1887

Chapter 7 : Sexual Reproduction and Significance of in the Aspergilli

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Sexual Reproduction and Significance of in the Aspergilli, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap07-2.gif

Abstract:

The genus comprises over 180 species that are united by the presence of the “aspergillum,” which consists of a specialized, enlargened conidiophore bearing phialides and characteristic radiating asexual conidia. Of particular relevance to this chapter is the repeated failure to detect the presence of trichogynes or differentiated ascogonia and antheridia in this homothallic species. It has been noted that overexpression of the genes does not result in increased expression of either the pheromone precursor gene ppgA or the pheromone receptor genes preA(gprB) and preB(gprB). It has been suggested that gene expression might be involved in recognition of compatible MAT1 and MAT2 nuclei in heterothallic species. Hülle cells are also formed by three species of “asexual” aspergilli and single mating types of , which fail to form fertile cleistothecia. Paoletti and coworkers used RT-PCR to monitor expression of pheromone precursor (ppgA), pheromone receptor (preA and preB), and mating-type (MAT-1 and MAT-2) genes from during growth on media, under conditions known to induce sexual reproduction in . It is intriguing to note that transposase genes have been found upstream of loci in certain species, which might help to explain the particular ability of the aspergilli to evolve different breeding systems. A long-term goal is now to manipulate the life cycles of medically, economically, and scientifically important species of for the benefit of all.

Citation: Dyer P. 2007. Sexual Reproduction and Significance of in the Aspergilli, p 123-142. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 7.1
Figure 7.1

Massed cleistothecia of (diameter, 150 to 200 μm) visible as dark spheres surrounded by lighter, smaller, glistening Hülle cells. Inset shows higher magnification; note resemblance to certain jeweled eggs produced by Carl Fabergé in the late 19th and early 20th centuries.

Citation: Dyer P. 2007. Sexual Reproduction and Significance of in the Aspergilli, p 123-142. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.2
Figure 7.2

Hypothetical genetic model showing pathways involved with control of cleistothecial development in . See the text for details of particular genes encoding regulatory factors. Gene products are enclosed in the same box when the particular order of gene activity (or nature of interaction) is unknown or has not yet been experimentally verified. Cleistothecial initials refer to the very earliest stage of cleistothecial development.

Citation: Dyer P. 2007. Sexual Reproduction and Significance of in the Aspergilli, p 123-142. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.3
Figure 7.3

Organization of loci within the aspergilli showing possible evolution of breeding systems from either a homothallic or heterothallic ancestor (not to scale). Adapted in part from reference . Textured blocks indicate mating-type genes ( α-domain or HMG family) or flanking genes ( or ). Dotted lines indicate idiomorph region; heavy bold lines indicate conserved sequence flanking the idiomorph region; the suffix ‘d’ indicates disabled pseudogene. Note that the illustration does not show all genes present in the flanking regions (e.g., an gene is also present, but syntenic order varies according to species).

Citation: Dyer P. 2007. Sexual Reproduction and Significance of in the Aspergilli, p 123-142. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch07
1. Archer, D. B., and, P. S. Dyer. 2004. From genomics to post-genomics in Aspergillus. Curr. Opin. Microbiol. 7:499504.
2. Benjamin, C. R. 1955. Ascocarps of Aspergillus and Penicillium. Mycologia 47:669687.
3. Bennett,, J. W., and M. A. Klich. 1992. Aspergillus: Biology and Industrial Applications (preface). Butterworth-Heinemann, Boston, MA.
4. Blumenstein, A.,, K. Vienken,, R. Tasler,, J. Purschwitz,, D. Veith,, N. Frankenberg-Dinkel, and, R. Fischer. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15:18331838.
5. Braus, G. H.,, S. Krappman, and, S. E. Eckert. 2002. Sexual development in ascomycetes. Fruit body formation of Aspergillus nidulans, p. 215–244. In H. D. Osiewacz (ed.), Molecular Biology of Fungal Development. Marcel Dekker, New York, NY.
6. Busby, T. M.,, K. Y. Miller, and, B. L. Miller. 1996. Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143:155163.
7. Busch, S.,, S. E. Eckert,, S. Krappmann, and, G. H. Braus. 2003. The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol. Microbiol. 49:717730.
8. Bussink, H. J., and, S. A. Osmani. 1998. A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J. 17:39904003.
9. Casselton, L. A. 2002. Mate recognition in fungi. Heredity 88:142147.
10. Champe,, S. P., D. L. Nagle, and, L. N. Yager. 1994. Sexual sporulation, p. 429–454. In S. D. Martinelli and, J. R. Kinghorn (ed.), Aspergillus:50 Years on. Elsevier, Amsterdam, The Netherlands.
11. Clutterbuck, A. J. 1969. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317327.
12. Coppin,, E., C. de Renty, and R. Debuchy. 2005. The function of the coding sequences for the putative pheromone precursor in Podospora anserina is restricted to fertilization. Eukaryot. Cell 4:407420.
13. Croft, J. H., and, J. L. Jinks. 1977. Aspects of the population genetics of Aspergillus nidulans, p. 349–360. In J. E. Smith and, J. A. Pateman, Genetics and Physiology of Aspergillus. Academic Press, London, United Kingdom.
14. Debuchy, R. 1999. Internuclear recognition: a possible connection between Euascomycetes and homobasidiomycetes. Fungal. Genet. Biol. 27:218223.
15. Debuchy,, R., and B. G. Turgeon. 2006. Mating-type structure, evolution, and function in euascomycetes, p. 293–323. In U. Kües and R. Fischer (ed.), The Mycota I: Growth, Differentiation and Sexuality. Springer-Verlag, Berlin, Germany.
16. Dutton, J. R.,, S. John, and, B. L. Miller. 1997. StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J. 16:57105721.
17. Dyer, P. S., and, M. Paoletti. 2005. Reproduction in Aspergillus fumigatus: sexuality in a supposedly asexual species? Med. Mycol. 43(Suppl. 1):S7S14.
18. Dyer, P. S.,, M. Paoletti,, M. J. Alcocer, and, D. B. Archer. 2003. Identification of a mating-type gene in the homothallic fungus Aspergillus nidulans. Fungal Genet. Newsl. 50(Suppl.):145.
19. Dyer, P. S.,, M. Paoletti, and, D. B. Archer. 2003. Genomics reveals sexual secrets of Aspergillus. Microbiology 149:23012303.
20. Elion, E. A. 2000. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3:573581.
21. Galagan, J.,, S. E. Calvo,, C. Cuomo,, L.-J. Ma,, J. Wortman,, S. Batzoglou,, S.-I. Lee,, M. Brudno,, B. Meray,, C. C. Spevak,, J. Clutterbuck,, V. Kapitonov,, J. Jurka,, C. Scazzocchio,, M. Farman,, J. Butler,, S. Purcell,, S. Harris,, G. H. Braus,, O. Draht,, S. Busch,, C. D’Enfert,, C. Bouchier,, G. H. Goldman,, D. Bell-Pedersen,, S. Griffiths-Jones,, J. H. Doonan,, J. Yu,, K. Vienken,, A. Pain,, M. Freitag,, E. U. Selker,, D. B. Archer,, M. A. Penalva,, B. R. Oakley,, M. Momany,, T. Tanaka,, T. Kumagai,, K. Asai,, M. Machida,, W. C. Nierman,, D. W. Denning,, M. Caddick,, M. Hynes,, M. Paoletti,, R. Fischer,, B. Miller,, P. Dyer,, M. S. Sachs,, S. A. Osmani, and, B. W. Birren. 2005. Sequencing and comparative analysis of Aspergillus nidulans. Nature 438:11051115.
22. Gams, W.,, M. Christensen,, A. H. Onions,, J. I. Pitt, and, R. A. Samson. 1985. Infrageneric taxa of Aspergillus, p. 55–62. In R. A. Samson and, J. I. Pitt (ed.), Advances in Penicillium and Aspergillus Systematics. Plenum Press, New York, NY.
23. Geiser, D. M.,, M. L. Arnold, and, W. E. Timberlake. 1994. Sexual origins of British Aspergillus nidulans isolates. Proc. Natl. Acad. Sci. USA 91:23492352.
24. Geiser, D. M.,, J. C. Frisvad, and, J. W. Taylor. 1998. Evolutionary relationships in Aspergillus section Fumigati inferred from partial β-tubulin and hydrophobin DNA sequences. Mycologia 90:831845.
25. Geiser, D. M.,, J. I. Pitt, and, J. W. Taylor. 1998. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc. Natl. Acad. Sci. USA 95:388393.
26. Geiser, D. M.,, W. E. Timberlake, and, M. L. Arnold. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13:809817.
27. Han, K. H.,, K. Y. Han,, M. S. Kim,, D. B. Lee,, J. H. Kim,, S. K. Chae,, K. S. Chae, and, D. M. Han. 2003. Regulation of nsdD expression in Aspergillus nidulans. J. Microbiol. 41:259261.
28. Han, K. H.,, K. Y. Han,, J. H. Yu,, K. S. Chae,, K. Y. Jahng, and, D. M. Han. 2001. The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41:299309.
29. Han, K. H.,, J. A. Seo, and, J. H. Yu. 2004. A putative G protein-coupled receptor negatively controls sexual reproduction in Aspergillus nidulans. Mol. Microbiol. 51:13331345.
30. Hoffmann, B.,, S. E. Eckert,, S. Krappman, and, G. H. Braus. 2001. Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141147.
31. Hoffmann, B.,, C. Wanke,, S. A. Kirsten,, K. Paglia, and, G. H. Braus. 2000. c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol. Microbiol. 37:2841.
32. Horie, Y.,, M. Miyaji,, K. Nishimura,, M. F. Franco, and, K. I. R. Coelho. 1995. New and interesting species of Neosartorya from Brazilian soil. Mycoscience 36:199204.
33. Jeong, H. Y.,, G. B. Cho,, K. Y. Han,, J. Kim,, D. M. Han,, K. Y. Jahng, and, K. S. Chae. 2001. Differential expression of house-keeping genes of Aspergillus nidulans during sexual development. Gene 262:215219.
34. Jeong, H. Y.,, D. M. Han,, K. Y. Jahng, and, K. S. Chae. 2000. The rpl16a gene for ribosomal protein L16A identified from expressed sequence tags is differentially expressed during sexual development of Aspergillus nidulans. Fungal Genet. Biol. 31:6978.
35. Kawasaki, L.,, O. Sánchez, K. Shiozaki, and, J. Aguirre. 2002. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol. Microbiol. 45:11531163.
36. Kim, H. S.,, K. Y. Han,, K. J. Kim,, D. M. Han,, K. Y. Jahng, and, K. S. Chae. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37:7280.
37. Kim, J. H.,, M. S. Kim,, Y. H. Cheon,, K. S. Chae, and, D. M. Han. 2002. Isolation and characterisation of mutants that can sexually develop in the presence of visible light. Fungal Genet. Newsl. 50(Suppl.):68.
38. Kirk, K. E., and, N. R. Morris. 1991. The tubB alpha-tubulin gene is essential for sexual devlopement in Aspergillus nidulans. Genes Dev. 5:2012023.
39. Krappmann, S.,, O. Bayram, and, G. H. Braus. 2005. Deletion and exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot. Cell 4:12981307.
40. Krappmann, S.,, N. Jung,, B. Medic,, R. A. Prade, and, G. H. Braus. 2006. The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol. Microbiol. 61:7688.
41. Kuger, M., and, R. Fischer. 1998. Integrity of a Zn finger-like domain in SamB is crucial for morphogenesis in ascomycetous fungi. EMBO J. 17:20214.
42. Kwon, K. J., and, K. B. Raper. 1967. Sexuality and cultural characteristics of Aspergillus heterothallicus. Am. J. Bot. 54:3648.
43. Kwon, N. J.,, D. M. Han, and, K. S. Chae. 2003. veA-dependent expression of IndB and indD encoding proteins that interact with NSDD, a GATA-type transcription factor required for sexual development in Aspergillus nidulans. Fungal Genet. Newsl. 50(Suppl.):70.
44. Lara-Ortíz, T.,, H. Rosas-Riveros, and, J. Aguirre. 2003. Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol. Microbiol. 50:12411255.
45. Lee, D. W.,, S. Kim,, S. J. Kim,, D. M. Han,, K. Y. Jahng, and, K. S. Chae. 2001. The lsdA gene is necessary for sexual development inhibition by a salt in Aspergillus nidulans. Curr. Genet. 39:237243.
46. Lengeler, K. B.,, R. C. Davidson,, C. D’Souza,, T. Harashima,, W. C. Shen,, G. P. Wang,, X. Pan,, M. Waugh, and, J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol. Mol. Biol. Rev. 64:746785.
47. Malloch, D., and, R. F. Cain. 1972. The trichomataceae: ascomycetes with Aspergillus, Paecilomyces, and Penicillium imperfect stages. Can. J. Bot. 50:26132628.
48. Miller, B. L., and, E. J. Telfer. 2003. The conserved zinc finger domain of Aspergillus nidulans SteAp regulates the frequency of cleistothecial initial formation in a veA1 background. Fungal Genet. Newsl. 50(Suppl.):90.
49. Miller, K. Y.,, A. Nowell, and, B. L. Miller. 2005. Differential regulation of fruitbody development and meiosis by the unlinked Aspergillus nidulans mating type loci. Fungal Genet. Newsl. 52(Suppl.):184.
50. Mooney, J. L., and, L. N. Yager. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4:14731482.
51. Osman, F.,, B. Tomsett, and, P. Strike. 1993. The isolation of mutagen-sensitive nuv mutants of Aspergillus nidulans and their effects on mitotic recombination. Genetics 134:445454.
52. Pandey, A.,, M. G. Roca,, N. D. Read, and, N. L. Glass. 2004. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot. Cell 3:348358.
53. Paoletti, M.,, C. Rydholm,, E. U. Schwier,, M. J. Anderson,, G. Szakacs,, F. Lutzoni,, J. P. Debeaupuis,, J. P. Latgé,, D. W. Denning, and, P. S. Dyer. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15:12421248.
54. Pascon, R. C., and, B. L. Miller. 2000. Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Mol. Microbiol. 36:12501264.
55. Pel,, H. J.,, J. H. de Winde,, D. B. Archer,, P. S. Dyer,, G. Hofmann,, P. J. Schaap,, G. Turner,, R. P. de Vries,, R. Albany,, K. Alberman, et al. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nature Biotech. 25:221231.
56. Peterson, S. W. 2000. Phylogenetic relationships in Aspergillus based on rDNA sequence amalysis, p. 323–355. In R. A. Samson and, J. I. Pitt (ed.), Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers, Amsterdam, The Netherlands.
57. Pitt, J. H.,, R. A. Samson, and, J. C. Frisvad. 2000. List of accepted species and their synonyms in the family Trichocomaceae, p. 9–72. In R. A. Samson and, J. I. Pitt (ed.), Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers, Amsterdam, The Netherlands.
58. Pöggeler, S., and, U. Kück. 2001. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:917.
59. Pontecorvo, G. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:142238.
60. Pringle,, A., D. M. Baker,, J. L. Platt,, J. P. Wares,, J. P. Latge, and, J. W. Taylor. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59:18861899.
61. Raper, K. B., and, D. I. Fennell. 1965. The Genus Aspergillus. The Williams & Wilkins Company, Baltimore, MD.
62. Rosén, S.,, J. H. Yu, and, T. H. Adams. 1999. The Aspergillus nidulans sfaD gene encodes a G protein subunit that is required for normal growth and repression of sporulation. EMBO J. 18:55925600.
63. Rydholm, C.,, P. S. Dyer, and, F. Lutzoni. 2007. DNA sequence characterization and molecular evolution of Mat1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot. Cell, in press.
64. Samson, R. A. 1992. Current taxonomic schemes of the genus Aspergillus and its teleomorphs, p. 355–390. In J. W. Bennett and, M. A. Klich (ed.), Aspergillus: Biology and Industrial Applications. Butterworth-Heinemann, Boston, MA.
65. Scazzocchio, C. 2006. Aspergillus genomes: secret sex and the secrets of sex. Trends Genet. 22:521525.
66. Scherer,, M., and R. Fischer. 1998. Purification and characterization of laccase II of Aspergillus nidulans. Arch. Microbiol. 170:7884.
67. Scherer, M.,, H. Wei,, R. Liese, and, R. Fischer. 2002. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryot. Cell 1:725735.
68. Seo, J. A.,, K. H. Han, and, J. H. Yu. 2004. The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol. Microbiol. 53:16111623.
69. Seo, J. A.,, K. H. Han, and, J. H. Yu. 2005. Multiple roles of a heterotrimeric G-protein γ-subunit in governing growth and development of Aspergillus nidulans. Genetics 171:8189.
70. Seo, J. A., and, J. H. Yu. 2006. The phosducin-like protein PhnA is required for G βγ-mediated signaling for vegetative growth, developmental control, and toxin biosynthesis in Aspergillus nidulans. Eukaryot. Cell 5:400410.
71. Sohn, K. T., and, K. S. Yoon. 2002. Ultrastructural study on the cleistothecial development in Aspergillus nidulans. Mycobiology 30:117127.
72. Stinnett, S. M.,, E. A. Espeso,, L. Cobeño,, L. Araújo-Bazán, and, A. M. Calvo. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin carrier and on light. Mol. Microbiol. 63:242255.
73. Swart, K.,, D. V. Van Heemst,, M. Slakhorst,, F. Debets, and, C. Heyting. 2001. Isolation and characterization of sexual sporulation mutants of Aspergillus nidulans. Fungal Genet. Biol. 33:2535.
74. Tamura, M.,, K. Kawahara, and, J. Sugiyama. 2000. Molecular phylogeny of Aspergillus and associated teleomorphs in the Trichocomaceae (Eurotiales), p. 357–372. In R. A. Samson and, J. I. Pitt (ed.), Integration of Modern Taxonomic Methods for Penicillium and Aspergillus Classification. Harwood Academic Publishers, Amsterdam, The Netherlands.
75. Tsitsigiannis, D. I.,, T. M. Kowieski,, R. Zarnowski, and, N. P. Keller. 2005. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:18091821.
76. Tsitsigiannis, D. I.,, R. Zarnowski, and, N. P. Keller. 2004. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279:113411353.
77. Udagawa, S., and, M. Takada. 1985. Contribution to our knowledge of Aspergillus teleomorphs: some taxonomic problems, p. 429–435. In R. A. Samson and, J. I. Pitt (ed.), Advances in Penicillium and Aspergillus Systematics. Plenum Press, New York, NY.
78. Vallim, M. A.,, K. Y. Miller, and, B. L. Miller. 2000. Aspergillus SteA (sterile12–like) is a homeodomain- C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol. Microbiol. 36:290301.
79. Varga, J.,, Z. Vida,, B. Tóth, F. Debets, and, Y. Horie. 2000. Phylogenetic analysis of newly described Neosartorya species. Antonie Leeuwenhoek 77:235239.
80. Vienken, K., and, R. Fischer. 2006. The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol. Microbiol. 61:54554.
81. Vienken, K.,, M. Scherer, and, R. Fischer. 2005. The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619630.
82. Wei, H.,, N. Requena, and, R. Fischer. 2003. The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol. Microbiol. 47:15771588.
83. Wei, H.,, K. M. Scherer,, A. Singh,, R. Liese, and, R. Fischer. 2001. Aspergillus nidulans α-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet. Biol. 34:217227.
84. Wei, H.,, K. Vienken,, R. Weber,, S. Bunting,, N. Requena, and, R. Fischer. 2004. A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium development. Fungal Genet. Biol. 41:148156.
85. Wu, J., and, B. L. Miller. 1997. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol. Cell. Biol. 17:61916201.
86. Zonneveld, B. J. M. 1974. α-1, 3 glucan synthesis correlated with α-1,3 glucanase synthesis, conidiation and fructification in morphological mutants of Aspergillus nidulans. J. Gen. Microbiol. 81:445451.
87. Zonneveld, B. J. M. 1977. Biochemistry and ultrastructure of sexual development in Aspergillus nidulans, p. 59–80. In J. E. Smith and, J. A. Pateman, Genetics and Physiology of Aspergillus. Academic Press, London, United Kingdom.

Tables

Generic image for table
Table 7.1

Ascomycetous teleomorphs of subgenera

Citation: Dyer P. 2007. Sexual Reproduction and Significance of in the Aspergilli, p 123-142. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error