost model of extraterrestrial habitat, p. 125–142. In G. Horneck, and C. Baumstark-Khan (ed.), Astrobiology: The Quest for the Conditions of Life. Springer, Berlin, Germany.
25. Horneck, G.,, and C. Baumstark-Khan. 2002. Astrobiology: The Quest for the Conditions of Life. Springer, Berlin, Germany.
26. Huber, H.,, and K. O. Stetter. 1998. Hyperthermophiles and their possible potential in biotechnology. J. Biotechnol. 64:3952.
27. Irwin, L. N.,, and D. Schulze-Makuch. 2001. Assessing the plausibility of life on other worlds. Astrobiology 1:143160.
28. Irwin, L. N.,, and D. Schulze-Makuch. 2003. Strategy for modeling putative multilevel ecosystems on Europa. Astrobiology 3:813821.
29. Jakosky, B. M. 1998. The Search for Life on other Planets. Cambridge University Press, Cambridge, MA.
30. Jakosky, B. M.,, and E. L. Shock. 1998. The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res. 103:1935919364.
31. Jawad, A.,, A. M. Snelling,, J. Heritage, and, P. M. Hawkey. 1998. Exceptional desiccation tolerance of Acinetobacter radioresistens. J. Hosp. Infect. 39:235240.
32. Johnson, D. B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27:307317.
33. Junge, K. 2002. Bacterial abundance, activity, and diversity at extremely cold temperatures in Arctic sea ice. Ph.D. dissertation. University of Washington, Washington, DC.
34. Junge, K.,, J. W. Deming, and, H. Eicken. 2004. Bacterial activity at –2 to –20°C in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70:550557.
35. Junge, K.,, C. Krembs,, J. W. Deming,, A. Stierle, and, H. Eicken. 2001. A microscopic approach to investigate bacteria under in-situ conditions in sea-ice samples. Ann. Glaciol. 33:304310.
36. Kargel, J. S. 2004. Mars—A Warmer, Wetter Planet. Springer/Praxis, London, United Kingdom.
37. Kargel, J. S.,, J. Kaye,, J. W. Head III,, G. M. Marion,, R. Sassen,, J. Crowley,, O. Prieto,, S. A. Grant, and, D. Hogenboom. 2000. Europa’s salty crust and ocean: origin, composition, and the prospects for life. Icarus 148:226265.
38. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamaoka, and, K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64:15101513.
39. Klein, H. P.,, N. H. Horowitz, and, K. Biemann. 1992. The search for extant life on Mars, p. 1221–1233. In H. H. Kieffer,, C. W. Snyder,, and M. S. Mathews (ed.), Mars. The University of Arizona Press, Tucson, AZ.
40. Kushner, D. 1981. Extreme environments: are there any limits to life? p. 241–248. In C. Ponnamperuma (ed.), Comets and the Origin of Life. D. Reidel Publishing Company, Dordrecht, Netherlands.
41. Leger, A.,, M. Pirre, and, F. J. Marceau. 1993. Search for primitive life on a distant planet: relevance of O2 and O3 detections. Astron. Astrophys. 277:309313.
42. Lopez-Archilla, A. I.,, I. Marin, and, R. Amils. 2001. Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microbiol. Ecol. 41:2035.
43. Madigan, M. T.,, and B. L. Marrs. 1997. Extremophiles. Sci. Am. 276:8287.
44. Marchant, J.,, A. T. Da Vison, and, G. J. Kelly. 1991. UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Mar. Biol. 109:391395.
45. Marion, G. M.,, C. H. Fritsen,, H. Eicken, and, M. C. Payne. 2003. The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3:785811.
46. Mattimore, V.,, and J. R. Battista. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive prolonged desiccation. J. Bacteriol. 178:633637.
47. Max, M. D.,, and S. M. Clifford. 2000. The state, potential distribution, and biological implications of methane in the Martian crust. J. Geophys. Res. 105:41654171.
48. Mazur, P. 1980. Limits to life at low temperatures and at reduced water contents and water activities. Orig. Life 10:137159.
49. McCollom, T. M. 1999. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res. 104:3072930730, 30742.
50. McKay, C. P.,, R. L. Mancinelli,, C. R. Stoker,, R. A. Wharton, Jr. 1992. The possibility of life on Mars during a water-rich past, p. 1234–1245. In H. H. Kieffer,, C. W. Snyder,, and M. S. Matthews (ed.), Mars. The University of Arizona Press, Tucson, AZ.
51. McKay, C. P.,, and H. D. Smith. 2005. Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274276.
52. McKay, C. P.,, and C. R. Stoker. 1989. The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27:189214.
53. McKay, D. S.,, E. K. Gibson, Jr.,, K. L. Thomas-Keprta,, H. Vali,, C. S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling, and, R. N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924930.
54. Navarro-Gonzalez, R.,, L. Montoya,, W. Davis, and, C. McKay. 2002. Laboratory support for a methanogenesis driven biosphere in Europa, p. 35. In R. Greeley (ed.), Europa Focus Group Workshop 3. Flagstaff, Arizona State University, Tempe, AZ. Available at http://astrobiology.asu.edu/focus/europa/intro.html.
55. Nealson, K. H. 1997. The limits of life on Earth and searching for life on Mars. J. Geophys. Res. 102:2367523686.
56. Nealson, K. H.,, and P. G. Conrad. 1999. Life: past, present, and future. Phil. Trans. R. Soc. Lond. B. 354:19231939.
57. Pappalardo, R. T.,, M. J. S. Belton,, H. H. Breneman,, M. H. Carr,, C. R. Chapman,, G. C. Collins,, T. Denk,, S. Fagents,, P. E. Geissler,, B. Giese,, R. Greeley,, R. Greenberg,, J. W. Head,, P. Helfenstein,, G. Hoppa,, S. D. Kadel,, K. P. Klaasen,, J. E. Klemaszewski,, K. Magee,, A. S. McEwen,, J. M. Moore,, W. B. Moore,, G. Neukum,, C. B. Phillips,, L. M. Prockter,, G. Shubert,, D. A. Senske,, R. J. Sullivan,, B. R. Tufts,, E. P. Turtle,, R. Wagner, and, K. K. Williams. 1999. Does Europa have a subsurface ocean? Evaluation of the geological evidence. J. Geophys. Res. 104:2401524055.
58. Phoenix, V. R.,, K. O. Konhauser,, D. G. Adams, and, S. H. Bottrell. 2001. Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29:823826.
59. Pierazzo, E.,, and C. F. Chyba. 2002. Cometary delivery of biogenic elements to Europa. Icarus 157:120127.
60. Pledger, R. J.,, B. C. Crump, and, J. A. Baross. 1994. A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14:233242.
61. Price, P. B.,, and T. Sowers. 2004. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 101:46314636.
62. Raven, P. H.,, R. F. Evert, and, S. E. Eichhorn. 1986. Biology of Plants, 4th ed. Worth Publishers, New York, NY.
63. Reynolds, R. T.,, S. W. Squyres,, D. S. Colburn, and, C. P. McKay. 1983. On the habitability of Europa. Icarus 56:246254.
64. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay, and, D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66:32303233.
65. Robbins, E. I.,, T. M. Rodgers,, C. N. Alpers, and, D. K. Nordstrom. 2000. Ecogeochemistry of the subsurface food web at pH 0–2.5 in Iron Mountain, California, U.S.A. Hydrobiologia 433:1523.
66. Rothschild, L. J.,, and R. L. Mancinelli. 2001. Life in extreme environments. Nature 409:10921101.
67. Sattler, B.,, H. Puxbaum, and, R. Psenner. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28:239242.
68. Schidlowski, M. 2002. Search for morphological and biogeochemical vestiges of fossil life in extraterrestrial settings: utility of terrestrial evidence, p. 373–386. In G. Horneck, and C. Baumstark-Khan (ed.), Astrobiology: The Quest for the Conditions of Life. Springer, Berlin, Germany.
69. Schleper, C.,, G. Pühler,, B. Kühlmorgen, and, W. Zillig. 1995. Life at extremely low pH. Nature 375:741742.
70. Schrenk, M. O.,, K. J. Edwards,, R. M. Goodman,, R. J. Hamers, and, J. F. Banfield. 1998. Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage. Science 279:15191522.
71. Schulze-Makuch, D.,, B. Diaz, and, L. N. Irwin. 2004a. Environmental history and stresses on Mars and their effect on microbial populations. Paper presented at AGU Fall Meeting, San Francisco, CA, December 2004.
72. Schulze-Makuch, D.,, D. H. Grinspoon,, O. Abbas,, L. N. Irwin, and, M. Bullock. 2004b. A sulfur-based UV adaptation strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4:1118.
73. Schulze-Makuch, D.,, and D. H. Grinspoon. 2005. Biologically energy and carbon cycling on Titan? Astrobiology 5:560567.
74. Schulze-Makuch, D.,, and L. N. Irwin. 2002a. Energy cycling and hypothetical organisms in Europa’s ocean. Astrobiology 2:105121.
75. Schulze-Makuch, D.,, and L. N. Irwin. 2002b. Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2:197202.
76. Schulze-Makuch, D.,, and L. N. Irwin. 2004. Life in the Universe. Springer, Berlin, Germany.
77. Schulze-Makuch, D.,, L. N. Irwin, and, H. Guan. 2002. Search parameters for the remote detection of extraterrestrial life. Planet. Space Sci. 50:675683.
78. Schulze-Makuch, D.,, L. N. Irwin,, J. H. Lipps,, D. LeMone,, J. M. Dohm, and, A. G. Fairén. 2005. Scenarios for the evolution of life on Mars. J. Geophys. Res. 110:E12S23.
79. Sharma, A.,, J. H. Scott,, G. D. Cody,, M. L. Fogel,, R. M. Hazen,, R. J. Hemley, and, W. T. Huntress. 2002. Microbial activity at gigapascal pressures. Science 295:15141516.
80. Shock, E. L. 1997. High-temperature life without photosynthesis as a model for Mars. J. Geophys. Res. 102:2368723694.
81. Smith, D. W. 1982. Extreme natural environments, p. 555–574. In R. G. Burns, and J. H. Slater (ed.), Experimental Microbial Ecology. Blackwell Scientific Publications, Oxford, United Kingdom.
82. Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452:2225.
83. Stevenson, D. 2000. Europa’s ocean—the case strengthens. Science 289:13051307.
84. Stolz, J. F.,, and R. S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiol. Rev. 23:615627.
85. Vogel, G. 1999. Expanding the habitable zone. Science 286:7071.
86. Vreeland, R. H.,, W. D. Rosenzweig, and, D. W. Powers. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897900.
87. Ward, P. D.,, and D. Brownlee. 2000. Rare Earth: Why Complex Life is Uncommon in the Universe. Copernicus, New York, NY.
88. Wynn-Williams, D. D.,, H. G. M. Edwards,, E. M. Newton, and, J. M. Holder. 2002. Pigmentation as a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. Int. J. Astrobiol. 179:174183.
89. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev. Microbiol. 49:777805.
90. Zolotov, M. Y.,, and E. L. Shock. 2003. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J. Geophys. Res. Planets 108:5022.

Tables

Generic image for table
Table 1.

Environmental requirements and limitations for active life on Earth

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26
Generic image for table
Table 2.

Radiation dose giving ≈ 37% survival for UV and ionizing radiation

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26
Generic image for table
Table 3.

Astrobiology plausibility categories

Citation: Marion G, Schulze-Makuch D. 2007. Astrobiology and the Search for Life in the Universe, p 351-358. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error