Chapter 1 : The Evolution of : The Ascomycetes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Evolution of : The Ascomycetes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap01-2.gif


This chapter provides a summary of the structure and evolution of mating-type locus () in a range of species representing the major subphyla and sister groups. Whereas the gene content and gene order at the locus vary considerably across the ascomycetous yeasts, the position of is surprisingly well conserved. Analysis of mating in provided a paradigm for one's understanding of sexual pathways in ascomycetes, and indeed in many other fungi. The analysis of homothallic and heterothallic isolates led to the description of the mating loci, the discovery of the cassette-based system, and the identification and characterization of mating-type switching. Switching occurs through unidirectional transposition, triggered by the action of the Ho endonuclease. is a filamentous yeast that has historically been used to generate large quantities of riboflavin. The Ho endonuclease is most closely related to the VDE intein. It also encodes protein-splicing and endonuclease domains, but it contains an additional zinc finger domain at the C terminus required for mating type switching. Mating appeared to be an extremely inefficient process, until an association was made with phenotypic switching. The structure of the MAT loci in heterothallic and species is somewhat simpler, as each idiomorph contains only one gene, either (alpha-box protein) or MAT-2 (HMG domain). The ongoing genome-sequencing projects will provide an invaluable resource for further investigation, particularly to address the origin of these additional genes and the evolution of mating within the clade.

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.1
Figure 1.1

Phylogenetic relationships among the Ascomycota. A phylogenomic supertree was constructed using 4,805 gene families from fully sequenced genomes from 42 fungal species. The details will be published elsewhere (D. A. Fitzpatrick, unpublished data). was used as an outgroup. The divergence between the Basidiomycota and Ascomycota is shown, and the subphyla and classes discussed in the text are indicated. WGD; clade that has undergone a whole-genome duplication; CTG; clade in which CTG is translated as serine.

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.2
Figure 1.2

Organization of the loci and silent cassettes in the lineage. The figure is redrawn from reference . The two possible idiomorphs at the locus are shown between horizontal lines for all species except , where only was identified. The “Y” boxes encode a or alpha information and are specific to the idiomorphs. W, X, Y, and Z are shared sequence elements. It is not possible to determine the sizes of these regions in . Telomeres are indicated with arrowheads. The curly lines indicate when the cassettes are found on the same chromosome.

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.3
Figure 1.3

Evolution of MAT and HO in the Saccharomycotina. The phylogenetic tree is schematic and is based on reference and Fig. 1.1 . The figure is redrawn from reference , with additional information for from reference and for and from references and . The genome does contain a sequence with similarity to , but it is unlikely to be an ortholog. Blanks indicate missing data.

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.4
Figure 1.4

Organization of the loci in the clade. The order of the genes surrounding the α and idiomorphs in is shown in the top two lines. The gene names are taken from the Candida Genome Database (http://www.candidagenome.org), or gene number designations are from Assembly 19. The structures of α idiomorphs from and are similar to the α idiomorph and are not shown. The gene order for is taken from reference , and for the other species it is extrapolated from ongoing genome-sequencing projects at the Wellcome Trust Sanger Centre (http://www.sanger.ac.uk/Projects/Fungi/) and the Broad Institute (http://www.broad.mit.edu/annotation/fgi/). α-specific genes are unfilled boxes and -specific genes are black. Orthologous genes are connected by gray lines; not all relationships are shown. Inversions in gene order are indicated by arrows. Wavy lines indicate regions of the chromosome where genes have been omitted. The “X” structures indicate the location of the pseudogene in and the expected location of in and of α2 in . The bottom line shows the gene order surrounding the , and region on chromosome E of , which is separate from the locus. There is no gap between the and orthologs. Abbreviations: Ca, ; Cp, ; Cd, ; Cgu, ; Cl, ; Dh, .

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.5
Figure 1.5

Organization and evolution of the loci in the Pezizomycotina. Alpha-box genes are shown in black, and HMG-domain genes are either gray with a black border (equivalent to in the Saccharomycotina) or solid light gray ( orthologs). Orthologs of from the Sordariomycetes are shown as solid dark gray. (a) The gene names recommended in reference are used for the Sordariomycetes with the equivalent names from shown underneath. There is an ortholog of beside both idiomorphs in , and this is indicated by its being drawn at both loci. (b) The structure and proposed evolution in species are taken from reference . The fused genes in the homothallic species and most likely arose from crossing over between the alpha-box and HMG-domain genes in a heterothallic ancestor. Recombination between adjacent genes may have given rise to the locus in . The origin of the unlinked loci in is not known. (c) Galagan et al. ( ) suggest that both homothallic and putative heterothallic isolates of arose from a homothallic ancestor. In and the alpha-box and HMG-domain genes are offset from each other, suggesting that they arose through gene loss. In , like , the two genes are found in the same genome but are unlinked; *some species have not been shown to reproduce sexually, but the organization of the locus suggests that they are heterothallic or have only recently lost the ability to mate.

Citation: Butler G. 2007. The Evolution of : The Ascomycetes, p 3-18. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Astell, C. R.,, L. Ahlstrom-Jonasson,, M. Smith,, K. Tatchell,, K. A. Nasmyth, and, B. D. Hall. 1981. The sequence of the DNAs coding for the mating-type loci of Saccharomyces cerevisiae. Cell 27:1523.
2. Astrom, S. U.,, A. Kegel,, J. O. Sjostrand, and, J. Rine. 2000. Kluyveromyces lactis Sir2p regulates cation sensitivity and maintains a specialized chromatin structure at the cryptic alpha-locus. Genetics 156:8191.
3. Astrom, S. U., and, J. Rine. 1998. Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics 148:10211029.
4. Bakhrat, A.,, M. S. Jurica,, B. L. Stoddard, and, D. Raveh. 2004. Homology modeling and mutational analysis of Ho endonuclease of yeast. Genetics 166:721728.
5. Bobola, N.,, R. P. Jansen,, T. H. Shin, and, K. Nasmyth. 1996. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84:699709.
6. Bremer, M. C.,, F. S. Gimble,, J. Thorner, and, C. L. Smith. 1992. VDE endonuclease cleaves Saccharomyces cerevisiae genomic DNA at a single site: physical mapping of the VMA1 gene. Nucleic Acids Res. 20:5484.
7. Brockert, P. J.,, S. A. Lachke,, T. Srikantha,, C. Pujol,, R. Galask, and, D. R. Soll. 2003. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71:71097118.
8. Burt, A., and, V. Koufopanou. 2004. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14:609615.
9. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and, K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA. 101:16321637.
10. Chen, F.,, P. H. Goodwin,, A. Khan, and, T. Hsiang. 2002. Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Can. J. Microbiol. 48:427436.
11. Cisar, C. R., and, D. O. TeBeest. 1999. Mating system of the filamentous ascomycete, Glomerella cingulata. Curr. Genet. 35:127133.
12. Cliften, P.,, P. Sudarsanam,, A. Desikan,, L. Fulton,, B. Fulton,, J. Majors,, R. Waterston,, B. A. Cohen, and, M. Johnston. 2003. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:7176.
13. Coppin, E.,, R. Debuchy,, S. Arnaise, and, M. Picard. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411428.
14. Cosma, M. P.,, T. Tanaka, and, K. Nasmyth. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299311.
15. Coste, A. T.,, V. Turner,, F. Ischer,, J. Morschhauser,, A. Forche,, A. Selmecki,, J. Berman,, J. Bille, and, D. Sanglard. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at Chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172:21392156.
16. Debuchy, R., and, E. Coppin. 1992. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol. Gen. Genet. 233:113121.
17. Debuchy, R., and, B. G. Turgeon. 2006. Mating-type structure, evolution and function in Euascomycetes, p. 293–324. In U. Kues and, R. Fischer (ed.), The Mycota, vol. I. Springer, Heidelberg, Germany.
18. Dietrich, F. S.,, S. Voegeli,, S. Brachat,, A. Lerch,, K. Gates,, S. Steiner,, C. Mohr,, R. Pohlmann,, P. Luedi,, S. Choi,, R. A. Wing,, A. Flavier,, T. D. Gaffney, and, P. Philippsen. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304307.
19. Dujon, B. 2005. Hemiascomycetous yeasts at the forefront of comparative genomics. Curr. Opin. Genet. Dev. 15:614620.
20. Dujon,, B., D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. Lafontaine,, J. De Montigny,, C. Marck,, C. Neuveglise,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, A. Babour,, V. Barbe,, S. Barnay,, S. Blanchin,, J. M. Beckerich,, E. Beyne,, C. Bleykasten,, A. Boisrame,, J. Boyer,, L. Cattolico,, F. Confanioleri,, A. De Daruvar,, L. Despons,, E. Fabre,, C. Fairhead,, H. Ferry-Dumazet,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, R. Kachouri,, A. Kerrest,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J. M. Nicaud,, M. Nikolski,, S. Oztas,, O. Ozier-Kalogeropoulos,, S. Pellenz,, S. Potier,, G. F. Richard,, M. L. Straub,, A. Suleau,, D. Swennen,, F. Tekaia,, M. Wesolowski-Louvel,, E. Westhof,, B. Wirth,, M. Zeniou-Meyer,, I. Zivanovic,, M. Bolotin-Fukuhara,, A. Thierry,, C. Bouchier,, B. Caudron,, C. Scarpelli,, C. Gaillardin,, J. Weissenbach,, P. Wincker, and, J. L. Souciet. 2004. Genome evolution in yeasts. Nature 430:3544.
21. Fabre, E.,, H. Muller,, P. Therizols,, I. Lafontaine,, B. Dujon, and, C. Fairhead. 2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol. Biol. Evol. 22:856873.
22. Ferreira, A. V.,, Z. An,, R. L. Metzenberg, and, N. L. Glass. 1998. Characterization of mat A-2, mat A-3 and delta-matA mating-type mutants of Neurospora crassa. Genetics 148:10691079.
23. Ferreira, A. V.,, S. Saupe, and, N. L. Glass. 1996. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol. Gen. Genet 250:767774.
24. Foster, S. J., and, B. D. Fitt. 2003. Isolation and characterisation of the mating-type (MAT) locus from Rhynchosporium secalis. Curr. Genet. 44:277286.
25. Fraser, J. A., and, J. Heitman. 2006. Sex, MAT, and the evolution of fungal virulence, p. 13–33. In J. Heitman,, S. G. Filler,, J. E. Edwards, and, A. P. Mitchell (ed.), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC.
26. Fundyga, R. E.,, R. J. Kuykendall,, W. Lee-Yang, and, T. J. Lott. 2004. Evidence for aneuploidy and recombination in the human commensal yeast Candida parapsilosis. Infect. Genet. Evol. 4:3743.
27. Galagan, J. E.,, S. E. Calvo,, C. Cuomo,, L. J. Ma,, J. R. Wortman,, S. Batzoglou,, S. I. Lee,, M. Basturkmen,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:11051115.
28. Galagan, J. E.,, M. R. Henn,, L. J. Ma,, C. A. Cuomo, and, B. Birren. 2005. Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res. 15:16201631.
29. Gimble, F. S., and, J. Thorner. 1992. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357:301306.
30. Glass, N. L.,, S. J. Vollmer,, C. Staben,, J. Grotelueschen,, R. L. Metzenberg, and, C. Yanofsky. 1988. DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570573.
31. Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561599.
32. Heckman,, D. S., D. M. Geiser,, B. R. Eidell,, R. L. Stauffer,, N. L. Kardos, and, S. B. Hedges. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:11291133.
33. Hedges, S. B.,, J. E. Blair,, M. L. Venturi, and, J. L. Shoe. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4:2.
34. Herman, A., and, H. Roman. 1966. Allele specific determinants of homothallism in Saccharomyces lactis. Genetics 53:727740.
35. Hicks, J., and, J. N. Strathern. 1977. Interconversion of mating type in S. cerevisiae and the cassette model for gene transfer. Brookhaven Symp. Biol. 1977:233242.
36. Hicks, J. B.,, J. N. Strathern, and, I. Herskowitz. 1977. The cassette model of mating type interconversion, p. 457–462. In M. N. Hall and, P. Linder (ed.), DNA Insertion Elements, Plasmids and Episomes. Cold Spring Harbor Laboratory Press, Plainview, NY.
37. Hull, C. M., and, A. D. Johnson. 1999. Identification of a mating type–like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
38. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
39. Keeling, P. J., and, A. J. Roger. 1995. The selfish pursuit of sex. Nature 375:283.
40. Keogh, R. S.,, C. Seoighe, and, K. H. Wolfe. 1998. Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:443457.
41. Koufopanou, V.,, M. R. Goddard, and, A. Burt. 2002. Adaptation for horizontal transfer in a homing endonuclease. Mol. Biol. Evol. 19:239246.
42. Kronstad, J. W., and, C. Staben. 1997. Mating type in filamentous fungi. Annu. Rev. Genet. 31:245276.
43. Kwon-Chung, K. J. 1972. Sexual stage of Histoplasma capsulatum. Science 175:326.
44. Lahtchev,, K. 2002. Basic genetics of Hansenula polymorpha, p. 8–20. In G. Gellissen (ed.), Hansenula polymorpha: Biology and Applications. Wiley-VCH, Weinheim, Germany.
45. Lee, J.,, T. Lee,, Y. W. Lee,, S. H. Yun, and, B. G. Turgeon. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145152.
46. Legrand, M.,, P. Lephart,, A. Forche,, F. M. Mueller,, T. Walsh,, P. T. Magee, and, B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52:14511462.
47. Lengeler, K. B.,, P. Wang,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2000. Identification of the MATα mating-type locus of Cryptococcus neoformans reveals a serotype A MATα strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97:1445514460.
48. Lin, X.,, C. M. Hull, and, J. Heitman. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:10171021.
49. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737745.
50. Logue, M. E.,, S. Wong,, K. H. Wolfe, and, G. Butler. 2005. A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot. Cell 4:10091017.
51. Lott, T. J.,, R. J. Kuykendall,, S. F. Welbel,, A. Pramanik, and, B. A. Lasker. 1993. Genomic heterogeneity in the yeast Candida parapsilosis. Curr. Genet. 23:463467.
52. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310313.
53. Mathias, J. R.,, S. E. Hanlon,, R. A. O’Flanagan,, A. M. Sengupta, and, A. K. Vershon. 2004. Repression of the yeast HO gene by the MATalpha2 and MATa1 homeodomain proteins. Nucleic Acids Res. 32:64696478.
54. Metzenberg, R. L., and, N. L. Glass. 1990. Mating type and mating strategies in Neurospora. Bioessays 12:5359.
55. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
56. Miranda, I.,, R. Silva, and, M. A. Santos. 2006. Evolution of the genetic code in yeasts. Yeast 23:203213.
57. Mitra, D.,, E. J. Parnell,, J. W. Landon,, Y. Yu, and, D. J. Stillman. 2006. SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment. Mol. Cell. Biol. 26:40954110.
58. Nasmyth, K. 1993. Regulating the HO endonuclease in yeast. Curr. Opin. Genet. Dev. 3:286294.
59. Nauta,, M. J., and R. F. Hoekstra. 1992. Evolution of reproductive systems in filamentous ascomycetes. I. Evolution of mating types. Heredity 68:405510.
60. Nickoloff, J. A.,, J. D. Singer, and, F. Heffron. 1990. In vivo analysis of the Saccharomyces cerevisiae HO nuclease recognition site by site-directed mutagenesis. Mol. Cell. Biol. 10:11741179.
61. Oshima, Y. 1993. Homothallism, mating-type switching, and the controlling element model in Saccharomyces cerevisiae, p. 291–304. In M. N. Hall and, P. Linder (ed.), The Early Days of Yeast Genetics. Cold Spring Harbor Laboratory Press, Plainview, NY.
62. Paoletti, M.,, C. Rydholm,, E. U. Schwier,, M. J. Anderson,, G. Szakacs,, F. Lutzoni,, J. P. Debeaupuis,, J. P. Latge,, D. W. Denning, and, P. S. Dyer. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15:12421248.
63. Pietrokovski, S. 1994. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 3:23402350.
64. Poggeler,, S. 2001. Mating-type genes for classical strain improvements of ascomycetes. Appl. Microbiol. Biotechnol. 56:589601.
65. Pujol, C.,, K. J. Daniels,, S. R. Lockhart,, T. Srikantha,, J. B. Radke,, J. Geiger, and, D. R. Soll. 2004. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3:10151027.
66. Richard, G. F.,, A. Kerrest,, I. Lafontaine, and, B. Dujon. 2005. Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol. Biol. Evol. 22:10111023.
67. Rodrigues de Miranda, L. 1979. Clavispora, a new yeast genus of the Saccharomycetales. Antonie Leeuwenhoek 45:479483.
68. Rodriguez-Guerra, R.,, M. T. Ramirez-Rueda,, M. Cabral-Enciso,, M. Garcia-Serrano,, Z. Lira-Maldonado,, R. G. Guevara-Gonzalez,, M. Gonzalez-Chavira, and, J. Simpson. 2005. Heterothallic mating observed between Mexican isolates of Glomerella lindemuthiana. Mycologia 97:793803.
69. Scherrer, S.,, U. Zippler, and, R. Honegger. 2005. Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, Lecanoromycetes). Fungal Genet. Biol. 42:976988.
70. Seoighe, C., and, K. H. Wolfe. 1998. Extent of genomic rearrangement after genome duplication in yeast. Proc. Natl. Acad. Sci. USA 95:44474452.
71. Sil, A., and, I. Herskowitz. 1996. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84:711722.
72. Singh, G., and, A. M. Ashby. 1998. Cloning of the mating type loci from Pyrenopeziza brassicae reveals the presence of a novel mating type gene within a discomycete MAT 1-2 locus encoding a putative metallothionein-like protein. Mol. Microbiol. 30:799806.
73. Singh, G.,, P. S. Dyer, and, A. M. Ashby. 1999. Intraspecific and inter-specific conservation of mating-type genes from the discomycete plant-pathogenic fungi Pyrenopeziza brassicae and Tapesia yallundae. Curr. Genet. 36:290300.
74. Sjostrand, J. O.,, A. Kegel, and, S. U. Astrom. 2002. Functional diversity of silencers in budding yeasts. Eukaryot. Cell 1:548557.
75. Slutsky, B.,, M. Staebell,, J. Anderson,, L. Risen,, M. Pfaller, and, D. R. Soll. 1987. “White-opaque transition”: a second high-frequency switching system in Candida albicans. J. Bacteriol. 169:189197.
76. Srikantha, T.,, S. A. Lachke, and, D. R. Soll. 2003. Three mating type-like loci in Candida glabrata. Eukaryot. Cell 2:328340.
77. Sugita, T., and, T. Nakase. 1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst. Appl. Microbiol. 22:7986.
78. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
79. Turgeon, B. G., and, O. C. Yoder. 2000. Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet. Biol. 31:15.
80. Vaillancourt, L. J.,, M. Du,, J. Wang,, J. Rollins, and, R. Hanau. 2000. Genetic analysis of cross fertility between two self-sterile strains of Glomerella graminicola. Mycologia 92:430435.
81. Wendland, J., and, A. Walther. 2005. Ashbya gossypii: a model for fungal developmental biology. Nat. Rev. Microbiol. 3:421429.
82. Wickerham, L. J., and, K. A. Burton. 1954. A clarification of the relationship of Candida guilliermondii to other yeasts by a study of their mating types. J. Bacteriol. 68:594597.
83. Wolfe, K. H., and, D. C. Shields. 1997. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708713.
84. Wong, S.,, M. A. Fares,, W. Zimmermann,, G. Butler, and, K. H. Wolfe. 2003. Evidence from comparative genomics for a complete sexual cycle in the ‘asexual’ pathogenic yeast Candida glabrata. Genome Biol. 4:R10.
85. Yokoyama, E.,, K. Yamagishi, and, A. Hara. 2005. Heterothallism in Cordyceps takaomontana. FEMS Microbiol. Lett. 250:145150.
86. Young, L. Y.,, M. C. Lorenz, and, J. Heitman. 2000. A STE12 homolog is required for mating but dispensable for filamentation in Candida lusitaniae. Genetics 155:1729.
87. Yun, S. H.,, T. Arie,, I. Kaneko,, O. C. Yoder, and, B. G. Turgeon. 2000. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet. Biol. 31:720.
88. Yun, S. H.,, M. L. Berbee,, O. C. Yoder, and, B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96:55925597.
89. Zickler, D.,, S. Arnaise,, E. Coppin,, R. Debuchy, and, M. Picard. 1995. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 140:493503.
90. Zonneveld, B. J. M., and, H. Y. Steensma. 2003. Mating, sporulation and tetrad analysis in Kluyveromyces lactis, p. 151–154. In K. Wolf,, K. Breunig, and, G. Barth (ed.), Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology. Springer, Berlin, Germany.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error