Chapter 28 : Lessons from Extremophiles: Early Evolution and Border Conditions of Life

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Lessons from Extremophiles: Early Evolution and Border Conditions of Life, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815813/9781555814229_Chap28-2.gif


Modern prokaryotes are the only forms of life featuring organisms capable of growth above 62°C, and inside each domain, the first phylogenetic analyses singled out the most extreme of these thermophiles as the earliest lines of descent: Aquificales and Thermotogales among , different Euryarchaeota and Crenarchaeota among . A recent research study used a new algorithm automatically picking up “representative” proteins, including both ubiquitous and non-ubiquitous but rather well-conserved proteins; here and remained together in a basal position with a weak bootstrap support. Modern thermophiles are the result of more than 3 billion years evolution, during which further adaptation has certainly occurred, and molecular adaptations to thermophily look rather elaborated in the only living organisms we can investigate. Temperature is an all-pervasive factor with straightforward effects on the physical state of the universal life solvent, which has to remain in the liquid state to allow suitably adapted organisms to grow. The world of extremophiles offers similar test cases; some of the most obvious ones concern extreme halophily and thermophily, conditions that impose adaptation to the whole proteome.

Citation: Xu Y, Glansdorff N. 2007. Lessons from Extremophiles: Early Evolution and Border Conditions of Life, p 409-421. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch28

Key Concept Ranking

Horizontal Gene Transfer
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Alternative evolutionary scenarios for the emergence of the three domains of life from a protoeukaryotic LUCA. (A) Cells with -2,3 glycerol-ether lipids () emerge by thermoreduction ( Forterre, 1995 ) from a LUCA population with -1,2 glycerol-ester lipids; emerge by reductive evolution but not thermoreduction; (B) simplified alternative scheme where both -1,2 and -2,3 glycerol lipids emerge at a different time from a LUCA with precursor lipids. The figure does not specify whether the LUCA had a DNA or an RNA genome (see text and Forterre, 2005 , 2006). The “pregenomic” phase refers to concepts developed by de Duve (1991 , 2005 ) and Kauffman (1993) .

Citation: Xu Y, Glansdorff N. 2007. Lessons from Extremophiles: Early Evolution and Border Conditions of Life, p 409-421. In Gerday C, Glansdorff N (ed), Physiology and Biochemistry of Extremophiles. ASM Press, Washington, DC. doi: 10.1128/9781555815813.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allen, E.,, and D. H. Bartlett. 2004. Microbial adaptations to the deep-sea environment. In Extremophilies, C. Gerday,, and N. Glansdorff (ed.), in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspicies of the UNESCO, Eolss Publishers, Oxford, UK, http://www.eolss.net.
2. Amos, L. A.,, F. van den Ent, and, J. Lowe. 2004. Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr. Opin. Cell Biol. 16:2431.
3. Bada, J. L.,, C. Bigham, and, S. L. Miller. 1994. Impact melting of frozen oceans on the early Earth: implications for the origin of life. Proc. Natl. Acad. Sci. USA 91:12481250.
4. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595:367381.
5. Bentahir, M.,, G. Feller.,, M. Aittaleb,, J. Lamotte-Brasseur,, T. Himori,, J. P. Chessa, and, C. Gerday. 2000. Structural, kinetic and calorimetric characterization of the cold-active phosphoglycerate kinase from the Antarctic Pseudomonas sp. TACII 18. J. Biol. Chem. 275:1114711153.
6. Bern, M.,, and D. Golberg. 2005. Automatic selection of representative proteins for bacterial phylogeny. BMC Evol. Biol. 5:34.
7. Biller, K.,, and H. Märkl. 2002. A new mathematical model for the description of the growth of the hyperthermophilic archaeon Pyrococcus furiosus. Int. Congr. on Extremophiles, Naples 2002, Book of abstracts:LA1.
8. Blochl, E.,, R. Rachel,, S. Burggraf,, D. Hafenbradl,, W. H. Jannasch, and, K. O. Stetter. 1997. Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:1421.
9. Boucher, Y.,, M. Kamakura, and, W. F. Doolittle. 2004. Origins and evolution of isoprenoid lipid biosynthesis in archaea. Mol. Microbiol. 52:515527.
10. Brochier, C.,, P. Forterre, and, S. Gribaldo. 2005. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol. Biol. 5:36.
11. Brochier, C.,, and H. Philippe. 2002. Phylogeny: a non-hyperthermophilic ancestor for bacteria. Nature 417:244.
12. Brock, T. D. 1967. Life at high temperatures. Science 158:10121019.
13. Caetano-Anolles, G. 2002. Evolved RNA secondary structure and the rooting of the universal tree. J. Mol. Evol. 54:333345.
14. Castresana, J. 2001. Comparative genomics and bioenergetics. Biochim. Biophys. Acta 1506(3):147162.
15. Chablain, P. A.,, G. Philippe,, A. Groboillot,, N. Truffaut, and, J. F. Guespin-Michel. 1997. Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth chacteristics on different substrates. Res. Microbiol. 148:153161.
16. Chistoserdova, L.,, C. Jenkins,, M. G. Kalyuznaya,, C. J. Marx,, A. Lapidus,, J. A. Vorholt,, J. T. Staley, and, M. E. Lidstrom. 2004. The enigmatic planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21:12341241.
17. Cohen, G.,, V. Barbe,, D. Flament,, M. Galperin,, R. Heilig,, O. Lecompte,, O. Poch,, D. Prieur,, J. Querellou,, R. Ripp,, J. C. Thierry,, J. Van der Oost,, J. Weissenbach,, I. Zivanovic, and, P. Forterre. 2003. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol. Microbiol. 47:14951512.
18. Darnell, J. E.,, and W. F. Doolittle. 1986. Speculations on the early course of evolution. Proc. Natl. Acad. Sci. USA 83:12711275.
19. Daubin, V.,, M. Gouy, and, G. Perriere. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12:10801090.
20. de Duve, C. 1991. Blueprint for a Cell: The Nature and Origin of Life. 275p. Patterson Publishers, Carolina Biological Supply Company, Burlington, NC.
21. de Duve, C. 2005. Singularities: Landmarks on the Pathways of Life. 256p. Cambridge University Press, Cambridge, UK.
22. Dennett, D. 1995. Darwin’s Dangerous Idea: Evolution and the Meanings of Life. 586p. New York, Simon and Schuster.
23. de Vera J. P.,, G. Horneck,, P. Rettberg, and, S. Ott. 2004. The potential of the lichen symbiosis to cope with the extreme conditions of outer space. II. Germination capacity of lichen ascospores in response to simulated space conditions. Adv. Space Res. 33:12361243.
24. Di Giulio, M. 2000. The late stage of genetic code structuring took place at a high temperature. Gene 261:189195.
25. Di Giulio, M. 2003a. The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J. Theor. Biol. 221:425436.
26. Di Giulio, M. 2003b. The ancestor of the Bacteria domain was a hyperthermophile. J. Theor. Biol. 224:277283.
27. Di Giulio, M. 2005. A comparison of proteins from Pyrococcus furiosus and Pyrococcus abyss i: barophily in the physicochemical properties of amino acids and in the genetic code. Gene 346:16.
28. Fields, P. A.,, and G. Somero. 1998. Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A(4) orthologs of Antarctic notothenioid fishes. Proc. Natl. Acad. Sci. USA 95:1147611481.
29. Fieseler, L.,, M. Horn,, M. Wagner, and, U. Hentschel. 2004. Discovery of the novel candidate phylum Poribacteria in marine sponges. Appl. Environ. Microbiol. 70:37243732.
30. Forterre, P. 1995. Thermoreduction, a hypothesis for the origin of prokaryotes. C. R. Acad. Sci III 318:415422.
31. Forterre, P. 1996. A hot topic: the origin of hyperthermophiles. Cell 85:789792.
32. Forterre, P. 2005. The two ages of the RNA world, and the transition to the DNA world: a story of viruses and cells. Biochimie 87:793803.
33. Forterre, P. Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc. Natl. Acad. Sci. USA 103:36693674.
34. Forterre, P. 2004. Strategies of extremophily in nucleic acids adaptation to high temperature. In Extremophilies, C. Gerday,, and N. Glansdorff (ed.), in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspicies of the UNESCO, Eolss Publishers, Oxford, UK, http://www.eolss.net.
35. Forterre, P.,, and H. Philippe. 1999. Where is the root of the universal tree of life? BioEssays 21:871879.
36. Fuerst, J. A. 2005. Intracellular compartmentation in Planctomycetes. Annu. Rev. Microbiol. 59:299328.
37. Galtier, N. 2001. Maximum-likelihood phylogenetic analysis under a covarion-model. Mol. Biol. Evol. 18:866873.
38. Galtier, N.,, N. J. Tourasse, and, M. Gouy. 1999. A nonhyperthermophilic ancestor to extant life forms. Science 283:220221.
39. Gilichinsky, D.,, E. Rivkina,, C. Bakermans,, V. Shcherbakova,, L. Petrovskaya,, S. Ozerskaya,, N. Ivanushkina,, G. Kochkina,, K. Laurinavichuis,, S. Pecheritsina,, R. Fattakhova, and, J. M. Tiedje. 2005. Biodiversity of cryopegs in permafrost. FEMS Microbiol. Ecol. 53:117128.
40. Glansdorff, N. 2000. About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol. Microbiol. 38:177185.
41. Glansdorff, N.,, and Y. Xu. 2002. Microbial life at low temperatures: mechanisms of adaptation and extreme biotopes. Implications for exobiology and the origin of life. Recent Res. Dev. Microbiol. 6:121.
42. Glansdorff, N.,, and Y. Xu. 2004. Phylogeny of extremophiles. In Extremophilies, C. Gerday,, and N. Glansdorff (ed.), in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspicies of the UNESCO, Eolss Publishers, Oxford, UK, http://www.eolss.net.
43. Gogarten, J. P.,, H. Kibak,, P. Dittrich,, L. Taiz,, E. J. Bowman,, B. J. Bowman,, M. F. Manolson,, R. J. Poole,, T. Oshima,, I. Konoshi,, K. Denda, and, M. Yoshida. 1989. Evolution of the vacuolar H+ ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA 86:66616665.
44. Gratia, J. P. 2003. Spontaneous zygogenesis in Escherichia coli, a form of true sexuality in prokaryotes. Microbiology (UK) 149:25712584.
45. Griffiths, E.,, and R. S. Gupta. 2004. Signature sequences in diverse proteins provide evidence for the late divergence of the order Aquificales. Int. Microbiol. 7:4152.
46. Guillen, N.,, M. Amar, and, L. Hirschbein. 1985. Stabilized non-complementing diploids (Ncd) from fused protoplast products of Bacillus subtilis. EMBO J. 4:13331338.
47. Guillou, C.,, and J. F. Guespin-Michel. 1996. Evidence for two domains of growth temperature for psychrotrophic bacterium Pseudomonas fluorescens MF0. Appl. Environ. Microbiol. 62:33193324.
48. Hata, K.,, R. Kono,, M. Fujisawa,, R. Kitahara,, Y. Katamari,, K. Akasaka, and, Y. Xu. 2004. High pressure NMR study of dihydrofolate reductase from a deep-sea bacterium Moritella profunda. Cell. Mol. Biol. 50:311316.
49. Hugenholtz, P.,, B. M. Goebell, and, N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:47654774.
50. Hurtado, L. A.,, R. A. Lutz, and, R. C. Vrijenhoek. 2004. Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Mol. Ecol. 13:26032615.
51. Iwabe, N.,, K. Kuma,, M. Hasegawa,, S. Osawa, and, T. Miyata. 1989. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci USA 86:93559359.
52. Jannasch, H. W,, and C. O. Wirsen. 1984. Variability of pressure adaptation in deep sea bacteria. Arch. Microbiol. 139:281288.
53. Jeffares, D. C.,, T. Mourier, and, D. Penny. 2006. The biology of intron gain and loss. Trends Genet. 22:1622.
54. Jenkins, C.,, and J. A. Fuerst. 2001. Phylogenetic analysis of evolutionary relationships of the Planctomycete division of the domain Bacteria based on amino acid sequences of elongation factor Tu. J. Mol. Evol. 52:405418.
55. Jenkins, C.,, V. Kedar, and, J. A. Fuerst. 2002a. Gene discovery within the planctomycete division of the domain Bacteria using sequence tags from genomic DNA libraries. Genome Biol. 3:RESEARCH0031.
56. Jenkins, C. R. Samudrala,, I. Anderson,, B. P. Hedlund,, G. Petroni,, N. Michailova,, N. Pinel,, R. Overbeek,, G. Rosati, and, J. T. Staley. 2002b. Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc. Natl. Acad. Sci. USA. 99:1704917054.
57. Kandler, O. 1994. The early diversification of life, p. 152–160. In S. Bengston (ed.), Nobel Symposium No 84. Early Life on Earth. Columbia University Press, New York, NY.
58. Kashefi, K.,, and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
59. Kato, C.,, and K. Horikoshi. 2004. Characteristics of deep-sea environments and biodiversity of piezophilic organisms. In Extremophilies, C. Gerday,, and N. Glansdorff (ed.), in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspicies of the UNESCO, Eolss Publishers, Oxford, UK, http://www.eolss.net.
60. Kauffman, S. A. 1993. The Origins of Order: Self-Organization and Selection in Evolution. 709 p. Oxford University Press, New York, NY.
61. Koga, Y.,, T. Kyuragi,, M. Nishihara, and, N. Sone. 1998. Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J. Mol. Evol. 46:5463.
62. Kreil, D. P.,, and C. A. Ouzounis. 2001. Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res. 29:16081615.
63. Labedan, B.,, A. Boyen,, M. Baetens,, D. Charlier,, C. Pingguo,, R. Cunin,, V. Durbecq,, N. Glansdorff,, G. Herve,, C. Legrain,, Z. Liang,, C. Purcarea,, M. Roovers,, R. Sanchez,, T. L. Toong,, M. Van de Casteele,, F. Van Vliet,, Y. Xu, and, Y. F. Zhang. 1999. The evolutionary history of carbamoyltransferases: A complex set of paralogous genes was already present in the last universal common ancestor. J. Mol. Evol. 49:461473.
64. Labedan, B.,, Y. Xu,, D. Naumoff, and, N. Glansdorff. 2004. Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol. Biol. Evol. 21:364372.
65. Lakshminarayan, M. Y.,, E. V. Koonin, and, L. Aravind. 2004. Evolution of RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer. 2004. Gene 335:7388.
66. Lederberg, J. 1949. Aberrant heterozygotes in Escherichia coli. Proc. Natl. Acad. Sci. USA 35:178184.
67. Lonhienne, T.,, C. Gerday, and, G. Feller. 2001. Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim. Biophys. Acta 1543:110.
68. Lopez, P.,, P. Forterre, and, H. Philippe. 1999. The root of the tree of life in the covarion model. J. Mol. Evol. 49:496508.
69. Marteinsson, V. T.,, P. Moulin,, J. Birrien,, A. Gambacorta,, M. Vernet, and, D. Prieur. 1997. Physiological responses to stress condotions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63:12301236.
70. Massant, J.,, and N. Glansdorff. 2005. New experimental approaches for investigating interactions between Pyrococcus furiosus carbamate kinase and carbamoyltransferases, enzymes involved in the channeling of thermolabile carbamoyl phosphate. Archaea 1:365373.
71. Massant, J.,, P. Verstreken,, V. Durbecq,, A. Kholti,, C. Legrain,, S. Beeckmans,, P. Cornelis, and, N. Glansdorff. 2002. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 277:1851718522.
72. Miller, S. L.,, and A. Lazcano. 1998. Facing up to realities: life did not begin at the growth temperatures of hyperthermophiles, p. 127–133. In J. Wiegel,, and M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor and Francis, London, United Kingdom.
73. Mojzsiz, S. J.,, T. M. Harrison, and, R. T. Pidgeon. 2001. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409:178181.
74. Mongodin, E. F.,, K. E. Nelson,, S. Daugherty,, R. T. DeBoy,, J. Wister,, H. Khouri,, J. Weidman,, D. A. Walsh,, R. T. Papke,, G. Sanchez Perez,, A. K. Sharma,, C. L. Nesbo,, D. MacLeod,, E. Bapteste,, W. F. Doolittle,, R. L. Charlebois,, B. Legault, and, F. Rodriguez-Valera. 2005. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc. Natl. Acad. Sci. USA 102:1814718152.
75. Moulton, V.,, P. P. Gardner,, R. F. Pointon,, L. K. Creamer,, G. B. Jameson, and, D. Penny. 2000. RNA folding argues against a hot-start origin of life. J. Mol. Evol. 51:416421.
76. Nicholson W. L.,, H. Munakata,, G. Horneck,, H. J. Melosh, and, P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548572.
77. Ohmae, E.,, K. Kubota,, K. Nakasone,, C. Kato, and, K. Gekko. 2004. Pressure-dependent activity of dihydrofolate reductase from a deep-sea bacterium Shewanella violacea strain DSS12. Chem. Lett. 33:798799.
78. Penny, D,, M. D. Hendy, and, A. M. Poole. 2003. Testing fundamental evolutionary hypotheses. J. Theor. Biol. 223:377385.
79. Penny, D.,, and A. M. Poole. 1999. The nature of the last common ancestor. Curr. Opin. Genet. Dev. 9:672677.
80. Pereto, J.,, P. Lopez-Garcia, and, D. Moreira. 2004. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci. 29:469497.
81. Poole, A. M.,, D. C Jeffares, and, M. Penny. 1998. The path from the RNA world. J. Mol. Evol. 46:117.
82. Rettberg, P.,, E. Rabow,, C. Panitz, and, G. Horneck. 2004. Biological space experiments for the simulation of Martian conditions: UV radiation and Martian soil analogues. Adv. Space Res. 33:12941301.
83. Rivkina, E.,, K. Laurinavichuis,, J. McGrath,, J. Tiedje,, V. Shcherbakova, and, D. Gilichinsky. 2004. Microbial life in permafrost. Adv. Space Res. 33:12151221.
84. Roovers, M.,, R. Sanchez,, C. Legrain, and, N. Glansdorff. 2001. Experimental evolution of enzyme temperature activity profile: selection in vivo and characterization of low-temperature-adapted mutants of Pyrococcus furiosus ornithine carbamoyltransferase. J. Bacteriol. 183:11011105.
85. Roy, S. W.,, and W. Gilbert. 2005. Complex early genes. Proc. Natl. Acad. Sci. USA 102:19861991.
86. Sackmann, E. 1982. Physikalische Grundlagen der molekularen Organisation und Dynamik von Membranen, p. 439–471. In W. Hoppe,, W. Lohmann,, H. Markl,, and H. Ziegler (ed.), Biophysik, 2nd ed. Springer, Berlin, Germany.
87. Sharma, A.,, J. H. Scott,, G. D. Cody,, G. D. Fogel,, R. M. Hazea,, R. J. Hemley, and, W. T. Huntress. 2002. Microbial activity at Gigapascal pressures. Science 295:15141516.
88. Stetter, K. 1996. Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18:149158.
89. Tanaka, T.,, J. G. Burgess, and, P. C. Wright. 2001. High-pressure adaptation by salt stress in a moderately halophilic bacterium from open seawater. Appl. Microbiol. Biotechnol. 57:200204.
90. Teeling, H.,, T. Lombardot,, M. Bauer,, W. Ludwig, and, F. O. Glockner. 2004. Evaluation of the phylogenetic position of the planctomycete Rhodopirellula baltica SH1 by means of concatenated ribosomal protein sequences, DNA-directed RNA polymerase subunit sequences and whole genome trees. Int. J. Syst. Evol. Microbiol. 54:791801.
91. Vezzi, A.,, S. Campanaro,, M. D’Angelo,, F. Simonato,, N. Vitulo,, FM Lauro,, A. Cestaro,, G. Malacrida,, B. Simionati,, N. Cannata,, C. Romualdi, and, D. H. Bartlett. 2005. Life at depth: Photo-bacterium profundum genome sequence and expression analysis. Science 307:14591461.
92. Vincent, W. F.,, D. Mueller,, P. Van Hove, and, C. Howard-Williams. 2004. Glacial periods on early earth and implications for the evolution of life, p. 481–501. In J. Sekbach (ed.), Origins: Genesis, Evolution and Diversity of Life. Kluwer Academic Publishers, Dordrecht, The Netherlands.
93. Wachtershauser, G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52:452484.
94. Wachtershauser, G. 1992. Groundworks for an evolutionary biochemistry—the iron-sulfur world. Prog. Biophys. Mol. Biol. 58:85201.
95. Wachtershauser, G. 1998. The case for a hyperthermophilic, chemolithotrophic origin of life in an iron-sulfur world, p. 47–57. In J. Wiegel,, and M. W. W. Adams (ed.), Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Taylor and Francis, London, United Kingdom.
96. Wachtershauser, G. 2003. From pre-cells to eukarya—a tale of two lipids. Mol. Microbiol. 47:1322.
97. White, R. H. 1984. Hydrolytic stability of biomolecules at high temperatures and ist implications for life at 250°C. Nature 310:430432.
98. Whitfield, J. 2004. Origins of life: born in a watery commune. Nature 4 27:674676.
99. Wilde, S. A.,, J. W. Valley,, W. H. Peck, and, C. M. Graham. 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175178.
100. Woese, C. R. 1998. The universal ancestor. Proc. Natl. Acad. Sci. USA 95:68546859.
101. Woese, C. R. 2002. On the evolution of cells. Proc. Natl. Acad. Sci. USA 99:87428747.
102. Woese, C. R. 2004. A new biology for a new century. Microbiol. Mol. Biol. Rev. 68:173186.
103. Woese, C. R.,, and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74:50885090.
104. Xu, Y.,, G. Feller,, C. Gerday, and, N. Glansdorff. 2003a. Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J. Bacteriol. 185:21612168.
105. Xu, Y.,, G. Feller,, C. Gerday, and, N. Glansdorff. 2003b. Moritella cold-active dihydrofolate reductase: are there natural limits to optimization of catalytic efficency at low temperature? J. Bacteriol. 185:55195526.
106. Xu, Y.,, and N. Glansdorff. 2002. Was our ancestor a hyperthermophilic procaryote? Comp. Biochem. Physiol. A 133:677688.
107. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Ruger,, D. De Kegel, and, N. Glansdorff. 2003c. Psychromonas profunda sp. nov., a psychropiezophilic bacterium from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:527532.
108. Xu, Y.,, Y. Nogi,, C. Kato,, Z. Liang,, H.-J. Ruger,, D. De Kegel, and, N. Glansdorff. 2003d. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int. J. Syst. Evol. Microbiol. 53:533538.
109. Yayanos, A. A. 1995. Microbiology to 10,500 meters in the deep sea. Annu. Rev Microbiol. 49:13561361.
110. Zillig, W.,, P. Palm, and, H. P. Klenk. 1992. The nature of the common ancestor of the three domains of life and the origin of the Eucarya, p. 181–193. In J. Tran Thanh Van,, J. C. Mounolou,, J. Schneider,, and C. McKay (ed.), Frontiers of Life. Editions Frontiers, Gif-sur-Yvette.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error