1887

Chapter 8 : The Genes of : Expression, Homothallic Switch, and Silencing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Genes of : Expression, Homothallic Switch, and Silencing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap08-2.gif

Abstract:

(fission yeast) is essentially a haploid organism. The cylindrical cells grow at the poles and divide symmetrically at a central septum. This chapter reviews the current understanding of the fission yeast mating-type system. Facilitated by the repetitive arrangement of homology boxes at three closely spaced subloci, the region of is prone to genetic rearrangements, which can yield various types of heterothallic derivatives. The activation of mating-type genes requires profound changes in the transcriptional program in prestationary cells. P-factor is a 23-amino-acid unmodified peptide, made by proteolytic cleavage while a larger precursor protein is transported along the conventional secretory pathway. Pheromone signaling induces transcription of a large number of genes required for mating and meiosis. The nutritional state is being monitored by additional 7TM-protein-coupled receptor components. More recently, the biased guidance of strand invasion has been attributed to a -specific protein complex, Swi5-Swi2, assumed to be equivalent to the Swi5-Sfr1 complex required for the homology search in general recombination. The donor cassettes are embedded in a 20-kb stretch of heterochromatin, which is devoid of coding genes other than the internal parts of and themselves. The critical inducer of meiosis in is the RNA-binding Mei2 protein, but the mechanism of Mei2 action is still unclear. The tight coupling to ascospore formation puts meiosis in a critical position as to long-term survival in a dormant state.

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 8.1
Figure 8.1

The life cycle of . Vegetative cells are predominantly haploid (1n). Rarely occurring diploid growth of zygotes (2n) can be selected for in the laboratory. Homothallic switch of mating type (P ↔ M) occurs during vegetative growth.

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.2
Figure 8.2

Cassette organization in the region of . (A) Overall arrangement on the right arm of chromosome 2 (not to scale); (B) open reading frames at and ; (C) -acting elements at (!, site of imprint); (D) overall organization of the silent domain; (E) local organization of and .

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.3
Figure 8.3

Heterothallic strains by rearrangement (spacer regions not to scale). The wild-type configuration of the homothallic strain (middle lane) can lead to by deletion (Del), or by insertion (In), between homology boxes of different cassettes. The insertion results from aberrant switching events (see Fig. 8.5 C). Silent cassettes are shaded; imprintable sites to initiate mating-type switches are indicated (!).

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.4
Figure 8.4

The cycle of homothallic mating-type switching in , passing four stages of asymmetric cell division (P → P + P; P → P + M; M → M + M; M → M + P). When switchable cells divide (P or M), one of their respective daughters will have switched mating type. On depleted medium, this allows conjugation and ascospore formation with the unswitched sister cell. If unswitchable cells divide (P or M), both daughter cells retain the same mating type and are not mutually inhibited by mating pheromones, even though one of these becomes imprinted. This leads to a single switch in the subsequent quadruplet of cousin cells.

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.5
Figure 8.5

Mating-type switching at the imprinted cassette. (A) A replication fork approaching from the left is halted outside at RTS1. The leading strand approaching from the right is halted at the imprint (!). (B) Facilitated by various recombinational repair factors, the leading 3′ end is liberated from H1 at , swapping templates with H1 at (i). Repair synthesis pursues throughout , to be terminated at the H2/H3 boundary (ii). The processed 3′ end reenters at H2 (iii), to be joined with the arrested lagging strand at RTS1. This strand is duplicated immediately thereafter (not shown), to complete the newly formed cassette. The intact strand of the resident cassette is duplicated as well and imprinted anew (not shown), whereas the previously imprinted strand is degraded. (C) If switching of to fails to be terminated at the H2/H3 boundary of , repair synthesis continues throughout the entire K region, only to be resolved at the H2/H3 boundary of . This aberrant switching event results in the heterothallic configuration.

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch08
1. Akamatsu, Y.,, D. Dziadkowiec,, M. Ikeguchi, and, H. Shinagawa. 2003. Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc. Natl. Acad. Sci. USA 100:1577015775.
2. Aono, T.,, H. Yanai,, F. Miki,, J. Davey, and, C. Shimoda. 1994. Mating pheromoneinduced expression of the mat1-Pm gene of Schizosaccharomyces pombe: identification of signalling components and characterization of upstream controlling elements. Yeast 10:757770.
3. Arcangioli, B. 1998. A site- and strand-specific DNA break confers asymmetric switching potential in fission yeast. EMBO J. 17:45034510.
4. Arcangioli,, B. 2000. Fate of mat1 DNA strands during mating-type switching in fission yeast. EMBO Rep. 1:145150.
5. Arcangioli, B., and, A. J. Klar. 1991. A novel switch-activating site (SAS1) and its cognate binding factor (SAP1) required for efficient mat1 switching in Schizosaccharomyces pombe. EMBO J. 10:30253032.
6. Arcangioli, B., and, R. de Lahondes. 2000. Fission yeast switches mating type by a replication-recombination coupled process. EMBO J. 19:13891396.
7. Arcangioli, B., and, G. Thon. 2004. Mating-type cassettes: structure, switching and silencing, p. 129–147. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
8. Averbeck, N.,, S. Sunder,, N. Sample,, J. A. Wise, and, J. Leatherwood. 2005. Negative control contributes to an extensive program of meiotic splicing in fission yeast. Mol. Cell 18:491498.
9. Ayoub, N.,, K. Noma,, S. Isaac,, T. Kahan,, S. I. Grewal, and, A. Cohen. 2003. A novel jmjC domain protein modulates heterochromatization in fission yeast. Mol. Cell. Biol. 23:43564370.
10. Bauman, P.,, Q. C. Cheng, and, C. F. Albright. 1998. The Byr2 kinase translocates to the plasma membrane in a Ras1-dependent manner. Biochem. Biophys. Res. Commun. 244:468474.
11. Beach, D. H., and, A. J. Klar. 1984. Rearrangements of the transposable mating-type cassettes of fission yeast. EMBO J. 3:603610.
12. Christensen, P. U.,, J. Davey, and, O. Nielsen. 1997. The Schizosaccharomyces pombe mam1 gene encodes an ABC transporter mediating secretion of M-factor. Mol. Gen. Genet. 255:226236.
13. Chu, S.,, J. DeRisi,, M. Eisen,, J. Mulholland,, D. Botstein,, P. O. Brown, and, I. Herskowitz. 1998. The transcriptional program of sporulation in budding yeast. Science 282:699705.
14. Chung, K. S.,, M. Won,, S. B. Lee,, Y. J. Jang,, K. L. Hoe,, D. U. Kim,, J. W. Lee,, K. W. Kim, and, H. S. Yoo. 2001. Isolation of a novel gene from Schizosaccharomyces pombe: stm1+ encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J. Biol. Chem. 276:4019040201.
15. Dalgaard, J. Z., and, A. J. Klar. 1999. Orientation of DNA replication establishes mating-type switching pattern in S. pombe. Nature 400:181184.
16. Dalgaard, J. Z., and, A. J. Klar. 2001. A DNA replicationarrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev. 15:20602068.
17. Davey, J. 1992. Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J. 11:951960.
18. Davis, C. A., L. Grate, M. Spingola, and M. Ares, Jr. 2000. Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. Nucleic Acids Res. 28:17001706.
19. Egel, R. 1984. The pedigree pattern of mating-type switching in Schizosaccharomyces pombe. Curr. Genet. 8:205210.
20. Egel,, R. 1989. Mating-type genes, meiosis and sporulation, p. 31–73. In A. Nasim,, P. Young,, B. F. Johnson (ed.), Molecular Biology of the Fission Yeast. Academic Press, San Diego, CA.
21. Egel, R. 2005. Fission yeast mating-type switching: programmed damage and repair. DNA Repair 4:525536.
22. Egel,, R., and B. Eie. 1987. Cell lineage asymmetry in Schizosaccharomyces pombe: unilateral transmission of a high-frequency state for mating-type switching in diploid pedigrees. Curr. Genet. 12:429433.
23. Egel, R.,, D. H. Beach, and, A. J. Klar. 1984. Genes required for initiation and resolution steps of mating-type switching in fission yeast. Proc. Natl. Acad. Sci. USA 81:34813485.
24. Ekwall, K. 2004. The roles of histone modifications and small RNA in centromere function. Chromosome Res. 12:535542.
25. Ekwall,, K., O. Nielsen, and, T. Ruusala. 1991. Repression of a mating type cassette in the fission yeast by four DNA elements. Yeast 7:745755.
26. Engebrecht, J .A.,, K. Voelkel-Meiman, and G. S. Roeder. 1991. Meiosis-specific RNA splicing in yeast. Cell 66:12571268.
27. Freeman-Cook, L. L.,, E. B. Gomez,, E. J. Spedale,, J. Marlett,, S. L. Forsburg,, L. Pillus, and, P. Laurenson. 2005. Conserved locus-specific silencing functions of Schizosaccharomyces pombe sir2+. Genetics 169:12431260.
28. Grewal, S. I., and, A. J. Klar. 1997. A recombinationally repressed region between mat2 and mat3 loci shares homology to centromeric repeats and regulates directionality of mating-type switching in fission yeast. Genetics 146:12211238.
29. Grewal, S. I., and, J. C. Rice. 2004. Regulation of heterochromatin by histone methylation and small RNAs. Curr. Opin. Cell Biol. 16:230238.
30. Gutz, H., and, H. Schmidt. 1985. Switching genes in Schizosaccharomyces pombe. Curr. Genet. 9:325331.
31. Hall, I. M.,, G. D. Shankaranarayana,, K. Noma,, N. Ayoub,, A. Cohen, and, S. I. Grewal. 2002. Establishment and maintenance of a heterochromatin domain. Science 297:22322237.
32. Hiraoka, Y., and, Y. Chikashige. 2004. Telomere organization and nuclear movements, p. 191–205. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
33. Hirayama, T.,, C. Ishida,, T. Kuromori,, S. Obata,, C. Shimoda,, M. Yamamoto,, K. Shinozaki, and, C. Ohto. 1997. Functional cloning of a cDNA encoding Mei2-like protein from Arabidopsis thaliana using a fission yeast pheromone receptor deficient mutant. FEBS Lett. 413:1620.
34. Hoffman, C. S. 2005. Except in every detail: comparing and contrasting G-protein signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Eukaryot. Cell 4:495503.
35. Holmes,, A. M., A. Kaykov, and, B. Arcangioli. 2005. Molecular and cellular dissection of mating-type switching steps in Schizosaccharomyces pombe. Mol. Cell. Biol. 25:303311.
36. Hughes, D. A.,, N. Yabana, and, M. Yamamoto. 1994. Transcriptional regulation of a Ras nucleotide exchange factor gene by extracellular signals in fission yeast. J. Cell Sci. 107:36353642.
37. Imai, Y., and, M. Yamamoto. 1994. The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev. 8:328338.
38. Jia, S.,, K. Noma, and, S. I. Grewal. 2004. RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304:19711976.
39. Jia, S.,, T. Yamada, and, S. I. Grewal. 2004. Heterochromatin regulates cell type-specific long-range chromatin interactions essential for directed recombination. Cell 119:469480.
40. Kaur, J.,, J. Sebastian, and, I. Siddiqi. 2006. The Arabidopsis mei2-like genes play a role in meiosis and vegetative growth in Arabidopsis. Plant Cell 18:545559.
41. Kaykov, A., and, B. Arcangioli. 2004. A programmed strand-specific and modified nick in S. pombe constitutes a novel type of chromosomal imprint. Curr. Biol. 14:1921928.
42. Kaykov, A.,, A. M. Holmes, and, B. Arcangioli. 2004. Formation, maintenance and consequences of the imprint at the mating-type locus in fission yeast. EMBO J. 23:930938.
43. Kelly, M.,, J. Burke,, M. Smith,, A. Klar, and, D. Beach. 1988. Four mating-type genes control sexual differentiation in the fission yeast. EMBO J. 7:15371547.
44. Kim, S. M.,, D. D. Dubey, and, J. A. Huberman. 2003. Early-replicating heterochromatin. Genes Dev. 17:330335.
45. Kishida, M.,, T. Nagai,, Y. Nakaseko, and, C. Shimoda. 1994. Meiosis-dependent mRNA splicing of the fission yeast Schizosaccharomyces pombe mes1+ gene. Curr. Genet. 25:497503.
46. Kitamura, K., and, C. Shimoda. 1991. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J. 10:37433751.
47. Kjaerulff, S.,, D. Dooijes,, H. Clevers, and, O. Nielsen. 1997. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S. pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites. EMBO J. 16:40214033.
48. Kjaerulff, S.,, I. Lautrup-Larsen,, S. Truelsen,, M. Pedersen, and, O. Nielsen. 2005. Constitutive activation of the fission yeast pheromone-responsive pathway induces ectopic meiosis and reveals Ste11 as a mitogen-activated protein kinase target. Mol. Cell. Biol. 25:20452059.
49. Klar, A. J. 1990. The developmental fate of fission yeast cells is determined by the pattern of inheritance of parental and grandparental DNA strands. EMBO J. 9:14071415.
50. Klar,, A. J., and L. M. Miglio. 1986. Initiation of meiotic recombination by double-strand DNA breaks in S. pombe. Cell 46:725731.
51. Klar, A. J.,, J. N. Strathern, and, J. A. Abraham. 1984. Involvement of double-strand chromosomal breaks for mating-type switching in Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 49:7788.
52. Kurtzman, C. P. 1994. Molecular taxonomy of the yeasts. Yeast 10:17271740.
53. Ladds,, G., E. M. Rasmussen,, T. Young,, O. Nielsen, and, J. Davey. 1996. The sxa2-dependent inactivation of the P-factor mating pheromone in the fission yeast Schizosaccharomyces pombe. Mol. Microbiol. 20:3542.
54. Leupold, U. 1950. Die Vererbung von Homothallie und Heterothallie bei Schizosaccharomyces pombe. C. R. Trav. Lab. Carlsberg Ser. Physiol. 24:381480.
55. Li,, P., and M. McLeod. 1996. Molecular mimicry in development: identification of ste11+ as a substrate and mei3+ as a pseudosubstrate inhibitor of ran1+ kinase. Cell 87:869880.
56. Liu, Y. J., and, B. D. Hall. 2004. Body plan evolution of ascomycetes, as inferred from an RNA polymerase II phylogeny. Proc. Natl. Acad. Sci. USA 101:45074512.
57. Mata, J.,, R. Lyne,, G. Burns, and, J. Bahler. 2002. The transcriptional program of meiosis and sporulation in fission yeast. Nat. Genet. 32:143147.
58. Miyata, H., and, M. Miyata. 1981. Mode of conjugation in homothallic cells of Schizosaccharomyces pombe. J. Gen. Appl. Microbiol. 27:365369.
59. Nielsen, O. 2004. Mating-type control and differentiation, p. 281–296. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
60. Nielsen, O., and, J. Davey. 1995. Pheromone communication in the fission yeast Schizosaccharomyces pombe. Semin. Cell Biol. 6:95104.
61. Nielsen, O.,, T. Friis, and, S. Kjaerulff. 1996. The Schizosaccharomyces pombe map1 gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression. Mol. Gen. Genet. 253:387392.
62. Noguchi, E.,, C. Noguchi,, L. L. Du, and, P. Russell. 2003. Swi1 prevents replication fork collapse and controls checkpoint kinase Cds1. Mol. Cell. Biol. 23:78617874.
63. Noguchi, E.,, C. Noguchi,, W. H. McDonald,, J. R. Yates III, and P. Russell. 2004. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol. Cell. Biol. 24:83428355.
64. Noma, K.,, C. D. Allis, and, S.I. Grewal. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:11501155.
65. Papadaki, P.,, V. Pizon,, B. Onken, and, E. C. Chang. 2002. Two Ras pathways in fission yeast are differentially regulated by two Ras guanine nucleotide exchange factors. Mol. Cell. Biol. 22:45984606.
66. Petersen, J.,, O. Nielsen,, R. Egel, and, I. M. Hagan. 1998. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J. Cell Biol. 141:12171228.
67. Primig, M.,, R. M. Williams,, E. A. Winzeler,, G. G. Tevzadze,, A. R. Conway,, S. Y. Hwang,, R. W. Davis, and, R. E. Esposito. 2000. The core meiotic transcriptome in budding yeasts. Nat. Genet. 26:415423.
68. Rudolph, C.,, C. Kunz,, S. Parisi,, E. Lehmann,, E. Hartsuiker,, B. Fartmann,, W. Kramer,, J. Kohli, and, O. Fleck. 1999. The msh2 gene of Schizosaccharomyces pombe is involved in mismatch repair, mating-type switching, and meiotic chromosome organization. Mol. Cell. Biol. 19:241250.
69. Shimoda, C., and, T. Nakamura. 2004. Control of late meiosis and ascospore formation, p. 311–327. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
70. Sinclair, A. H.,, P. Berta,, M. S. Palmer,, J. R. Hawkins,, B. L. Griffiths,, M. J. Smith,, J. W. Foster,, A. M. Frischauf,, R. Lovell-Badge, and P. N. Goodfellow. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240244.
71. Singh, G., and, A. J. Klar. 2002. The 2.1-kb inverted repeat DNA sequences flank the mat2,3 silent region in two species of Schizosaccharomyces and are involved in epigenetic silencing in Schizosaccharomyces pombe. Genetics 162:591602.
72. Sipiczki, M. 2000. Where does fission yeast sit on the tree of life? Genome Biol. 1(2):REVIEWS1011. PMID: 11178233
73. Sipiczki,, M. 2004. Fission yeast phylogenesis and evolution, p. 431–443. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
74. Tanaka, K.,, J. Davey,, Y. Imai, and, M. Yamamoto. 1993. Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol. Cell. Biol. 13:8088.
75. Thon, G., and, T. Friis. 1997. Epigenetic inheritance of transcriptional silencing and switching competence in fission yeast. Genetics 145:685696.
76. Thon, G., and, A. J. Klar. 1993. Directionality of fission yeast mating-type interconversion is controlled by the location of the donor loci. Genetics 134:10451054.
77. Thon, G.,, K. P. Bjerling, and, I. S. Nielsen. 1999. Localization and properties of a silencing element near the mat3-M mating-type cassette of Schizosaccharomyces pombe. Genetics 151:945963.
78. Thon, G.,, P. Bjerling,, C. M. Bunner, and, J. Verhein-Hansen. 2002. Expression-state boundaries in the mating-type region of fission yeast. Genetics 161:611622.
79. Thon, G.,, K. R. Hansen,, S. P. Altes,, D. Sidhu,, G. Singh,, J. Verhein-Hansen,, M. J. Bonaduce, and, A. J. Klar. 2005. The Clr7 and Clr8 directionality factors and the Pcu4 cullin mediate heterochromatin formation in the fission yeast Schizosaccharomyces pombe. Genetics 171:15831595.
80. Toone, W. M, and, N. Jones. 2004. Stress responses in S. pombe, p. 57–72. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
81. Tsukada, Y.,, J. Fang,, H. Erdjument-Bromage,, M. E. Warren,, C. H. Borchers,, P. Tempst, and, Y. Zhang. 2006. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811816.
82. Van Heeckeren, W. J.,, D. R. Dorris, and, K. Struhl. 1998. The mating-type proteins of fission yeast induce meiosis by directly activating mei3 transcription. Mol. Cell. Biol. 18:73177326.
83. Vengrova, S., and, J. Z. Dalgaard. 2004. RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. Genes Dev. 18:79804.
84. Vengrova, S., and, J. Z. Dalgaard. 2006. The wild-type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep. 7:5965.
85. Willer, M.,, L. Hoffmann,, U. Styrkarsdottir,, R. Egel,, J. Davey, and, O. Nielsen. 1995. Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe. Mol. Cell. Biol. 15:4964970.
86. Yabana, N., and, M. Yamamoto. 1996. Schizosaccharomyces pombe map1+ encodes a MADS-box-family protein required for cell-type-specific gene expression. Mol. Cell. Biol. 16:34203428.
87. Yamada, T.,, W. Fischle,, T. Sugiyama,, C. D. Allis, and, S. I. Grewal. 2005. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20:173185.
88. Yamamoto, M. 1996. Regulation of meiosis in fission yeast. Cell Struct. Funct. 21:431436.
89. Yamamoto,, M. 2004. Initiation of meiosis, p. 297–309. In R. Egel (ed.), Molecular Biology of Schizosaccharomyces pombe. Springer-Verlag, Berlin, Germany.
90. Yamamoto, M.,, Y. Imai, and, Y. Watanabe. 1997. Mating and sporulation in Schizosaccharomyces pombe, p. 1037–1106. In J. R. Pringle,, J. R. Broach, and, E. W. Jones (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Tables

Generic image for table
Table 8.1

Cell-type-specific genes, controlled by the gene products

Citation: Nielsen O, Egel R. 2007. The Genes of : Expression, Homothallic Switch, and Silencing, p 143-157. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error