1887

Chapter 12 : The Evolutionary Implications of an Asexual Lifestyle Manifested by

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Evolutionary Implications of an Asexual Lifestyle Manifested by , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap12-2.gif

Abstract:

This chapter highlights that a truly comprehensive understanding of the evolution of sexuality in fungi needs to also account for the occurrence of their antithesis, the mitosporic asexual species. Recent work on the spatial population genetics of one such mitosporic species, the biverticilliate mycosis agent , is shedding much-needed light on the processes and consequences of asexuality in fungi. The accumulation of annotated fungal genome projects has shown that almost all species so far examined contain the genes that are necessary for mating processes, pathway signaling, and meiosis. The accumulation of annotated fungal genome projects has shown that almost all species so far examined contain the genes that are necessary for mating processes, pathway signaling, and meiosis. Evolution is a stochastic process and is most often conceptualized by the classic Wright-Fisher model. This model idealizes species as a group of individuals, of population size N, that draw equally, and synchronously, from an infinite pool of gametes, in this manner creating the next generation, N + 1. is a fungus of the family that has emerged since 1990 as a significant agent of human mycosis. The fungus causes a disease, , that occurs in immunosuppressed patients. In summary, the author has put forward an argument suggesting that in fungi where sexual reproduction is facultative loss-of-function mutations in mating-type loci will, generally speaking, be selectively neutral.

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12

Key Concept Ranking

Multilocus Sequence Typing
0.436885
Penicillium marneffei
0.41481483
Human Pathogenic Fungi
0.41339645
0.436885
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 12.1
Figure 12.1

Principal-components analysis of the MTs.

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.2
Figure 12.2

Neighbor-joining tree of the MLMT data set.

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.3
Figure 12.3

The relationship between effective population size and population structure inferred from the MLST data set.

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4
Figure 12.4

eBURST groupings of two simulated populations evolving under a Wright/Fisher model, with = 1,000 and identical mutation rates. For population A, recombination = 0, and for population B, the recombination rate is twice the background mutation rate. Simulations and diagrams were produced by Katy Turner.

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch12
1. Anderson, J. B., and, L. M. Kohn. 1995. Clonality in soilborne, plant-pathogenic fungi. Annu. Rev. Phytopathol. 33:369391.
2. Banke, S.,, A. Peschon, and, B. A. McDonald. 2004. Phylogenetic analysis of globally distributed Mycosphaerella graminicola populations based on three DNA sequence loci. Fungal Genet. Biol. 41:226238.
3. Barraclough, T. G., C. W. Birky, Jr., and A. Burt. 2003. Diversification in sexual and asexual organisms. Evolution Int. J. Org. Evolution 57:21662172.
4. Barton, N. H., and, B. Charlesworth. 1998. Why sex and recombination? Science 281:19861990.
5. Burt, A.,, D. A. Carter,, G. L. Koenig,, T. J. White, and, J. W. Taylor. 1996. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis. Proc. Natl. Acad. Sci. USA 93:770773.
6. Capponi, M.,, P. Sureau, and, G. Segretain. 1956. Penicillose de Rhizomys sinensis. Bull. Soc. Pathol. Exot. 49:418421.
7. Carbone, I.,, J. B. Anderson, and, L. M. Kohn. 1999. Patterns of descent in clonal lineages and their multilocus fingerprints are resolved with combined gene genealogies. Evolution 53:1121.
8. Chariyalertsak, S.,, T. Sirisanthana,, K. Supparatpinyo,, J. Praparattanapan, and, K. E. Nelson. 1997. Case-control study of risk factors for Penicillium marneffei infection in human immunodeficiency virus-infected patients in northern Thailand. Clin. Infect. Dis. 24:10801086.
9. Chariyalertsak, S.,, P. Vanittanakom,, K. E. Nelson,, T. Sirisanthana, and, N. Vanittanakom. 1996. Rhizomys sumatrensis and Cannomys badius, new natural animal hosts of Penicillium marneffei. J. Med. Vet. Mycol. 34:105110.
10. Charlesworth, B. 1996. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6:149162.
11. Dettman,, J. R., D. J. Jacobson, and, J. W. Taylor. 2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. Evolution 57:27032720.
12. Dodgson, A. R.,, C. Pujol,, D. W. Denning,, D. R. Soll, and, A. J. Fox. 2003. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J. Clin. Microbiol. 41:57095717.
13. Ewens, W. J. 1979. Mathematical Population Genetics. Springer, Berlin, Germany.
14. Fay, J. C.,, H. L. McCullough,, P. D. Sniegowski, and, M. B. Eisen. 2004. Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol. 5:R26.
15. Feil, E. J.,, B. C. Li,, D. M. Aanensen,, W. P. Hanage, and, B. G. Spratt. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186:15181530.
16. Feil, E. J., and, B. G. Spratt. 2001. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55:561590.
17. Felsenstein, J. 1974. Evolutionary advantage of recombination. Genetics 78:737756.
18. Finlay,, B. J. 2002. Global dispersal of free-living microbial eukaryote species. Science 296:10611063.
19. Fisher, M. C.,, D. Aanensen,, S. de Hoog, and N. Vanittanakom. 2004. Multilocus microsatellite typing system for Penicillium marneffei reveals spatially structured populations. J. Clin. Microbiol. 42:50655069.
20. Fisher, M. C.,, G. S. de Hoog, and N. Vannittanakom. 2004. A highly discriminatory multilocus microsatellite typing system (MLMT) for Penicillium marneffei. Mol. Ecol. Notes 4:515518.
21. Fisher, M. C., W. P. Hanage, S. de Hoog, E. Johnson, M. D. Smith, N. J. White, and N. Vanittanakom. 2005. Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Pathog. 2:159165.
22. Fisher, M. C.,, G. L. Koenig,, T. J. White,, G. San-Blas,, R. Negroni,, I. G. Alvarez,, B. Wanke, and, J. W. Taylor. 2001. Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc. Natl. Acad. Sci. USA 98:45584562.
23. Fisher, M. C.,, B. Rannala,, V. Chaturvedi, and, J. W. Taylor. 2002. Disease surveillance in recombining pathogens: multilocus genotypes identify sources of human Coccidioides infections. Proc. Natl. Acad. Sci. USA 99:90679071.
24. Franzot, S. P.,, J. S. Hamdan,, B. P. Currie, and, A. Casadevall. 1997. Molecular epidemiology of Cryptococcus neoformans in Brazil and the United States: evidence for both local genetic differences and a global clonal population structure. J. Clin. Microbiol. 35:22432251.
25. Fraser, J. A.,, S. S. Giles,, E. C. Wenink,, S. G. Geunes-Boyer,, J. R. Wright,, S. Diezmann,, A. Allen,, J. E. Stajich,, F. S. Dietrich,, J. R. Perfect, and, J. Heitman. 2005. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:13601364.
26. Goddard, M. R.,, H. C. Godfray, and, A. Burt. 2005. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434:636640.
27. Gourbiere, S., and, F. Gourbiere. 2002. Competition between unit-restricted fungi: a metapopulation model. J. Theor. Biol. 217:351368.
28. Higgins, K., and, M. Lynch. 2001. Metapopulation extinction caused by mutation accumulation. Proc. Natl. Acad. Sci. USA 98:29282933.
29. Johannesson, H., and, J. Stenlid. 2003. Molecular markers reveal genetic isolation and phylogeography of the S and F intersterility groups of the wood-decay fungus Heterobasidion annosum. Mol. Phylogenet. Evol. 29:94101.
30. Johnson, L. J.,, V. Koufopanou,, M. R. Goddard,, R. Hetherington,, S. M. Schafer, and, A. Burt. 2004. Population genetics of the wild yeast Saccharomyces paradoxus. Genetics 166:4352.
31. Kasuga, T.,, T. J. White,, G. Koenig,, J. McEwen,, A. Restrepo,, E. Castaneda,, C. Da Silva Lacaz,, E. M. HeinsVaccari,, R. S. De Freitas,, R. M. Zancope-Oliveira,, Z. Qin,, R. Negroni,, D. A. Carter,, Y. Mikami,, M. Tamura,, M. L. Taylor,, G. F. Miller,, N. Poonwan, and, J. W. Taylor. 2003. Phylogeography of the fungal pathogen Histoplasma capsulatum. Mol. Ecol. 12:33833401.
32. Kasuga, T.,, T. J. White, and, J. W. Taylor. 2002. Estimation of nucleotide substitution rates in Eurotiomycete fungi. Mol. Biol. Evol. 19:23182324.
33. Koufopanou, V.,, A. Burt,, T. Szaro, and, J. W. Taylor. 2001. Gene genealogies, cryptic species, and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol. Biol. Evol. 18:12461258.
34. Koufopanou, V.,, A. Burt, and, J. W. Taylor. 1997. Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc. Natl. Acad. Sci. USA 94:54785482.
35. Kronstad, J. W., and, C. Staben. 1997. Mating type in filamentous fungi. Annu. Rev. Genet. 31:245276.
36. Laize, V.,, F. Tacnet,, P. Ripoche, and, S. Hohmann. 2000. Polymorphism of Saccharomyces cerevisiae aquaporins. Yeast 16:897903.
37. Lee, N.,, G. Bakkeren,, K. Wong,, J. E. Sherwood, and, J. W. Kronstad. 1999. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc. Natl. Acad. Sci. USA 96:1502615031.
38. Leslie, J. F., and, K. K. Klein. 1996. Female fertility and mating type effects on effective population size and evolution in filamentous fungi. Genetics 144:557567.
39. Li, P. C.,, M. C. Tsui, and, K. F. Ma. 1992. Penicillium marneffei: indicator disease for AIDS in South East Asia. AIDS 6:240241.
40. Litvintseva, A. P.,, R. Thakur,, R. Vilgalys, and, T. G. Mitchell. 2005. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172:22232238.
41. Lobuglio, K. F.,, J. I. Pitt, and, J. W. Taylor. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592604.
42. Lynch, M. 2006. The origins of eukaryotic gene structure. Mol. Biol. Evol. 23:450468.
43. Maiden,, M. C., J. A. Bygraves,, E. Feil,, G. Morelli,, J. E. Russell,, R. Urwin,, Q. Zhang,, J. Zhou,, K. Zurth,, D. A. Caugant,, I. M. Feavers,, M. Achtman, and, B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95:31403145.
44. Maruyama, T., and, M. Kimura. 1980. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent. Proc. Natl. Acad. Sci. USA 77:67106714.
45. Maynard-Smith, J.,, N. H. Smith,, M. O’Rourke, and B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:43844388.
46. Maynard Smith, J. 1978. The Evolution of Sex. Cambridge Univ. Press, Cambridge, United Kingdom.
47. Mosse, M. O.,, P. Linder,, J. Lazowska, and, P. P. Slonimski. 1993. A comprehensive compilation of 1001 nucleotide sequences coding for proteins from the yeast Saccharomyces cerevisiae (= ListA2). Curr. Genet. 23:6691.
48. Paoletti, M.,, C. Rydholm,, E. U. Schwier,, M. J. Anderson,, G. Szakacs,, F. Lutzoni,, J. P. Debeaupuis,, J. P. Latge,, D. W. Denning, and, P. S. Dyer. 2005. Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr. Biol. 15:12421248.
49. Sakai, A.,, T. Chibazakura,, Y. Shimizu, and, F. Hishinuma. 1992. Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 20:62276233.
50. Smouse, P. E., and, R. Peakall. 1999. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82(Pt. 5):561573.
51. Sugita, T.,, R. Ikeda, and, T. Shinoda. 2001. Diversity among strains of Cryptococcus neoformans var. gattii as revealed by a sequence analysis of multiple genes and a chemotype analysis of capsular polysaccharide. Microbiol. Immunol. 45:757768.
52. Tavanti, A.,, N. A. Gow,, S. Senesi,, M. C. Maiden, and, F. C. Odds. 2003. Optimization and validation of multilocus sequence typing for Candida albicans. J. Clin. Microbiol. 41:37653776.
53. Taylor, J.,, D. Jacobson, and, M. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197246.
54. Taylor, J. W., and, M. C. Fisher. 2003. Fungal multilocus sequence typing—it’s not just for bacteria. Curr. Opin. Microbiol. 6:351356.
55. Taylor, J. W.,, D. J. Jacobson,, S. Kroken,, T. Kasuga,, D. M. Geiser,, D. S. Hibbett, and, M. C. Fisher. 2001. The phylogenetic species concept in fungi. Fungal Genet. Biol. 31:2132.
56. Vanittanakom, N., C. R. Cooper, Jr., M. C. Fisher, and T. Sirisanthana. 2006. Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects. Clin. Microbiol. Rev. 19:95110.
57. Vanittanakom, N.,, M. Mekaprateep,, P. Sriburee,, P. Vanittanakom, and, P. Khanjanasthiti. 1995. Efficiency of the flotation method in the isolation of Penicillium marneffei from seeded soil. J. Med. Vet. Mycol. 33:271273.
58. Whitlock, M. C., and, N. H. Barton. 1997. The effective size of a subdivided population. Genetics 146:427441.
59. Winzeler, E. A.,, D. R. Richards,, A. R. Conway,, A. L. Goldstein,, S. Kalman,, M. J. McCullough,, J. H. McCusker,, D. A. Stevens,, L. Wodicka,, D. J. Lockhart, and, R. W. Davis. 1998. Direct allelic variation scanning of the yeast genome. Science 281:11941197.
60. Yeadon, P. J., and, D. E. A. Catcheside. 1999. Polymorphism around cog extends into adjacent structural genes. Curr. Genet. 35:631637.

Tables

Generic image for table
Table 12.1

Estimates of noncoding variation in fungi and derived effective population sizes

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12
Generic image for table
Table 12.2

Multilocus linkage disequilibria for three populations of in the Eastern and Western clades

Citation: Fisher M. 2007. The Evolutionary Implications of an Asexual Lifestyle Manifested by , p 201-212. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error