1887

Chapter 14 : Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap14-2.gif

Abstract:

The best-studied species to date are the human pathogens and . However, neither of these species is as yet known to possess a complete meiotic sexual cycle. , , and are three members of this genus that are exciting prospects for further study. Of the three species discussed in this chapter, the sexual life cycle has been the best studied for this species. Multiple types of media are capable of inducing mating including dilute potato dextrose agar, 1% malt extract media, sodium acetate, yeast carbon base, V8, and SLAD. The anamorph has been cultured from a variety of ecological niches, including human clinical specimens, insects, fruit, and decaying matter. The sexual cycle of was first identified in 1952 by Wickerham and Burton, after recognizing that some yeasts previously classified to non-ascosporeforming genera actually represented the anamorphic form of a sexual species. That sexual species exist forms the basis of the argument that loss or restriction of sexual reproduction is the evolved state, possibly due to the energy expenditure required to undergo meiosis or to limit genetic exchange in a pathogen highly evolved to its host niche. Thus, continued study of the species complex will provide insight on interesting evolutionary questions regarding the evolution of signal transduction pathways, sexual reproduction, commensalism, and pathogenesis.

Citation: Reedy J, Heitman J. 2007. Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , p 235-245. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 14.1
Figure 14.1

Phylogeny of anamorphic and teleomorphic species. Species are designated by the teleomorph or anamorph designation or both. An asterisk indicates the proposed point of CUG codon capture and the expansion of the locus to include , and genes. Species with gray shading are those that encode CTG as serine rather than leucine. Black dots indicate teleomorphic species with a anamorph. Node numbers are indicated above each branch. Phylogeny is adapted from Diezmann et al. (11).

Citation: Reedy J, Heitman J. 2007. Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , p 235-245. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.2
Figure 14.2

Life cycle of . (A) Diagrammatic representation of the life cycle. (B) Differential interference contrast images of each stage of the life cycle. Cells of opposite mating types were incubated on dilute potato dextrose agar media, stained with DAPI (4′,6′-diamidino-2-phenylindole), and photographed at 24 to 72 h after coincubation. Scale bar is 5µm. Haploid yeast cells of opposite mating types undergo conjugation. Following conjugation one parental nuclei traverses the conjugation tube to enter the cell of the mating partner. Asci formed contain 1 to 2 clavate ascospores per ascus.

Citation: Reedy J, Heitman J. 2007. Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , p 235-245. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.3
Figure 14.3

Mating-type-like loci of species. (A) Depiction of the α loci of and . (B) loci of , , and . The genes contained within the loci are represented by black arrows. The genes flanking the loci are depicted in white. The absence of a gene in a particular locus is denoted by an X.

Citation: Reedy J, Heitman J. 2007. Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , p 235-245. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch14
1. Ahearn, D. G., and, M. S. McGlohn. 1984. In vitro susceptibilities of sucrose-negative Candida tropicalis, Candida lusitaniae, and Candida norvegensis to amphotericin B, 5-fluorocytosine, miconazole, and ketoconazole. J. Clin. Microbiol. 19:412416.
2. Bai, F. Y. 1996. Separation of Candida fermentati comb. nov. from Candida guilliermondii by DNA base composition and electrophoretic karyotyping. Syst. Appl. Microbiol. 19:178181.
3. Bai,, F. Y., H. Y. Liang, and, J. H. Jia. 2000. Taxonomic relationships among the taxa in the Candida guilliermondii complex, as revealed by comparative electrophoretic karyotyping. Int. J. Syst. Evol. Microbiol. 50(Pt. 1):417422.
4. Barnett, J. A.,, R. W. Payne, and, D. Yarrow. 2000. Yeasts: Characteristics and Identification, 3rd ed. Cambridge University Press, Cambridge, United Kingdom.
5. Barns, S. M.,, D. J. Lane,, M. L. Sogin,, C. Bibeau, and, W. G. Weisburg. 1991. Evolutionary relationships among pathogenic Candida species and relatives. J. Bacteriol. 173:22502255.
6. Bennett, R. J., and, A. D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. EMBO J. 22:25052515.
7. Bennett, R. J., and, A. D. Johnson. 2005. Mating in Candida albicans and the search for a sexual cycle. Annu. Rev. Microbiol. 59:233255.
8. Blinkhorn, R. J.,, D. Adelstein, and, P. J. Spagnuolo. 1989. Emergence of a new opportunistic pathogen, Candida lusitaniae. J. Clin. Microbiol. 27:236240.
9. Cai, J.,, I. N. Roberts, and, M. D. Collins. 1996. Phylogenetic relationships among members of the ascomycetous yeast genera Brettanomyces, Debaryomyces, Dekkera, and Kluyveromyces deduced by small-subunit rRNA gene sequences. Int. J. Syst. Bacteriol. 46:542549.
10. Daniel, H. M.,, T. C. Sorrell, and, S. A. Meyer. 2001. Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs. Int. J. Syst. Evol. Microbiol. 51:15931606.
11. Diezmann, S.,, C. J. Cox,, G. Schonian,, R. J. Vilgalys, and, T. G. Mitchell. 2004. Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J. Clin. Microbiol. 42:56245635.
12. Doi, M.,, M. Homma,, A. Chindamporn, and, K. Tanaka. 1992. Estimation of chromosome number and size by pulsed-field gel electrophoresis (PFGE) in medically important Candida species. J. Gen. Microbiol. 138:22432251.
13. Essayag, S. M.,, G. G. Baily,, D. W. Denning, and, J. P. Burnie. 1996. Karyotyping of fluconazole-resistant yeasts with phenotype reported as Candida krusei or Candida inconspicua. Int. J. Syst. Bacteriol. 46:3540.
14. François, F.,, T. Noël, R. Pépin, A. Brulfert,, C. Chastin,, A. Favel, and, J. Villard. 2001. Alternative identification test relying upon sexual reproductive abilities of Candida lusitaniae strains isolated from hospitalized patients. J. Clin. Microbiol. 39:39063914.
15. Fukuoka, T.,, D. A. Johnston,, C. A. Winslow,, M. J. de Groot,, C. Burt,, C. A. Hitchcock, and, S. G. Filler. 2003. Genetic basis for differential activities of fluconazole and voriconazole against Candida krusei. Antimicrob. Agents Chemother. 47:12131219.
16. Gargeya, I. B.,, W. R. Pruitt,, R. B. Simmons,, S. A. Meyer, and, D. G. Ahearn. 1990. Occurrence of Clavispora lusitaniae, the teleomorph of Candida lusitaniae, among clinical isolates. J. Clin. Microbiol. 28:22242227.
17. Hartwell, L. H. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85:811822.
18. Hayford,, A. E., and M. Jakobsen. 1999. Characterization of Candida krusei strains from spontaneously fermented maize dough by profiles of assimilation, chromosome profile, polymerase chain reaction and restriction endonuclease analysis. J. Appl. Microbiol. 87:2940.
19. Hazen, K. C. 1995. New and emerging yeast pathogens. Clin. Microbiol. Rev. 8:462478.
20. Heitman,, J. 2006. Sexual reproduction and the evolution of microbial pathogens. Curr. Biol. 16:R711-R725.
21. Hull, C. M., and A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
22. Jacobsen, M. D., N. A. Gow, M. C. Maiden, D. J. Shaw, and F. C. Odds. 2007. Strain typing and determination of population structure of Candida krusei by multilocus sequence typing. J. Clin. Microbiol. 45:317323.
23. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
24. Johnson, A. 2003. The biology of mating in Candida albicans. Nat. Rev. Microbiol. 1:106116.
25. Kato,, M., M. Ozeki,, A. Kikuchi, and, T. Kanbe. 2001. Phylogenetic relationship and mode of evolution of yeast DNA topoisomerase II gene in the pathogenic Candida species. Gene 272:275281.
26. Kawaguchi, Y.,, H. Honda,, J. Taniguchi-Morimura, and S. Iwasaki. 1989. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Nature 341:164166.
27. King, D.,, J. Rhine-Chalberg,, M. A. Pfaller,, S. A. Moser, and, W. G. Merz. 1995. Comparison of four DNA-based methods for strain delineation of Candida lusitaniae. J. Clin. Microbiol. 33:14671470.
28. Krcmery, V., and, A. J. Barnes. 2002. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J. Hosp. Infect. 50:243260.
29. Kurtzman, C. P. 1992. DNA relatedness among phenotypically similar species of Pichia. Mycologia 84:7276.
30. Kurtzman,, C. P. 1994. Molecular taxonomy of the yeasts. Yeast 10:17271740.
31. Kurtzman, C. P., and, J. W. Fell (ed.). 1998. The Yeasts, a Taxonomic Study, 4th ed. Elsevier, Amsterdam, The Netherlands.
32. Kurtzman, C. P., and, C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331371.
33. Kurtzman, C. P.,, C. J. Robnett,, J. M. Ward,, C. Brayton,, P. Gorelick, and, T. J. Walsh. 2005. Multigene phylogenetic analysis of pathogenic candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov. J. Clin. Microbiol. 43:101111.
34. Kwon-Chung, K. J., and, J. E. Bennett. 1992. Medical Mycology. Lea & Febiger, Philadelphia, PA.
35. Lachance, M. A.,, H. M. Daniel,, W. Meyer,, G. S. Prasad,, S. P. Gautam, and, K. Boundy-Mills. 2003. The D1/D2 domain of the large-subunit rDNA of the yeast species Clavispora lusitaniae is unusually polymorphic. FEMS Yeast Res. 4:253258.
36. Lachke, S. A.,, S. R. Lockhart,, K. J. Daniels, and, D. R. Soll. 2003. Skin facilitates Candida albicans mating. Infect. Immun. 71:49704976.
37. Lan, L., and, J. Xu. 2006. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii. Microbiology 152:15391549.
38. Legrand, M.,, P. Lephart,, A. Forche,, F. M. Mueller,, T. Walsh,, P. T. Magee, and, B. B. Magee. 2004. Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation. Mol. Microbiol. 52:14511462.
39. Liu, H.,, J. Kohler, and, G. R. Fink. 1994. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266:17231726.
40. Liu, H.,, C. A. Styles, and, G. R. Fink. 1993. Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:17411744.
41. Lockhart, S. R.,, K. J. Daniels,, R. Zhao,, D. Wessels, and, D. R. Soll. 2003. Cell biology of mating in Candida albicans. Eukaryot. Cell 2:4961.
42. Lockhart, S. R.,, C. Pujol,, K. J. Daniels,, M. G. Miller,, A. D. Johnson,, M. A. Pfaller, and, D. R. Soll. 2002. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162:737745.
43. Logue, M. E.,, S. Wong,, K. H. Wolfe, and, G. Butler. 2005. A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot. Cell 4:10091017.
44. Lott, T. J.,, R. J. Kuykendall, and, E. Reiss. 1993. Nucleotide sequence analysis of the 5.8S rDNA and adjacent ITS2 region of Candida albicans and related species. Yeast 9:11991206.
45. Magee, B. B.,, M. Legrand,, A. M. Alarco,, M. Raymond, and, P. T. Magee. 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol. Microbiol. 46:13451351.
46. Magee, B. B., and, P. T. Magee. 1987. Electrophoretic karyotypes and chromosome numbers in Candida species. J. Gen. Microbiol. 133:425430.
47. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTL alpha strains. Science 289:310313.
48. Massey, S. E.,, G. Moura,, P. Beltrão, J. R. Garey,, M. F. Tuite, and, M. A. S. Santos. 2003. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res. 13:544557.
49. Merz, W. G. 1984. Candida lusitaniae: frequency of recovery, colonization, infection, and amphotericin B resistance. J. Clin. Microbiol. 20:11941195.
50. Merz, W. G.,, J. E. Karp,, D. Schron, and, R. Saral. 1985. Increased incidence of fungemia caused by Candida krusei. J. Clin. Microbiol. 24:581584.
51. Merz, W. G.,, U. Khazan,, M. A. Jabra-Rizk,, L. Wu,, G. J. Osterhout, and, P. F. Lehmann. 1992. Strain delineation and epidemiology of Candida (Clavispora) lusitaniae. J. Clin. Microbiol. 30:449454.
52. Michel-Nguyen, A.,, A. Favel,, C. Chastin,, M. Selva, and, P. Regli. 2000. Comparative evaluation of a commercial system for identification of Candida lusitaniae. Eur. J. Clin. Microbiol. Infect. Dis. 19:393395.
53. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293-302.
54. Noël, T.,, A. Favel,, A. Michel-Nguyen,, A. Goumar,, K. Fallague,, C. Chastin,, F. Leclerc, and, J. Villard. 2005. Differentiation between atypical isolates of Candida lusitaniae and Candida pulcherrima by determination of mating type. J. Clin. Microbiol. 43:14301432.
55. Orozco, A. S.,, L. M. Higginbotham,, C. A. Hitchcock,, T. Parkinson,, D. Falconer,, A. S. Ibrahim,, M. A. Ghannoum, and, S. G. Filler. 1998. Mechanism of fluconazole resistance in Candida krusei. Antimicrob. Agents Chemother. 42:26452649.
56. Pesole, G.,, M. Lotti,, L. Alberghina, and, C. Saccone. 1995. Evolutionary origin of nonuniversal CUGSer codon in some Candida species as inferred from a molecular phylogeny. Genetics 141:903907.
57. Ramani, R.,, S. Gromadzki,, D. H. Pincus,, I. F. Salkin, and, V. Chaturvedi. 1998. Efficacy of API 20C and ID 32C systems for identification of common and rare clinical yeast isolates. J. Clin. Microbiol. 36:33963398.
58. Rodrigues de Miranda, L. 1979. Clavispora, a new yeast genus of the Saccharomycetales. Antonie Leeuwenhoek 45:479483.
59. Sandven, P. 2000. Epidemiology of candidemia. Rev. Iberoam. Micol. 17:7381.
60. San Millân,, R. M., L. Wu,, I. F. Salkin, and, P. F. Lehmann. 1997. Clinical isolates of Candida guilliermondii include Candida fermentati. Int. J. Syst. Bacteriol. 47:385393.
61. Santos, M. A.,, G. Keith, and, M. F. Tuite. 1993. Nonstandard translational events in Candida albicans mediated by an unusual seryl-tRNA with a 5′-CAG-3′ (leucine) anticodon. EMBO J. 12:607616.
62. Santos, M. A., and, M. F. Tuite. 1995. The CUG codon is decoded in vivo as serine and not leucine in Candida albicans. Nucleic Acids Res. 23:14811485.
63. Santos, M. A. S.,, C. Cheeseman,, V. Costa,, P. Moradas-Ferreira, and M. F. Tuite. 1999. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol. Microbiol. 31:937947.
64. Soll, D. R.,, S. R. Lockhart, and, R. Zhao. 2003. Relationship between switching and mating in Candida albicans. Eukaryot. Cell 2:390397.
65. Srikantha, T.,, S. A. Lachke, and, D. R. Soll. 2003. Three mating type-like loci in Candida glabrata. Eukaryot. Cell 2:328340.
66. Sugita, T., and, T. Nakase. 1999. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida. Syst. Appl. Microbiol. 22:7985.
67. Suzuki, T.,, T. Ueda, and, K. Watanabe. 1997. The ‘polysemous’ codon—a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J. 16:11221134.
68. Suzuki, T.,, T. Ueda,, T. Yokogawa,, K. Nishikawa, and, K. Watanabe. 1994. Characterization of serine and leucine tRNAs in an asporogenic yeast Candida cylindracea and evolutionary implications of genes for tRNA(Ser)CAG responsible for translation of a non-universal genetic code. Nucleic Acids Res. 22:115123.
69. Tuite, M. F., and, M. A. S. Santos. 1996. Codon reassignment in Candida species: an evolutionary conundrum. Biochimie 78:993999.
70. Tzung, K. W.,, R. M. Williams,, S. Scherer,, N. Federspiel,, T. Jones,, N. Hansen,, V. Bivolarevic,, L. Huizar,, C. Komp,, R. Surzycki,, R. Tamse,, R. W. Davis, and, N. Agabian. 2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc. Natl. Acad. Sci. USA 98:32493253.
71. Ueda, T.,, T. Suzuki,, T. Yokogawa,, K. Nishikawa, and, K. Watanabe. 1994. Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes. Biochimie 76:12171222.
72. van Uden, N., and, H. Buckley. 1970. Candida Berkhout, p. 893–1087. In J. Lodder (ed.), The Yeasts: A Taxonomic Study. North Holland, Amsterdam, The Netherlands.
73. Vaughan-Martini, A.,, C. P. Kurtzman,, S. A. Meyer, and, E. B. O’Neill. 2005. Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophlia comb. nov. FEMS Yeast Res. 5:463469.
74. Vazquez, J. A.,, A. Beckley,, S. Donabedian,, J. D. Sobel, and, M. J. Zervos. 1993. Comparison of restriction enzyme analysis versus pulsed-field gradient gel electrophoresis as a typing system for Torulopsis glabrata and Candida species other than C. albicans. J. Clin. Microbiol. 31:20212030.
75. Vos, M. C.,, H. P. Endtz,, D. Horst-Kreft,, J. Doorduijn,, E. Lugtenburg,, H. A. Verbrugh,, B. Löwenberg, S. de Marie,, C. van Pelt, and A. van Belkum. 2006. Candida krusei transmission among hematology patients resolved by adapted antifungal prophylaxis and infection control measures. J. Clin. Microbiol. 44:11111114.
76. Whelan, W. L., and, K. J. Kwon-Chung. 1988. Auxotrophic heterozygosities and the ploidy of Candida parapsilosis and Candida krusei. J. Med. Vet. Mycol. 26:163171.
77. Wickerham, L. J. 1966. Validation of the species Pichia guilliermondii. J. Bacteriol. 92:1269.
78. Wickerham,, L. J., and K. A. Burton. 1954. A clarification of the relationship of Candida guilliermondii to other yeasts by a study of their mating types. J. Bacteriol. 68:594597.
79. Wickes, B. L.,, J. B. Hicks,, W. G. Merz, and, K. J. Kwon-Chung. 1992. The molecular analysis of synonymy among medically important yeasts within the genus Candida. J. Gen. Microbiol. 138:901907.
80. Yokogawa, T., T. Suzuki, T. Ueda, M. Mori, T. Ohama, Y. Kuchino, S. Yoshinari, I. Motoki, K. Nishikawa, S. Osawa, et al. 1992. Serine tRNA complementary to the nonuniversal serine codon CUG in Candida cylindracea: evolutionary implications. Proc. Natl. Acad. Sci. USA 89:74087411.
81. Yokoyama, K., S. K. Biswas, M. Miyaji, and K. Nishimura. 2000. Identification and phylogenetic relationship of the most common pathogenic Candida species inferred from mitochondrial cytochrome b gene sequences. J. Clin. Microbiol. 38:45034510.
82. Yoon, S. A., J. A. Vazquez, P. E. Steffan, J. D. Sobel, and R. A. Akins. 1999. High-frequency, in vitro reversible switching of Candida lusitaniae clinical isolates from amphotericin B susceptibility to resistance. Antimicrob. Agents Chemother. 43:836845.
83. Young, L. Y., C. M. Hull, and J. Heitman. 2003. Disruption of ergosterol biosynthesis confers resistance to amphotericin B in Candida lusitaniae. Antimicrob. Agents Chemother. 47:27172724.
84. Young, L. Y., M. C. Lorenz, and J. Heitman. 2000. A STE12 homolog is required for mating but dispensable for filamentation in Candida lusitaniae. Genetics 155:1729.

Tables

Generic image for table
Table 14.1

species with known teleomorphs

Citation: Reedy J, Heitman J. 2007. Evolution of in the Species Complex: Sex, Ploidy, and Complete Sexual Cycles in , and , p 235-245. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error