1887

Chapter 10 : MAT and Its Role in the Homothallic Ascomycete

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

MAT and Its Role in the Homothallic Ascomycete , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap10-2.gif

Abstract:

Mating-type genes have been identified not only in heterothallic and pseudohomothallic, but also in homothallic members of the . This chapter provides a comprehensive and up-to-date overview of the mating-type genes and their roles in the homothallic ascomycete . The homothallic is the most studied species in the genus. Even though single-spore cultures of are self-fertile, they may be crossed. For example, when two strains are paired in a petri dish, each mycelium gives rise to perithecia and homokaryotic asci. Cloning and sequencing of the entire mating-type locus of revealed that sequences homologous to the and idiomorphs of are directly linked in the mating-type locus of . To elucidate how reproductive modes might have evolved in different members of the , phylogenetic relationships of - and -specific mating-type genes from heterothallic and homothallic members of the genera and have been examined. The phylogenetic analyses suggest that changes in the reproductive strategy may represent a single event in each genus. Transcription of cell-type-specific genes in the ascomycete yeast has been shown to rely on the interaction mating-type proteins. Thus, heterodimerization provides a way of regulating transcription factor function by joining different functional domains.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 10.1
Figure 10.1

Life cycle of . Mi, synchronous mitosis; SF, septum formation; K, karyogamy; MI, first meiotic division; MII, second meiotic division; PM, postmeiotic mitosis; S, spore formation.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.2
Figure 10.2

The mating-type locus of . Map of the mating type () locus of showing exons, introns, and intergenic regions compared to the () and () locus of . The direction of transcription of each of the four genes is indicated by an arrow. -specific sequences are in gray, -specific sequences are in white and light gray, respectively. Introns are indicated as black bars. HMG, high-mobility group domain; HPG, conserved histidine, proline, and glycine domain;α, α domain; ?, no conserved domain.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.3
Figure 10.3

Cotranscription of and and optional splicing of introns. Schematic representation of the genes and and different classes of cotranscripts and encoded SMTA-3 proteins.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.4
Figure 10.4

Fruiting-body development in transformants and transformants carrying the entire mating-type locus of compared to and and to the fertilized wild-type strain. (a) and + (b) strains form only protoperithecia; fertilization of a strain results in the formation of perithecia (d); and (c) and (e) transformants carrying the entire mating-type locus of produce fruiting bodies.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.5
Figure 10.5

Fruiting-body and ascospore development in Δ transformants carrying the entire mating-type locus of () compared to the Δ strain (Δ) and the fertilized wild-type strain (). The Δ strain forms only protoperithecia (a); fertilization of a strain results in the formation of perithecia (b) with four-spored asci (c); self-fertile Δ transformants carrying the entire mating-type locus of produce perithecia (d) containing either rosettes with a reduced number of asci (e and f). Some asci harbor only two ascospores (g).

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.6
Figure 10.6

Interaction network of mating-type proteins and the transcription factors STE12 and MCM1. Interactions validated by two-hybrid analysis and by means of Far Western and protein cross-linking experiments, respectively ( ). Proteins are indicated by ovals and protein interactions with arrows. The thickness of the arrows reflects the strength of the interaction.

Citation: Pöggeler S. 2007. MAT and Its Role in the Homothallic Ascomycete , p 171-188. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch10
1. Arnaise, S.,, R. Debuchy, and, M. Picard. 1997. What is a bona fide mating-type gene? Internuclear complementation of mat mutants in Podospora anserina. Mol. Gen. Genet. 256:169178.
2. Arnaise, S.,, D. Zickler, and, N. L. Glass. 1993. Heterologous expression of mating-type genes in filamentous fungi. Proc. Natl. Acad. Sci. USA 90:66166620.
3. Arnaise, S.,, D. Zickler,, S. Le Bilcot,, C. Poisier, and, R. Debuchy. 2001. Mutations in mating-type genes of the heterothallic fungus Podospora anserina lead to self-fertility. Genetics 159:545556.
4. Badgett, T. C., and, C. Staben. 1999. Interaction between and transactivation by the mating type polypeptides of Neurospora crassa. Fungal Genet. News. Suppl. 46:127.
5. Bardwell, L. 2005. A walk-through of the yeast mating pheromone response pathway. Peptides 26:339350.
6. Beatty,, N. P., M. L. Smith, and, N. L. Glass. 1994. Molecular characterization of mating-type loci in selected homothallic species of Neurospora, Gelasinospora and Anixiella. Mycol. Res. 98:13091316.
7. Bender, A., and G. F. Sprague, Jr. 1987. MAT alpha 1 protein, a yeast transcription activator, binds synergistically with a second protein to a set of cell-type-specific genes. Cell 50:681691.
8. Bobrowicz, P.,, R. Pawlak,, A. Correa,, D. Bell-Pedersen, and D. J. Ebbole. 2002. The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and circadian clock. Mol. Microbiol. 45:795804.
9. Bruhn, L.,, J. J. Hwang-Sum, and G. F. Sprague. 1992. The N-terminal 96 residues of MCM1, a regulator of cell type-specific genes in Saccharomyces cerevisiae, are sufficient for DNA binding, transcription activation, and interaction with α1. Mol. Cell. Biol. 12:35633572.
10. Bruhn, L., and, G. F. J. Sprague. 1994. MCM1 point mutants deficient in expression of alpha-specific genes: residues important for interaction with alpha 1. Mol. Cell. Biol. 14:25342544.
11. Buck, V.,, S. S. Ng,, A. B. Ruiz-Garcia,, K. Papadopoulou,, S. Bhatti,, J. M. Samuel,, M. Anderson,, J. B. A. Millar, and, C. J. McInerny. 2004. Fkh2p and Sep1p regulate mitotic gene transcription in fission yeast. J. Cell Sci. 117:56235632.
12. Cai, L.,, R. Jeewon, and, K. D. Hyde. 2006. Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology. Mycol. Res. 110:137150.
13. Chang, S., and, C. Staben. 1994. Directed replacement of mt A by mt a-1 effects a mating type switch in Neurospora crassa. Genetics 138:7581.
14. Christ, C., and, B. K. Tye. 1991. Functional domains of the yeast transcription/replication factor MCM1. Genes Dev. 5:751763.
15. Coppin, E.,, S. Arnaise,, V. Contamine, and, M. Picard. 1993. Deletion of the mating-type sequences in Podospora anserina abolishes mating without affecting vegetative functions and sexual differentiation. Mol. Gen. Genet. 241:409414.
16. Coppin, E.,, C. de Renty, and R. Debuchy. 2005. The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot. Cell 4:407420.
17. Coppin, E.,, R. Debuchy,, S. Arnaise, and, M. Picard. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411428.
18. Davis, R., and, D. D. Perkins. 2002. Neurospora: a model of model microbes. Nat. Rev. Genet. 3:713.
19. Debuchy, R. 1999. Internuclear recognition: a possible connection between euascomycetes and homobasidiomycetes. Fungal Genet. Biol. 27:218223.
20. Debuchy,, R., S. Arnaise, and, G. Lecellier. 1993. The MAT−allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol. Gen. Genet. 241:667673.
21. Debuchy, R., and, E. Coppin. 1992. The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol. Gen. Genet. 233:113121.
22. Debuchy, R., and B. G. Turgeon. 2006. Mating-type structure, evolution, and function in euascomycetes, p. 293–323. In U. Kües and R. Fischer (ed.), Growth, Differentiation and Sexuality, vol. I. Springer-Verlag, Berlin, Germany.
23. Dementhon, K.,, S. J. Saupe, and, C. Clave. 2004. Characterization of IDI-4, a bZIP transcription factor inducing autophagy and cell death in the fungus Podospora anserina. Mol. Microbiol. 53:16251640.
24. Desjardins, A. E.,, D. W. Brown,, S.-H. Yun,, R. H. Proctor,, T. Lee,, R. D. Plattner,, S.-W. Lu, and, B. G. Turgeon. 2004. Deletion and complementation of the mating type (MAT) locus of the wheat head blight pathogen Gibberella zeae. Appl. Environ. Microbiol. 70:24372444.
25. Dolan, J. W.,, C. Kirkman, and, S. Fields. 1989. The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc. Natl. Acad. Sci. USA 86:57035707.
26. Eriksson, O. E. 2004. Outline of Ascomyta—2006. Myconet 12:182.
27. Esser,, K. 1982. CryptogamsCyanobacteria, Algae, Fungi, Lichens. Cambridge University Press, London, United Kingdom.
28. Esser, K., and, J. Straub. 1958. Genetische Untersuchungen an Sordaria macrospora Auersw.: Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z. Vererbungsl. 89:729746.
29. Ferreira, A. V.,, Z. An,, R. L. Metzenberg, and, N. L. Glass. 1998. Characterization of mat A-2, mat A-3 and delta-matA mating-type mutants of Neurospora crassa. Genetics 148:10691079.
30. Ferreira, A. V.,, S. Saupe, and, N. L. Glass. 1996. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol. Gen. Genet. 250:767774.
31. Fields, W. G. 1970. An introduction to the genus Sordaria. Neurospora Newsl. 16:1417.
32. Galagan,, J. E., S. E. Calvo,, K. A. Borkovich,, E. U. Selker,, N. D. Read,, D. Jaffe,, W. FitzHugh,, L. J. Ma,, S. Smirnov,, S. Purcell,, B. Rehman,, T. Elkins,, R. Engels,, S. Wang,, C. B. Nielsen,, J. Butler,, M. Endrizzi,, D. Qui,, P. Ianakiev,, D. Bell-Pedersen,, M. A. Nelson,, M. Werner-Washburne,, C. P. Selitrennikoff,, J. A. Kinsey,, E. L. Braun,, A. Zelter,, U. Schulte,, G. O. Kothe,, G. Jedd,, W. Mewes,, C. Staben,, E. Marcotte,, D. Greenberg,, A. Roy,, K. Foley,, J. Naylor,, N. Stange-Thomann,, R. Barrett,, S. Gnerre,, M. Kamal,, M. Kamvysselis,, E. Mauceli,, C. Bielke,, S. Rudd,, D. Frishman,, S. Krystofova,, C. Rasmussen,, R. L. Metzenberg,, D. D. Perkins,, S. Kroken,, C. Cogoni,, G. Macino,, D. Catcheside,, W. Li,, R. J. Pratt,, S. A. Osmani,, C. P. DeSouza,, L. Glass,, M. J. Orbach, J. A. Berglund,, R. Voelker,, O. Yarden,, M. Plamann,, S. Seiler,, J. Dunlap,, A. Radford,, R. Aramayo,, D. O. Natvig,, L. A. Alex,, G. Mannhaupt,, D. J. Ebbole,, M. Freitag,, I. Paulsen,, M. S. Sachs,, E. S. Lander,, C. Nusbaum, and, B. Birren. 2003. The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859868.
33. Glass, N. L.,, J. Grotelueschen, and, R. L. Metzenberg. 1990. Neurospora crassa A mating-type region. Proc. Natl. Acad. Sci. USA 87:49124916.
34. Glass, N. L.,, R. L. Metzenberg, and, N. B. Raju. 1990. Homothallic Sordariaceae from nature: the absence of strains containing only a mating type sequences. Exp. Mycol. 14:274289.
35. Glass, N. L., and, M. L. Smith. 1994. Structure and function of a mating-type gene from the homothallic species Neurospora africana. Mol. Gen. Genet. 244:401409.
36. Glass, N. L.,, S. J. Vollmer,, C. Staben,, J. Grotelueschen,, R. L. Metzenberg, and, C. Yanofsky. 1988. DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570573.
37. Grosschedl, R.,, K. Giese, and, J. Pagel. 1994. HMG domain proteins: architectural elements in the assembly of nucleoprotein structures. Trends Genet. 10:94100.
38. Gustin, M. C.,, J. Albertyn,, M. Alexander, and, K. Davenport. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:12641300.
39. Hartmann, H. A.,, R. Kahmann, and, M. Bölker. 1996. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 15:16321641.
40. Herskowitz, I. 1989. A regulatory hierarchy for cell specialization in yeast. Nature 342:749757.
41. Heslot,, H. 1958. Contribution à l’étude cytogénétique des Sordariacées. Rev. Cytol. Biol. Végétal. 19(Suppl. 2):1255.
42. Hiscock, S. J., and, U. Kües. 1999. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int. Rev. Cytol. 193:165295.
43. Inderbitzin, P.,, J. Harkness,, B. G. Turgeon, and, M. L. Berbee. 2005. Lateral transfer of mating system in Stemphylium. Proc. Natl. Acad. Sci. USA 102:1139011395.
44. Ivey, F. D.,, A. M. Kays, and, K. A. Borkovich. 2002. Shared and independent roles for a Gai protein and adenylyl cyclase in regulating development and Stress responses in Neurospora crassa. Eukaryot. Cell 1:634642.
45. Jacobsen, S.,, M. Wittig, and, S. Pöggeler. 2002. Interaction between mating-type proteins from the homothallic fungus Sordaria macrospora. Curr. Genet. 41:150-158.
46. Johnson, A. D. 1995. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5:552558.
47. Keleher,, C. A., C. Goutte, and, A. D. Johnson. 1988. The yeast cell-type-specific repressor alpha 2 acts cooperatively with a non-cell-type-specific protein. Cell 53:927936.
48. Kim, H., and, K. A. Borkovich. 2004. A pheromone receptor gene, pre1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol. Microbiol. 52:17811798.
49. Kim, H.,, R. L. Metzenberg, and, M. A. Nelson. 2002. Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot. Cell 1:987999.
50. Kirk, P.,, P. Cannon,, J. C. David, and, J. Stalpers. 2001. Ainsworth & Bisby’s Dictionary of the Fungi, 9th ed. CABI International, Wallingford, United Kingdom.
51. Krystofova, S., and, K. A. Borkovich. 2005. The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot. Cell 4:365378.
52. Kuo, M.,, E. Nadeau, and, E. Grayhack. 1997. Multiple phosphorylated forms of the Saccharomyces cerevisiae Mcm1 protein include an isoform induced in response to high salt concentrations. Mol. Cell. Biol. 17:819832.
53. Lee, J.,, T. Lee,, Y. W. Lee,, S. H. Yun, and, B. G. Turgeon. 2003. Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol. Microbiol. 50:145152.
54. Lee, S. H.,, S. Lee,, D. Choi,, Y. W. Lee, and, S. H. Yun. 2006. Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet. Biol. 43:295310.
55. Leubner-Metzger, G.,, B. A. Horwitz,, O. C. Yoder, and, B. G. Turgeon. 1997. Transcripts at the mating type locus of Cochliobolus heterostrophus. Mol. Gen. Genet. 256:661673.
56. Li, D.,, P. Bobrowicz,, H. H. Wilkinson, and, D. J. Ebbole. 2005. A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:10911104.
57. Lundquist, N. 1972. Nordic Sordariaceae s.lat. Symb. Bot. Ups. 20:1314.
58. Madhani,, H. D., and G. R. Fink. 1997. Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:13141317.
59. Maher, M.,, F. Cong,, D. Kindelberger,, K. Nasmyth, and, S. Dalton. 1995. Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol. Cell. Biol. 15:31293137.
60. Masloff, S.,, S. Pöggeler, and U. Kück. 1999. The pro1+gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191199.
61. Mayrhofer, S., and, S. Pöggeler. 2005. Functional characterization of an a-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot. Cell 4:661672.
62. Mayrhofer, S.,, J. M. Weber, and, S. Pöggeler. 2006. Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:15211533.
63. McInerny, C. J.,, J. F. Partridge,, G. E. Mikesell,, D. P. Creemer, and, L. L. Breeden. 1997. A novel Mcm1-dependent element in the SWI4, CLN3, CDC6, and CDC47 promoters activates M/G1-specific transcription. Genes Dev. 11:12771288.
64. Messenguy, F., and, E. Dubois. 1993. Genetic evidence for a role for MCM1 in the regulation of arginine metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:25862592.
65. Messenguy, F., and, E. Dubois. 2003. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:121.
66. Metzenberg, R. L., and, N. L. Glass. 1990. Mating type and mating strategies in Neurospora. Bioessays 12:5359.
67. Nolting, N., and, S. Pöggeler. 2006. A MADS-box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot. Cell 5:10431056.
68. Nolting, N., and, S. Pöggeler. 2006. A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol. Microbiol. 62:853868.
69. Nowrousian, M.,, C. Ringelberg,, J. C. Dunlap,, J. J. Loros, and, U. Kück. 2005. Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol. Gen. Genomics 273:137149.
70. Nowrousian, M.,, C. Würtz, S. Pöggeler, and U. Kück. 2004. Comparative sequence analysis of Sordaria macrospora and Neurospora crassa as a means to improve genome annotation. Fungal Genet. Biol. 41:285292.
71. O’Donnell, K.,, T. J. Ward,, D. M. Geiser,, H. Corby Kistler, and T. Aoki. 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet. Biol. 41:600623.
72. Park, G.,, C. Xue,, L. Zheng,, S. Lam, and, J. R. Xu. 2002. MST12 regulates infectious growth but not appressorium formation in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 15:183192.
73. Passmore, S.,, R. Elble, and, B. K. Tye. 1989. A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev. 3:921935.
74. Perkins, D. D., and, R. H. Davis. 2000. Neurospora at the millennium. Fungal Genet. Biol. 31:153167.
75. Philley, M. L., and, C. Staben. 1994. Functional analyses of the Neurospora crassa MT a-1 mating type polypeptide. Genetics 137:715722.
76. Picard, M.,, R. Debuchy, and, E. Coppin. 1991. Cloning the mating types of the heterothallic fungus Podospora anserina: developmental features of haploid transformants carrying both mating types. Genetics 128:539547.
77. Pöggeler, S. 1999. Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetes. Curr. Genet. 36:222231.
78. Pöggeler,, S. 2000. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr. Genet. 37:403411.
79. Pöggeler, S., and, U. Kück. 2000. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol. Gen. Genet. 263:292301.
80. Pöggeler, S., and, U. Kück. 2001. Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:917.
81. Pöggeler, S., and, U. Kück. 2004. A WD40 repeat protein regulates fungal cell differentiation and can functionally be replaced by the mammalian homologue striatin. Eukaryot. Cell 3:232240.
82. Pöggeler, S.,, S. Masloff,, S. Jacobsen, and, U. Kück. 2000. Karyotype polymorphism correlates with intraspecific infertility in the homothallic ascomycete Sordaria macrospora. J. Evol. Biol. 13:281289.
83. Pöggeler, S., M. Nowrousian, and U. Kück. 2006. Fruiting-body development in ascomycetes, p. 326–355. In U. Kües and R. Fischer (ed.), Growth, Differentation and Sexuality, 2nd ed., vol. I. Springer-Verlag, Berlin, Germany.
84. Pöggeler, S., M. Nowrousian, C. Ringelberg, J. Loros, J. Dunlap, and U. Kück. 2006. Microarray and real time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol. Gen. Genomics 275:492503.
85. Pöggeler, S.,, S. Risch,, U. Kück, and H. D. Osiewacz. 1997. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567580.
86. Randall, T. A., and, R. L. Metzenberg. 1995. Species-specific and mating-type specific DNA regions adjacent to mating-type idiomorphs in the genus Neurospora. Genetics 141:119136.
87. Ribar, B.,, A. Grallert,, E. Olah, and, Z. Szallasi. 1999. Deletion of the sep1(+) forkhead transcription factor homologue is not lethal but causes hyphal growth in Schizosaccharomyces pombe. Biochem. Biophys. Res. Commun. 263:465474.
88. Roberts, C. J.,, B. Nelson,, M. J. Marton,, R. Stoughton,, M. R. Meyer,, H. A. Bennett,, Y. D. He,, H. Dai,, W. L. Walker,, T. R. Hughes,, M. Tyers,, C. Boone, and, S. H. Friend. 2000. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873880.
89. Robertson, S. J.,, D. J. Bond, and, N. D. Read. 1998. Homothallism and heterothallism in Sordaria brevicollis. Mycol. Res. 102:12151223.
90. Saupe, S.,, L. Stenberg,, K. T. Shiu,, A. J. Griffiths, and, N. L. Glass. 1996. The molecular nature of mutations in the mt A-1 gene of the Neurospora crassa A idiomorph and their relation to mating-type function. Mol. Gen. Genet. 250:115122.
91. Shiu, P. K., and, N. L. Glass. 2000. Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr. Opin. Microbiol. 3:183188.
92. Shore, P., and, A. D. Sharroks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:113.
93. Souza, C. A.,, C. C. Silva, and, A. V. Ferreira. 2003. Sex in fungi: lessons of gene regulation. Genet. Mol. Res. 2:136147.
94. Staben, C., and, C. Yanofsky. 1990. Neurospora crassa a mating-type region. Proc. Natl. Acad. Sci. USA 87:49174921.
95. Tajadura, V.,, B. Garcia,, I. Garcia,, P. Garcia, and, Y. Sanchez. 2004. Schizosaccharomyces pombe Rgf3p is a specific Rho1 GEF that regulates cell wall beta-glucan biosynthesis through the GTPase Rho1p. J. Cell Sci. 117:61636174.
96. Tsuji, G.,, S. Fujii,, S. Tsuge,, T. Shiraishi, and, Y. Kubo. 2003. The Colletotrichum lagenarium Ste12-like gene CST1 is essential for appressorium penetration. Mol. Plant-Microbe Interact. 16:315325.
97. Turgeon, B. G. 1998. Application of mating-type gene technology to problems in fungal biology. Annu. Rev. Phytopathol. 36:115137.
98. Turgeon,, B. G., H. Bohlmann,, L. M. Ciuffetti,, S. K. Christiansen,, G. Yang,, W. Schäfer, and O. C. Yoder. 1993. Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol. Gen. Genet. 238:270284.
99. Turina, M.,, A. Prodi, and, N. K. Alfen. 2003. Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet. Biol. 40:242251.
100. Vallim, M. A.,, K. A. Miller, and, B. L. Miller. 2000. Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol. Microbiol. 36:290301.
101. Wirsel, S.,, B. G. Turgeon, and, O. C. Yoder. 1996. Deletion of the Cochliobolus heterostrophus mating-type (MAT) locus promotes the function of MAT transgenes. Curr. Genet. 29:241249.
102. Yuan, Y. O.,, I. L. Stroke, and, S. Fields. 1993. Coupling of cell identity to signal response in yeast: interaction between the alpha 1 and STE12 proteins. Genes Dev. 7:15841597.
103. Yun, S. H.,, T. Arie,, I. Kaneko,, O. C. Yoder, and, B. G. Turgeon. 2000. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet. Biol. 31:720.
104. Yun, S.-H.,, M. L. Berbee,, O. C. Yoder, and, B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96:55925597.
105. Zickler, D. 1977. Development of the synaptonemal complex and the “recombination nodules” during meiotic prophase in the seven bivalents of the fungus Sordaria macrospora Auersw. Chromosoma 61:289316.
106. Zickler,, D. 2006. From early homologue recognition to synaptonemal complex formation. Chromosoma 115:158174.
107. Zickler, D.,, S. Arnaise,, E. Coppin,, R. Debuchy, and, M. Picard. 1995. Altered mating-type identity in the fungus Podospora anserina leads to selfish nuclei, uniparental progeny, and haploid meiosis. Genetics 140:493503.
108. Zickler, D.,, P. Moreau,, A. D. Huynh, and, A. M. Slezec. 1992. Correlation between pairing initiation sites, recombination nodules and meiotic recombination in Sordaria macrospora. Genetics 132:135148.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error