1887

Chapter 3 : Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815820/9781555814083_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815820/9781555814083_Chap03-2.gif

Abstract:

The capsules form a diverse group of polymers that are the most important and most recognized virulence factor of the organism. This chapter provides an overview of recent advances regarding the genetics, biosynthesis, and chemistry of pneumococcal capsules. Recently, a new era in differentiating pneumococcal isolates was initiated when, for the first time, preparations of monoclonal antibodies were used to describe the 91st serotype, a “subspecies” of serotype 6A now dubbed 6C. Early work led to the conclusions that genes required for capsule synthesis in were closely linked on the chromosome but that genes outside this region were also important. The identification and assignment of (, , , and ) and any nonhousekeeping sugar biosynthesis genes are fairly straightforward, as their sequences are highly conserved. Capsule synthesis requires the production of nucleotide sugar precursors, the synthesis of which relies on enzymes encoded both within and outside the capsule genetic loci. Polymer synthesis likely initiates on undecaprenyl-P (C-P or the bactoprenyl-P), the same lipid acceptor used to initiate the synthesis of peptidoglycan and teichoic acids. In , the acceptor is a polyprenyl-P whose size and properties are consistent with undecaprenyl-P. A better understanding of the regulation of capsule expression and chain length is critical not only in the isolation of polymers for vaccine preparations but in the development of a full picture of pneumococcal virulence, as reduced capsule levels occur during the colonization of the nasopharynx while elevated levels are essential for systemic disease.

Citation: Yother J, Bentley S, Hennessey, Jr. J. 2008. Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, p 33-46. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch3

Key Concept Ranking

Integral Membrane Proteins
0.40320808
0.40320808
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Range of average molecular size of purified pneumococcal polysaccharides from preparations made on a commercial scale and the acceptance criteria for each serotype. Data were generated as described in reference .

Citation: Yother J, Bentley S, Hennessey, Jr. J. 2008. Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, p 33-46. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Wzy-dependent capsules. (A) The top panel shows the typical organization of a Wzy genetic locus. The map shows the genes for the serotype 2 locus. Gene designations above the line are from reference ; gene designations below the line are from reference . () homologues are common to 65 of the 88 Wzy loci. The arrow indicates the direction of transcription and putative transcript length. (B) Pathway for serotype 2 synthesis. The structure of the type 2 repeat unit is shown in the box. GalU and Pgm are encoded outside the capsule locus. NDP, nucleotide diphosphate; n, any number.

Citation: Yother J, Bentley S, Hennessey, Jr. J. 2008. Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, p 33-46. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Synthase-dependent type 3 capsule. (A) Genetic locus. Gene designations above the line are from references , and ; gene designations below the line are from reference . Arrows indicate the direction of transcription of and the direction of genes , which are not transcribed. Sequences in parentheses are mutated. Only and (boxed) are required for type 3 synthesis. (B) Structure of type 3 polymer and model for type 3 synthesis. The model assumes high UDP-Glc concentrations, as in the cell. Triangles, phosphatidylglycerol; circles, Glc; squares, GlcUA; n, any number.

Citation: Yother J, Bentley S, Hennessey, Jr. J. 2008. Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, p 33-46. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Common pathways involved in the synthesis of surface polymers. Teichoic acid and a Wzy-dependent capsular polysaccharide (CPS) are shown linked to peptidoglycan. NDP, nucleotide diphosphate.

Citation: Yother J, Bentley S, Hennessey, Jr. J. 2008. Genetics, Biosynthesis, and Chemistry of Pneumococcal Capsular Polysaccharides, p 33-46. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815820.ch03
1. Aanensen, D. M.,, A. Mavroidi,, S. D. Bentley,, P. R. Reeves, and, B. G. Spratt. 2007. Predicted functions and linkage specificities of the products of the Streptococcus pneumoniae capsular biosynthetic loci. J. Bacteriol. 4189:78567876.
2. Abadi, J.,, Z. Zhong,, J. Dobroszycki, and, L. A. Pirofski. 1997. Fc gammaRIIa polymorphism in human immunodeficiency virus-infected children with invasive pneumococcal disease. Pediatr. Res. 42:259262.
3. Arrecubieta, C.,, E. Garcia, and, R. Lopez. 1996. Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J. Bacteriol. 178:29712974.
4. Arrecubieta, C.,, E. Garcia, and, R. Lopez. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167:17.
5. Arrecubieta, C.,, R. Lopez, and, E. Garcia. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176:63756383.
6. Arrecubieta, C.,, R. Lopez, and, E. Garcia. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184:449455.
7. Austrian, R.,, H. P. Bernheimer,, E. E. B. Smith, and, G. T. Mills. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical basis of binary capsulation. J. Exp. Med. 110:585602.
8. Avery, O. T., and, M. Heidelberger. 1925. Immunological relationships of cell constituents of pneumococcus, II. J. Exp. Med. 42:367376.
9. Bateman, A.,, E. Birney,, R. Durbin,, S. R. Eddy,, K. L. Howe, and, E. L. Sonnhammer. 2000. The Pfam protein families database. Nucleic Acids Res. 28:263266.
10. Bednar, B., and, J. P. Hennessey, Jr. 1993. Molecular size analysis of capsular polysaccharide preparations from Streptococcus pneumoniae. Carbohydr. Res. 243:115130.
11. Bender, M. H.,, R. T. Cartee, and, J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185:60576066.
12. Bender, M. H., and, J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276:4796647974.
13. Bentley, S. D.,, D. M. Aanensen,, A. Mavroidi,, D. Saunders,, E. Rabbinowitsch,, M. Collins,, K. Donohoe,, D. Harris,, L. Murphy,, M. A. Quail,, G. Samuel,, I. C. Skovsted,, M. S. Kaltoft,, B. Barrell,, P. R. Reeves,, J. Parkhill, and, B. G. Spratt. 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2:e31.
14. Bernheimer, H. P., and, I. E. Wermundsen. 1972. Homology in capsular transformations in Pneumococcus. Mol. Gen. Genet. 116:6883.
15. Brandt, B. L.,, M. S. Artenstein, and, C. D. Smith. 1973. Antibody responses to meningococcal polysaccharide vaccines. Infect. Immun. 8:590596.
16. Bukantz, S. C.,, P. F. de Gara, and, J. G. M. Bullowa. 1942. Capsular polysaccharide in the blood of patients with pneumococcic pneumonia. Arch. Intern. Med. 69:191212.
17. Caimano, M. J.,, G. G. Hardy, and, J. Yother. 1998. Capsule genetics in Streptococcus pneumoniae and a possible role for transposition in the generation of the type 3 locus. Microb. Drug Resist. 4:1123.
18. Campbell, J. A.,, G. J. Davies,, V. Bulone, and, B. Henrissat. 1997. A classification of nucleotide-diphosphosugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326:929942.
19. Cartee, R. T.,, W. T. Forsee,, M. H. Bender,, K. D. Ambrose, and, J. Yother. 2005. CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit synthesis. J. Bacteriol. 187:74257433.
20. Cartee, R. T.,, W. T. Forsee,, J. W. Jensen, and, J. Yother. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli: assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem. 276:4883148839.
21. Cartee, R. T.,, W. T. Forsee,, J. S. Schutzbach, and, J. Yother. 2000. Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem. 275:39073914.
22. Cartee, R. T.,, W. T. Forsee, and, J. Yother. 2005. Initiation and synthesis of the Streptococcus pneumoniae type 3 capsule on a phosphatidylglycerol membrane anchor. J. Bacteriol. 187:44704479.
23. Charnock, S. J., and, G. J. Davies. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:63806385.
24. Cieslewicz, M. J.,, D. Chaffin,, G. Glusman,, D. Kasper,, A. Madan,, S. Rodrigues,, J. Fahey,, M. R. Wessels, and, C. E. Rubens. 2005. Structural and genetic diversity of group B streptococcus capsular polysaccharides. Infect. Immun. 73:30963103.
25. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang, and, M. R. Wessels. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276:139146.
26. Coutinho, P. M.,, E. Deleury,, G. J. Davies, and, B. Henrissat. 2003. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328:307317.
27. Davies, G. J.,, S. J. Charnock, and, B. Henrissat. 2001. The enzymatic synthesis of glycosidic bonds: “glycosynthases” and glycosyltransferases. Trends Glycosci. Glycotechnol. 13:105120.
28. Deng, L.,, D. L. Kasper,, T. P. Krick, and, M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275:74977504.
29. Dillard, J. P.,, M. W. Vandersea, and, J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181:973983.
30. Dillard, J. P., and, J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12:959972.
31. Ephrussi-Taylor, H. 1949. Additive effects of certain transforming agents from some variants of pneumococcus. J. Exp. Med. 89:399424.
32. Ephrussi-Taylor, H. 1951. Genetic aspects of transformations of pneumococci. Cold Spring Harbor Symp. Quant. Biol. 16:445456.
33. Finn, R. D.,, J. Mistry,, B. Schuster-Bockler,, S. Griffiths-Jones,, V. Hollich,, T. Lassmann,, S. Moxon,, M. Marshall,, A. Khanna,, R. Durbin,, S. R. Eddy,, E. L. Sonnhammer, and, A. Bateman. 2006. Pfam: clans, web tools and services. Nucleic Acids Res. 34:D247D251.
34. Forsee, W. T.,, R. T. Cartee, and, J. Yother. 2000. Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae: enzymatic chain release by an abortive translocation process. J. Biol. Chem. 275:2597225978.
35. Forsee, W. T.,, R. T. Cartee, and, J. Yother. 2006. Role of the carbohydrate binding site of the Streptococcus pneumoniae capsular polysaccharide type 3 synthase in the transition from oligosaccharide to polysaccharide synthesis. J. Biol. Chem. 281:62836289.
36. Garcia, E.,, P. Garcia, and, R. Lopez. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol. Gen. Genet. 239:188195.
37. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman, and, J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62:53845396.
38. Hardy, G. G.,, M. J. Caimano, and, J. Yother. 2000. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol. 182:18541863.
39. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano, and, J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69:23092317.
40. Heidelberger, M., and, O. T. Avery. 1923. The soluble specific substance of pneumococcus. J. Exp. Med. 38:7379.
41. Henrichsen, J. 1995. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33:27592762.
42. Howard, J. G.,, H. Zola,, G. H. Christie, and, B. M. Courtenay. 1971. Studies on immunological paralysis. V. The influence of molecular weight on the immunogenicity, tolerogenicity and antibody-neutralizing activity of the 3 pneumococcal polysaccharide. Immunology 21:535546.
43. Iannelli, F.,, B. J. Pearce, and, G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181:26522654.
44. Jiang, S.-M.,, L. Wang, and, P. R. Reeves. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun. 69:12441255.
45. Jones, C., and, X. Lemercinier. 2005. Full NMR assignment and revised structure for the capsular polysaccharide from Streptococcus pneumoniae type 15B. Carbohydr. Res. 340:403409.
46. Jones, C.,, C. Whitley, and, X. Lemercinier. 2000. Full assignment of the proton and carbon NMR spectra and revised structure for the capsular polysaccharide from Streptococcus pneumoniae type 17F. Carbohydr. Res. 325:192201.
47. Kabat, E. A., and, A. E. Bezer. 1958. The effect of variation in molecular weight on the antigenicity of dextran in man. Arch. Biochem. Biophys. 78:306318.
48. Kamerling, J. P. 2000. Pneumococcal polysaccharides: a chemical view, p. 81–114. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. M. A. Liebert, Inc., Larchmont, NY.
49. Keenleyside, W. J., and, C. Whitfield. 1996. A novel pathway of O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J. Biol. Chem. 271:2858128592.
50. Kolkman, M. A.,, B. A. van der Zeijst, and, P. J. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J. Biochem. (Tokyo) 123:937945.
51. Kolkman, M. A.,, B. A. van der Zeijst, and, P. J. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272:1950219508.
52. Kolkman, M. A.,, W. Wakarchuk,, P. J. Nuijten, and, B. A. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26:197208.
53. Lee, C.-J.,, B. A. Fraser,, R. A. Boykins, and, J. P. Li. 1987. Effect of culture conditions on the structure of Streptococcus pneumoniae type 19A (57) capsular polysaccharide. Infect. Immun. 55:18191823.
54. Lemercinier, X., and, C. Jones. 2006. Full assignment of the 1H and 13C spectra and revision of the O-acetylation site of the capsular polysaccharide of Streptococcus pneumoniae type 33F, a component of the current pneumococcal polysaccharide vaccine. Carbohydr. Res. 341:6874.
55. Llull, D.,, E. García, and, R. López. 2001. Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in pneumococcus and other gram-positive species J. Biol. Chem. 276:2105321061.
56. Llull, D.,, R. Lopez,, E. Garcia, and, R. Munoz. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1443:217224.
57. Llull, D.,, R. Munoz,, R. Lopez, and, E. Garcia. 1999. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J. Exp. Med. 190:241251.
58. MacLeod, C. M., and, M. R. Krauss. 1953. Control by factors distinct from the S transforming principle of the amount of capsular polysaccharide produced by type III pneumococci. J. Exp. Med. 97:767771.
59. MacNair, J. E.,, T. Desai,, J. Teyral,, C. Abeygunawardana, and, J. P. Hennessey, Jr. 2005. Alignment of absolute and relative molecular size specifications for a polyvalent pneumococcal polysaccharide vaccine (PNEUMOVAX 23). Biologicals 33:4958.
60. Magee, A. D., and, J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:37553761.
61. Martin, D. G.,, F. G. Jarvis, and, K. C. Milner. 1967. Physicochemical and biological properties of sonically treated Vi antigen. J. Bacteriol. 94:14111416.
62. Mavroidi, A.,, D. M. Aanensen,, D. Godoy,, I. C. Skovsted,, M. S. Kaltoft,, P. R. Reeves,, S. D. Bentley, and, B. G. Spratt. 2007. Genetic relatedness of the Streptococcus pneumoniae capsular biosynthetic loci. J. Bacteriol. 189:78417855.
63. Mavroidi, A.,, D. Godoy,, D. M. Aanensen,, D. A. Robinson,, S. K. Hollingshead, and, B. G. Spratt. 2004. Evolutionary genetics of the capsular locus of serogroup 6 pneumococci. J. Bacteriol. 186:81818192.
64. Mollerach, M.,, R. Lopez, and, E. Garcia. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188:20472056.
65. Morona, J. K.,, A. Guidolin,, R. Morona,, D. Hansman, and, J. C. Paton. 1994. Isolation, characterization, and nucleotide sequence of IS1202, an insertion sequence of Streptococcus pneumoniae. J. Bacteriol. 176:44374443.
66. Morona, J. K.,, D. C. Miller,, T. J. Coffey,, C. J. Vindurampulle,, B. G. Spratt,, R. Morona, and, J. C. Paton. 1999. Molecular and genetic characterization of the capsule biosynthetic locus of Streptococcus pneumoniae type 23F. Microbiology 145:781789.
67. Morona, J. K.,, R. Morona,, D. C. Miller, and, J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185:30093019.
68. Morona, J. K.,, R. Morona, and, J. C. Paton. 2006. Attachment of capsular polysaccharide to the cell wall of Streptococcus pneumoniae type 2 is required for invasive disease. Proc. Natl. Acad. Sci. USA 103:85058510.
69. Morona, J. K.,, R. Morona, and, J. C. Paton. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol. Microbiol. 23:751763.
70. Morona, J. K.,, R. Morona, and, J. C. Paton. 1999. Comparative analysis of capsular biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J. Bacteriol. 181:53555364.
71. Morona, J. K.,, R. Morona, and, J. C. Paton. 1997. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 19B. J. Bacteriol. 179:49534958.
72. Morona, J. K.,, J. C. Paton,, D. C. Miller, and, R. Morona. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35:14311442.
73. Muñoz, R.,, M. Mollerach,, R. Lopez, and, E. Garcia. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol. 181:62146219.
74. Muñoz, R.,, M. Mollerach,, R. Lopez, and, E. Garcia. 1997. Molecular organization of the genes required for the synthesis of type 1 polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25:7992.
75. Nelson, A. L.,, A. M. Roche,, J. M. Gould,, K. Chim,, A. J. Ratner, and, J. N. Weiser. 2007. Capsule enhances pneumococcal colonization by limiting mucus-mediated clearance. Infect. Immun. 75:8390.
76. Niemeyer, D., and, A. Becker. 2001. The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J. Bacteriol. 183:51635170.
77. Park, I. H.,, S. Park,, S. K. Hollingshead, and, M. H. Nahm. 2007. Genetic basis for the new pneumococcal serotype, 6C. Infect. Immun. 75:44824489.
78. Park, I. H.,, D. G. Pritchard,, R. Cartee,, A. Brandao,, M. C. C. Brandileone, and, M. H. Nahm. 2007. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J. Clin. Microbiol. 45:12251233.
79. Pelosi, L.,, M. Boumedienne,, N. Saksouk,, J. Geiselmann, and, R. A. Geremia. 2005. The glucosyl-1-phosphate transferase WchA (Cap8E) primes the capsular polysaccharide repeat unit biosynthesis of Streptococcus pneumoniae serotype 8. Biochem. Biophys. Res. Commun. 327:857865.
80. Raetz, C. R., and, C. Whitfield. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71:635700.
81. Ravin, A. W. 1960. Linked mutations borne by deoxyribonucleic acid controlling the synthesis of capsular polysaccharide in pneumococcus. Genetics 45:13871403.
82. Reeves, P. R.,, M. Hobbs,, M. A. Valvano,, M. Skurnik,, C. Whitfield,, D. Coplin,, N. Kido,, J. Klena,, D. Maskell,, C. R. Raetz, and, P. D. Rick. 1996. Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol. 4:495503.
83. Smith, H. E.,, M. Damman,, J. van der Velde,, F. Wagenaar,, H. J. Wisselink,, N. Stockhofe-Zurwieden, and, M. A. Smits. 1999. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect. Immun. 67:17501756.
84. Sorensen, U. B.,, J. Henrichsen,, H. C. Chen, and, S. C. Szu. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8:325334.
85. Soulat, D.,, J. M. Jault,, B. B. Duclos,, C. Geourjon,, A. J. Cozzone, and, C. Grangeasse. 2006. Staphylococcus aureus operates protein-tyrosine phosphorylation through a specific mechanism. J. Biol. Chem. 281:1404814056.
86. Stingele, F.,, J. R. Neeser, and, B. Mollet. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:16801690.
87. Stroop, C. J.,, Q. Xu,, M. Retzlaff,, C. Abeygunawardana, and, C. A. Bush. 2002. Structural analysis and chemical depolymerization of the capsular polysaccharide of Streptococcus pneumoniae type 1. Carbohydr. Res. 337:335344.
88. Sweeney, J. A.,, J. S. Sumner, and, J. P. Hennessey, Jr. 2000. Simultaneous evaluation of molecular size and antigenic stability of PNEUMOVAX 23, a multivalent pneumococcal polysaccharide vaccine. Dev. Biol. (Basel) 103:1126.
89. Unligil, U. M.,, S. Zhou,, S. Yuwaraj,, M. Sarkar,, H. Schachter, and, J. M. Rini. 2000. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19:52695280.
90. van Dam, J. E.,, A. Fleer, and, H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58:147.
91. van Selm, S.,, M. A. B. Kolkman,, B. A. M. van der Zeijst,, K. A. Zwaagstra,, W. Gaastra, and, J. P. M. van Putten. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148:17471755.
92. Ventura, C. L.,, R. T. Cartee,, W. T. Forsee, and, J. Yother. 2006. Control of capsular polysaccharide chain length by UDP-sugar substrate concentrations in Streptococcus pneumoniae. Mol. Microbiol. 61:723733.
93. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan, and, H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
94. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz, and, M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69:54305439.
95. Weiser, J. N.,, Z. Markiewicz,, E. I. Tuomanen, and, J. H. Wani. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 64:22402245.
96. Wessels, M. R., and, D. L. Kasper. 1989. Antibody recognition of the type 14 pneumococcal capsule. Evidence for a conformational epitope in a neutral polysaccharide. J. Exp. Med. 169:21212131.
97. Wessels, M. R.,, A. Munoz, and, D. L. Kasper. 1987. A model of high-affinity antibody binding to type III group B Streptococcus capsular polysaccharide. Proc. Natl. Acad. Sci. USA 84:91709174.
98. Whitfield, C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75:3968.
99. Whitfield, C. 1995. Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol. 3:178185.
100. Xayarath, B., and, J. Yother. 2007. Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J. Bacteriol. 189:33693381.
101. Yother, J. 2004. Capsules, p. 30–48. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison, and, B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, DC.
102. Yother, J. 1999. Common themes in the genetics of streptococcal capsular polysaccharides, p. 161–184. In J. B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Boca Raton, FL.
103. Yother, J.,, K. D. Ambrose, and, M. J. Caimano. 1997. Association of a partial H-rpt element with the type 3 capsule locus of Streptococcus pneumoniae. Mol. Microbiol. 25:201204.
104. Zou, W., and, H. J. Jennings. 2001. The conformational epitope of type III group B Streptococcus capsular polysaccharide. Adv. Exp. Med. Biol. 491:473484.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error