Chapter 7 : Interactions of with Complement Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Interactions of with Complement Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815820/9781555814083_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815820/9781555814083_Chap07-2.gif


This chapter briefly reviews some salient features of complement-mediated opsonophagocytosis. It discusses the inhibitory mechanisms attributed to specific pneumococcal proteins and polysaccharides, and reviews the human immunodeficiencies of particular relevance to complement-mediated killing of . Traditionally, the binding of complement protein C1q to the Fc portion of either pentavalent immunoglobulin M (IgM) or IgG initiates the classical complement pathway. The mannose-binding lectin (MBL) complex, composed of three to six subunits of MBL, preferentially recognizes mannose, mannans, and -acetylglucosamine (GlcNAc). The integrity of the alternative complement pathway is thought to be critical for those hosts lacking type-specific anticapsular antibodies or proteins required for classical pathway activation (e.g., C2). Comparative studies of pneumococcal bacteremia in C57BL/6 mice genetically deficient in C1q, factor B (encoded by Bf), C3, C4, or natural IgM pointed to the importance of the classical complement pathway in the absence of IgG. Exponentially growing wild-type strains of serotypes 3, 4, and 14 are able to degrade both α- and β-chains of purified human C3 in the absence of other serum proteins. The release of pneumolysin (Ply) during autolysis leads to the activation of the classical complement pathway, possibly through the binding of the Fc portion of IgG. At least six pneumococcal proteins—pneumolysin, PhpA, Hic, PspC (CbpA/SpsA/PbcA), PspA, and CppA—are now known to interfere with complement-mediated opsonization and phagocytic killing.

Citation: Hostetter M. 2008. Interactions of with Complement Proteins, p 83-92. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch7

Key Concept Ranking

Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Diagram of the three pathways of complement activation. Each convertase cleaves circulating C3 and results in the deposition of C3b onto the pathogen. Interaction with factors H and I cleaves C3b to iC3b, C3c, and C3d. Serving as ligands for complement receptors on leukocytes, iC3b and C3d mediate phagocytic killing and antibody response, respectively. Adapted from ( ) with permission of the publisher.

Citation: Hostetter M. 2008. Interactions of with Complement Proteins, p 83-92. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abeyta, M.,, G. G. Hardy, and, J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71:218225.
2. Alexander, J. E.,, A. M. Berry,, J. C. Paton,, J. B. Rubins,, P. W. Andrew, and, T. J. Mitchell. 1998. Amino acid changes affecting the activity of pneumolysin alter the behaviour of pneumococci in pneumonia. Microb. Pathog. 24:167174.
3. Alper, C. A.,, H. R. Colten,, F. S. Rosen,, A. R. Rabson,, G. M. Macnab, and, J. S. Gear. 1972. Homozygous deficiency of C3 in a patient with repeated infections. Lancet ii:11791181.
4. Alper, C. A.,, J. Xu,, K. Cosmopoulos,, B. Dolinski,, R. Stein,, G. Uko,, C. E. Larsen,, D. P. Dubey,, P. Densen,, L. Truedsson,, G. Sturfelt, and, A. G. Sjoholm. 2003. Immunoglobulin deficiencies and susceptibility to infection among homozygotes and heterozygotes for C2 deficiency. J. Clin. Immunol. 23:297305.
5. Ameratunga, R.,, J. A. Winkelstein,, L. Brody,, M. Binns,, L. C. Cork,, P. Colombani, and, D. Valle. 1998. Molecular analysis of the third component of canine complement (C3) and identification of the mutation responsible for hereditary canine C3 deficiency. J. Immunol. 160:28242830.
6. Angel, C. S.,, M. Ruzek, and, M. K. Hostetter. 1994. Degradation of C3 by Streptococcus pneumoniae. J. Infect. Dis. 170:600608.
7. Auerbach, H. S.,, R. Burger,, A. Dodds, and, H. R. Colten. 1990. Molecular basis of complement C3 deficiency in guinea pigs. J. Clin. Investig. 86:96106.
8. Ballow, M.,, J. E. Shira,, L. Harden,, S. Y. Yang, and, N. K. Day. 1975. Complete absence of the third component of complement in man. J. Clin. Investig. 56:703710.
9. Bower, J. F., and, T. M. Ross. 2006. A minimum CR2 binding domain of C3d enhances immunity following vaccination. Adv. Exp. Med. Biol. 586:249264.
10. Branger, J.,, S. Knapp,, S. Weijer,, J. C. Leemans,, J. M. Pater,, P. Speelman,, S. Florquin, and, T. van der Poll. 2004. Role of Toll-like receptor 4 in gram-positive and gram-negative pneumonia in mice. Infect. Immun. 72:788794.
11. Brown, E. J.,, S. W. Hosea, and, M. M. Frank. 1981. The role of complement in the localization of pneumococci in the splanchnic reticuloendothelial system during experimental bacteremia. J. Immunol. 126:22302235.
12. Brown, E. J.,, S. W. Hosea,, C. H. Hammer,, C. G. Burch, and, M. M. Frank. 1982. A quantitative analysis of the interactions of antipneumococcal antibody and complement in experimental pneumococcal bacteremia. J. Clin. Investig. 69:8598.
13. Brown, E. J.,, K. A. Joiner,, R. M. Cole, and, M. Berger. 1983. Localization of complement component 3 on Streptococcus pneumoniae: anti-capsular antibody causes complement deposition on the pneumococcal capsule. Infect. Immun. 39:403409.
14. Brown, J. S.,, T. Hussell,, S. M. Gilliland,, D. W. Holden,, J. C. Paton,, M. R. Ehrenstein,, M. J. Walport, and, M. Botto. 2002. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl. Acad. Sci. USA 99:1696916974.
15. Carroll, M. C. 2004. The complement system in regulation of adaptive immunity. Nat. Immunol. 5:981986.
16. Cheng, Q.,, D. Finkel, and, M. K. Hostetter. 2000. Novel purification scheme and functions for a C3-binding protein from Streptococcus pneumoniae. Biochemistry 39:54505457.
17. Circolo, A.,, G. Garnier,, W. Fukuda,, X. Wang,, T. Hidvegi,, A. J. Szalai,, D. E. Briles,, J. E. Volanakis,, R. A. Wetsel, and, H. R. Colten. 1999. Genetic disruption of the murine complement C3 promoter region generates deficient mice with extrahepatic expression of C3 mRNA. Immunopharmacology 42:135149.
18. Dave, S.,, A. Brooks-Walter,, M. K. Pangburn, and, L. S. McDaniel. 2001. PspC, a pneumococcal surface protein, binds human factor H. Infect. Immun. 69:34353437.
19. Dempsey, P. W.,, M. E. Allison,, S. Akkaraju,, C. C. Goodnow, and, D. T. Fearon. 1996. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348350.
20. Dodds, A. W. 2002. Which came first, the lectin/classical pathway or the alternative pathway of complement? Immunobiology 205:340354.
21. Dodds, A. W.,, X. D. Ren,, A. C. Willis, and, S. K. Law. 1996. The reaction mechanism of the internal thioester in the human complement component C4. Nature 379:177179.
22. Dubos, R. J., and, J. G. Hirsch. 1965. Bacterial and Mycotic Infections of Man. J.B. Lippincott, Philadelphia, PA.
23. Duthy, T. G.,, R. J. Ormsby,, E. Giannakis,, A. D. Ogunniyi,, U. H. Stroeher,, J. C. Paton, and, D. L. Gordon. 2002. The human complement regulator factor H binds pneumococcal surface protein PspC via short consensus repeats 13 to 15. Infect. Immun. 70:56045611.
24. Fujita, T. 2002. Evolution of the lectin-complement pathway and its role in innate immunity. Nat. Rev. Immunol. 2:346353.
25. Geijtenbeek, T. B.,, P. C. Groot,, M. A. Nolte,, S. J. van Vliet,, S. T. Gangaram-Panday,, G. C. van Duijnhoven,, G. Kraal,, A. J. van Oosterhout, and, Y. van Kooyk. 2002. Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100:29082916.
26. Gordon, D. L.,, G. M. Johnson, and, M. K. Hostetter. 1986. Ligand-receptor interactions in the phagocytosis of virulent Streptococcus pneumoniae by polymorphonuclear leukocytes. J. Infect. Dis. 154:619626.
27. Hajela, K.,, M. Kojima,, G. Ambrus,, K. H. Wong,, B. E. Moffatt,, J. Ferluga,, S. Hajela,, P. Gal, and, R. B. Sim. 2002. The biological functions of MBL-associated serine proteases (MASPs). Immunobiology 205:467475.
28. Hammerschmidt, S.,, S. R. Talay,, P. Brandtzaeg, and, G. S. Chhatwal. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25:11131124.
29. Helmy, K. Y.,, K. J. Katschke, Jr.,, N. N. Gorgani,, N. M. Kljavin,, J. M. Elliott,, L. Diehl,, S. J. Scales,, N. Ghilardi, and, M. van Lookeren Campagne. 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915927.
30. Hosea, S. W.,, E. J. Brown, and, M. M. Frank. 1980. The critical role of complement in experimental pneumococcal sepsis. J. Infect. Dis. 142:903909.
31. Hostetter, M. K. 1986. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J. Infect. Dis. 153:682693.
32. Hostetter, M. K.,, R. A. Krueger, and, D. J. Schmeling. 1984. The biochemistry of opsonization: central role of the reactive thiolester of the third component of complement. J. Infect. Dis. 150:653661.
33. Hostetter, M. K.,, M. L. Thomas,, F. S. Rosen, and, B. F. Tack. 1982. Binding of C3b proceeds by a transesterification reaction at the thiolester site. Nature 298:7275.
34. Hummell, D. S.,, R. W. Berninger,, A. Tomasz, and, J. A. Winkelstein. 1981. The fixation of C3b to pneumococcal cell wall polymers as a result of activation of the alternative complement pathway. J. Immunol. 127:12871289.
35. Iannelli, F.,, M. R. Oggioni, and, G. Pozzi. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284:6371.
36. Janssen, B. J.,, A. Christodoulidou,, A. McCarthy,, J. D. Lambris, and, P. Gros. 2006. Structure of C3b reveals conformational changes that underlie complement activity. Nature 444:213216.
37. Janulczyk, R.,, F. Iannelli,, A. G. Sjoholm,, G. Pozzi, and, L. Bjorck. 2000. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 275:3725737263.
38. Jarva, H.,, J. Hellwage,, T. S. Jokiranta,, M. J. Lehtinen,, P. F. Zipfel, and, S. Meri. 2004. The group B streptococcal beta and pneumococcal Hic proteins are structurally related immune evasion molecules that bind the complement inhibitor factor H in an analogous fashion. J. Immunol. 172:31113118.
39. Jarva, H.,, R. Janulczyk,, J. Hellwage,, P. F. Zipfel,, L. Bjorck, and, S. Meri. 2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8–11 of factor H. J. Immunol. 168:18861894.
40. Jonsson, G.,, V. A. Oxelius,, L. Truedsson,, J. H. Braconier,, G. Sturfelt, and, A. G. Sjoholm. 2006. Homozygosity for the IgG2 subclass allotype G2M(n) protects against severe infection in hereditary C2 deficiency. J. Immunol. 177:722728.
41. Jounblat, R.,, A. Kadioglu,, T. J. Mitchell, and, P. W. Andrew. 2003. Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect. Immun. 71:18131819.
42. Kang, Y. S.,, Y. Do,, H. K. Lee,, S. H. Park,, C. Cheong,, R. M. Lynch,, J. M. Loeffler,, R. M. Steinman, and, C. G. Park. 2006. A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell 125:4758.
43. Kang, Y. S.,, J. Y. Kim,, S. A. Bruening,, M. Pack,, A. Charalambous,, A. Pritsker,, T. M. Moran,, J. M. Loeffler,, R. M. Steinman, and, C. G. Park. 2004. The C-type lectin SIGN-R1 mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 101:215220.
44. Kang, Y. S.,, S. Yamazaki,, T. Iyoda,, M. Pack,, S. A. Bruening,, J. Y. Kim,, K. Takahara,, K. Inaba,, R. M. Steinman, and, C. G. Park. 2003. SIGN-R1, a novel C-type lectin expressed by marginal zone macrophages in spleen, mediates uptake of the polysaccharide dextran. Int. Immunol. 15:177186.
45. Kerr, A. R.,, G. K. Paterson,, J. McCluskey,, F. Iannelli,, M. R. Oggioni,, G. Pozzi, and, T. J. Mitchell. 2006. The contribution of PspC to pneumococcal virulence varies between strains and is accomplished by both complement evasion and complement-independent mechanisms. Infect. Immun. 74:53195324.
46. Koedel, U.,, B. Angele,, T. Rupprecht,, H. Wagner,, A. Roggenkamp,, H. W. Pfister, and, C. J. Kirschning. 2003. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J. Immunol. 170:438444.
47. Kronborg, G.,, N. Weis,, H. O. Madsen,, S. S. Pedersen,, C. Wejse,, H. Nielsen,, P. Skinhoj, and, P. Garred. 2002. Variant mannose-binding lectin alleles are not associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J. Infect. Dis. 185:15171520.
48. Lambris, J. D.,, M. Mavroidis,, J. Pappas,, Z. Lao, and, Y. Wang. 1994. Phylogeny of the third complement component, C3, and conservation of C3-ligand interactions. Ann. N. Y. Acad. Sci. 712:354357.
49. Lanoue, A.,, M. R. Clatworthy,, P. Smith,, S. Green,, M. J. Townsend,, H. E. Jolin,, K. G. Smith,, P. G. Fallon, and, A. N. McKenzie. 2004. SIGN-R1 contributes to protection against lethal pneumococcal infection in mice. J. Exp. Med. 200:13831393.
50. Law, S. K. 1983. Non-enzymic activation of the covalent binding reaction of the complement protein C3. Biochem. J. 211:381389.
51. Lu, L.,, Y. Ma, and, J. R. Zhang. 2006. Streptococcus pneumoniae recruits complement factor H through the amino terminus of CbpA. J. Biol. Chem. 281:1546415475.
52. Madsen, M.,, Y. Lebenthal,, Q. Cheng,, B. L. Smith, and, M. K. Hostetter. 2000. A pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells. J. Infect. Dis. 181:13301336.
53. Malley, R.,, P. Henneke,, S. C. Morse,, M. J. Cieslewicz,, M. Lipsitch,, C. M. Thompson,, E. Kurt-Jones,, J. C. Paton,, M. R. Wessels, and, D. T. Golenbock. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100:19661971.
54. Meri, S., and, M. K. Pangburn. 1990. Discrimination between activators and nonactivators of the alternative pathway of complement: regulation via a sialic acid/polyanion binding site on factor H. Proc. Natl. Acad. Sci. USA 87:39823986.
55. Mitchell, T. J.,, P. W. Andrew,, F. K. Saunders,, A. N. Smith, and, G. J. Boulnois. 1991. Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Mol. Microbiol. 5:18831888.
56. Nakajima, R.,, K. Namba,, Y. Ishida,, T. Une, and, Y. Osada. 1990. Protective role of complement in the development of experimental pneumococcal pneumonia in mice. Chemotherapy. 36:287293.
57. Newman, S. L.,, L. B. Vogler,, R. D. Feigin, and, R. B. Johnston, Jr. 1978. Recurrent septicemia associated with congenital deficiency of C2 and partial deficiency of factor B and the alternative complement pathway. N. Engl. J. Med. 299:290292.
58. Polhill, R. B., Jr.,, K. M. Pruitt, and, R. B. Johnston, Jr. 1978. Kinetic assessment of alternative complement pathway activity in a hemolytic system. I. Experimental and mathematical analyses. J. Immunol. 121:363370.
59. Presanis, J. S.,, K. Hajela,, G. Ambrus,, P. Gal, and, R. B. Sim. 2004. Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol. Immunol. 40:921929.
60. Raum, D.,, D. Glass,, V. Agnello,, P. Schur, and, C. A. Alper. 1978. Congenital deficiency of C2 and factor B. N. Engl. J. Med. 299:1313.
61. Ren, B.,, M. A. McCrory,, C. Pass,, D. C. Bullard,, C. M. Ballantyne,, Y. Xu,, D.E. Briles, and, A. J. Szalai. 2004. The virulence function of Streptococcus pneumoniae surface protein A involves inhibition of complement activation and impairment of complement receptor-mediated protection. J. Immunol. 173:75067512.
62. Ren, B.,, A. J. Szalai,, S. K. Hollingshead, and, D. E. Briles. 2004. Effects of PspA and antibodies to PspA on activation and deposition of complement on the pneumococcal surface. Infect. Immun. 72:114122.
63. Ren, B.,, A. J. Szalai,, O. Thomas,, S. K. Hollingshead, and, D. E. Briles. 2003. Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of Streptococcus pneumoniae. Infect. Immun. 71:7585.
64. Roozendaal, R., and, M. C. Carroll. 2006. Emerging patterns in complement-mediated pathogen recognition. Cell 125:2932.
65. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist, and, H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25:819829.
66. Ross, G. D. 1989. Complement and complement receptors. Curr. Opin. Immunol. 2:5062.
67. Roy, S.,, K. Knox,, S. Segal,, D. Griffiths,, C. E. Moore,, K. I. Welsh,, A. Smarason,, N. P. Day,, W. L. McPheat,, D. W. Crook, and, A. V. Hill. 2002. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359:15691573.
68. Schroder, N. W.,, S. Morath,, C. Alexander,, L. Hamann,, T. Hartung,, U. Zahringer,, U. B. Gobel,, J. R. Weber, and, R. R. Schumann. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278:1558715594.
69. Sim, R. B.,, T. M. Twose,, D. S. Paterson, and, E. Sim. 1981. The covalent-binding reaction of complement component C3. Biochem. J. 193:115127.
70. Tack, B. F.,, R. A. Harrison,, J. Janatova,, M. L. Thomas, and, J.W. Prahl. 1980. Evidence for presence of an internal thiolester bond in third component of human complement. Proc. Natl. Acad. Sci. USA 77:57645768.
71. Thomas, M. L.,, J. Janatova,, W. R. Gray, and, B. F. Tack. 1982. Third component of human complement: localization of the internal thiolester bond. Proc. Natl. Acad. Sci. USA 79:10541058.
72. Tu, A. H.,, R. L. Fulgham,, M. A. McCrory,, D. E. Briles, and, A. J. Szalai. 1999. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun. 67:47204724.
73. Tuite, A.,, M. Elias,, S. Picard,, A. Mullick, and, P. Gros. 2005. Genetic control of suceptibility to Candida albicans in susceptible A/J and resistant C57BL/6J mice. Genes Immun. 6:672682.
74. Ward, H. K., and, J. F. Enders. 1933. An analysis of the opsonic and tropic action of normal and immune sera based on experiments with pneumococcus. J. Exp. Med. 57:527547.
75. Wessels, M. R., and, D. L. Kasper. 1989. Antibody recognition of the type 14 pneumococcal capsule. Evidence for a conformational epitope in a neutral polysaccharide. J. Exp. Med. 169:21212131.
76. Wiesmann, C.,, K. J. Katschke,, J. Yin,, K. Y. Helmy,, M. Steffek,, W. J. Fairbrother,, S. A. McCallum,, L. Embuscado,, L. DeForge,, P. E. Hass, and, M. van Lookeren Campagne. 2006. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444:217220.
77. Williams, S. C., and, R. B. Sim. 1994. Binding sites involved in the formation of the C3 (H2O)-factor B complex of the alternative pathway of complement. Biochem. Soc. Trans. 22:2S.
78. Wright, A. E., and, S. R. Douglas. 1903. An experimental investigation of blood fluids in connection with phagocytosis. Proc. R. Soc. Lond. B 72:357370.
79. Xu, Y.,, M. Ma,, G.C. Ippolito,, H. W. Schroeder, Jr.,, M. C. Carroll, and, J. E. Volanakis. 2001. Complement activation in factor D-deficient mice. Proc. Natl. Acad. Sci. USA 98:1457714582.
80. Yoshimura, A.,, E. Lien,, R. R. Ingalls,, E. Tuomanen,, R. Dziarski, and, D. Golenbock. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163:15.
81. Yuste, J.,, M. Botto,, J. C. Paton,, D. W. Holden, and, J. S. Brown. 2005. Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J. Immunol. 175:18131819.
82. Zarkadis, I. K.,, D. Mastellos, and, J. D. Lambris. 2001. Phylogenetic aspects of the complement system. Dev. Comp. Immunol. 25:745762.
83. Zhang, Y.,, A. W. Masi,, V. Barniak,, K. Mountzouros,, M. K. Hostetter, and, B. A. Green. 2001. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect. Immun. 69:38273836.
84. Ziegler, J. B.,, C. A. Alper,, R. S. Rosen,, P. J. Lachmann, and, L. Sherington. 1975. Restoration by purified C3b in-activator of complement-mediated function in vivo in a patient with C3b inactivator deficiency. J. Clin. Invest. 55:668672.


Generic image for table
Table 1

Role of CRs in pneumococcal pathogenesis

Citation: Hostetter M. 2008. Interactions of with Complement Proteins, p 83-92. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch7
Generic image for table
Table 2

Mechanisms of pneumococcal interference with complement pathways

Citation: Hostetter M. 2008. Interactions of with Complement Proteins, p 83-92. In Siber G, Klugman K, Mäkelä P (ed), Pneumococcal Vaccines. ASM Press, Washington, DC. doi: 10.1128/9781555815820.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error