1887

Chapter 15 : Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap15-2.gif

Abstract:

In , sexual reproduction has been studied for decades and remains an active field of genetic, biochemical, and structural studies in the actors of the signal transduction cascade that governs mating. Additional genes are in fact part of additional loci, similar to the silent HML and HMR loci in . The species closest to that have several sexual loci represent the majority of species examined and are discussed in this chapter. The chapter describes homologs of these genes encoded by putative MAT-like cassettes in the genomes of species containing multiple cassettes. The a1 gene from contains two introns that are conserved in , the most closely related species among the yeasts with completely assembled genomes. Heterochromatin formation in hemiascomycetous yeasts is essential for the silencing of HMR- and HML-like loci to ensure mating-type determination. In the genomes of more-distant species with multiple cassettes, and , only relics of are found, in which the LAGLIDADG motifs are conserved. HO gene sequences in genomes indicate that it was acquired at the same time as the appearance of the silent cassettes at the divergence of and species. Further analyses of the natural habitat, lifestyle, and even ploidy of these species, and of the more recent adaptations of their genomes to the conditions under which we now study them, will help us to decipher the evolutionary strategies followed by each species.

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 15.1
Figure 15.1

Sexual cycle of an mutant of . Haploid α cells are shown in white, cells in black, and diploids in gray. Mating-type switching in wild-type cells is not illustrated, for the sake of simplicity. See the text for details.

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.2
Figure 15.2

Regulation of mating type in . The drawing represents the promoters of , α, and in different cell types, indicated at top (see the text for details), with the double helix representing the DNA, the arrow representing transcription, and transcription factors represented by various shapes with their names, shown as fixed to the DNA or not. In diploid cells, the complex is shown as inhibiting α, while in reality it is repressed at the transcription level.

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.3
Figure 15.3

Simplified representation of phylogenic relationship of all species analyzed. Data from B. Dujon (15a). Species names in black are from high-coverage genomes, and names in gray are from partial genomes. In the case of , we have kept the name of the genus used by the sequencing group, instead of

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.4
Figure 15.4

Multiple alignments of genes from -like loci. Alignments were done using Clustal ( ), with sequences translated from genomic data. Species are indicated thus: SACE, ; CAGL, ; ZYRO, ; KLWA, ; KLTH, ; KLLA, ; ASGO, . (A) Alignment of a1 proteins; (B) alignment of α1 proteins; (C) alignment of α2 proteins; (D) alignment of dubious proteins a2; (E) alignment of HMG proteins a2 (see the text for details).

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.5
Figure 15.5

-, and -like loci in species with multiple cassettes. Species names are indicated on the left, close to chromosome or contig number. Attribution of type, -, and like, to cassettes is shown above chromosomes. Chromosomes are drawn as double lines inside which cassette “boxes” are drawn (see the text for details); rounded ends represent telomeres.

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15.6
Figure 15.6

Multiple alignments of Ho proteins. The translation from is the wild-type one ( ), with the positions of residues that are different in the mutant underlined. Alignments were done using Clustal W, with sequences translated from genomic data. From C terminus to N terminus, boxed sequences correspond, in order, to the first LAGLIDADG motif, the first NLS motif, the second LAGLIDADG, and the second NLS.

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch15
1. Astrom, S. U.,, A. Kegel,, J. O. Sjostrand, and, J. Rine. 2000. Kluyveromyces lactis Sir2p regulates cation sensitivity and maintains a specialized chromatin structure at the cryptic α-locus. Genetics 156:8191.
2. Astrom, S. U., and, J. Rine. 1998. Theme and variation among silencing proteins in Saccharomyces cerevisiae and Kluyveromyces lactis. Genetics 148:10211029.
3. Bakhrat, A.,, K. Baranes,, O. Krichevsky,, I. Rom,, G. Schlenstedt,, S. Pietrokovski, and, D. Raveh. 2006. Nuclear import of ho endonuclease utilizes two nuclear localization signals and four importins of the ribosomal import system. J. Biol. Chem. 281:1221812226.
4. Bakhrat, A.,, M. S. Jurica,, B. L. Stoddard, and, D. Raveh. 2004. Homology modeling and mutational analysis of Ho endonuclease of yeast. Genetics 166:721728.
5. Bose, M. E.,, K. H. McConnell,, K. A. Gardner-Aukema,, U. Muller,, M. Weinreich,, J. L. Keck, and, C. A. Fox. 2004. The origin recognition complex and Sir4 protein recruit Sir1p to yeast silent chromatin through independent interactions requiring a common Sir1p domain. Mol. Cell. Biol. 24:774786.
6. Brockert, P. J.,, S. A. Lachke,, T. Srikantha,, C. Pujol,, R. Galask, and, D. R. Soll. 2003. Phenotypic switching and mating type switching of Candida glabrata at sites of colonization. Infect. Immun. 71:71097118.
7. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101:16321637.
8. Castano, I.,, S. J. Pan,, M. Zupancic,, C. Hennequin,, B. Dujon, and, B. P. Cormack. 2005. Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol. Microbiol. 55:12461258.
9. Chasse, S. A.,, P. Flanary,, S. C. Parnell,, N. Hao,, J. Y. Cha,, D. P. Siderovski, and, H. G. Dohlman. 2006. Genomescale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. Eukaryot. Cell 5:330346.
10. Cliften, P.,, P. Sudarsanam,, A. Desikan,, L. Fulton,, B. Fulton,, J. Majors,, R. Waterston,, B. A. Cohen, and, M. Johnston. 2003. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:7176.
11. Coppin, E.,, R. Debuchy,, S. Arnaise, and, M. Picard. 1997. Mating types and sexual development in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 61:411428.
12. De Las Penas, A.,, S. J. Pan,, I. Castano,, J. Alder,, R. Cregg, and, B. P. Cormack. 2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17:22452258.
13. Dietrich, F. S.,, S. Voegeli,, S. Brachat,, A. Lerch,, K. Gates,, S. Steiner,, C. Mohr,, R. Pohlmann,, P. Luedi,, S. Choi,, R. A. Wing,, A. Flavier,, T. D. Gaffney, and, P. Philippsen. 2004. The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304307.
14. Dodgson, A. R.,, C. Pujol,, M. A. Pfaller,, D. W. Denning, and, D. R. Soll. 2005. Evidence for recombination in Candida glabrata. Fungal Genet. Biol. 42:233243.
15. Dohlman, H. G. 2002. G proteins and pheromone signaling. Annu. Rev. Physiol. 64:129152.
16. Dujon,, B. 2006. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet. 22:375387.
17. Dujon, B.,, D. Sherman,, G. Fischer,, P. Durrens,, S. Casaregola,, I. Lafontaine,, J. De Montigny,, C. Marck,, C. Neuveglise,, E. Talla,, N. Goffard,, L. Frangeul,, M. Aigle,, V. Anthouard,, A. Babour,, V. Barbe,, S. Barnay,, S. Blanchin,, J. M. Beckerich,, E. Beyne,, C. Bleykasten,, A. Boisrame,, J. Boyer,, L. Cattolico,, F. Confanioleri,, A. De Daruvar,, L. Despons,, E. Fabre,, C. Fairhead,, H. Ferry-Dumazet,, A. Groppi,, F. Hantraye,, C. Hennequin,, N. Jauniaux,, P. Joyet,, R. Kachouri,, A. Kerrest,, R. Koszul,, M. Lemaire,, I. Lesur,, L. Ma,, H. Muller,, J. M. Nicaud,, M. Nikolski,, S. Oztas,, O. Ozier-Kalogeropoulos,, S. Pellenz,, S. Potier,, G. F. Richard,, M. L. Straub,, A. Suleau,, D. Swennen,, F. Tekaia,, M. Wesolowski-Louvel,, E. Westhof,, B. Wirth,, M. Zeniou-Meyer,, I. Zivanovic,, M. Bolotin-Fukuhara,, A. Thierry,, C. Bouchier,, B. Caudron,, C. Scarpelli,, C. Gaillardin, J. Weissenbach,, P. Wincker, and, J. L. Souciet. 2004. Genome evolution in yeasts. Nature 430:3544.
18. Egel, R. 2005. Fission yeast mating-type switching: programmed damage and repair. DNA Repair (Amsterdam) 4:525536.
19. Fabre,, E., H. Muller,, P. Therizols,, I. Lafontaine,, B. Dujon, and, C. Fairhead. 2005. Comparative genomics in hemiascomycete yeasts: evolution of sex, silencing, and subtelomeres. Mol. Biol. Evol. 22:856873.
20. Fairhead, C., and, B. Dujon. 2006. Structure of Kluyveromyces lactis subtelomeres: duplications and gene content. FEMS Yeast Res. 6:428441.
21. Fischer, G.,, E. P. Rocha,, F. Brunet,, M. Vergassola, and, B. Dujon. 2006. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2:e32.
22. Fraser, J. A., and, J. Heitman. 2004. Evolution of fungal sex chromosomes. Mol. Microbiol. 51:299306.
23. Gehret, A.,, A. Bajaj,, F. Naider, and, M. E. Dumont. 2006. Oligomerization of the yeast alpha-factor receptor: implications for dominant negative effects of mutant receptors. J. Biol. Chem. 281:2069820714.
24. Gimble, F. S., and, J. Thorner. 1992. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357:301306.
25. Goffeau, A.,, B. G. Barrell,, H. Bussey,, R. W. Davis,, B. Dujon,, H. Feldmann,, F. Galibert,, J. D. Hoheisel,, C. Jacq,, M. Johnston,, E. J. Louis,, H. W. Mewes,, Y. Murakami,, P. Philippsen,, H. Tettelin, and, S. G. Oliver. 1996. Life with 6000 genes. Science 274:546, 563567.
26. Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561599.
27. Halme,, A., S. Bumgarner,, C. Styles, and, G. R. Fink. 2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405415.
28. Herskowitz, I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev. 52:536553.
29. Herskowitz,, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187197.
30. Herskowitz, I.,, J. Rine, and, J. N. Strathern. 1992. Mating-type dertermination and mating-type interconversion in Saccharomyces cerevisiae, p. 583–656. In E. W. Jones,, J. R. Pringle, and, J. R. Broach (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces, vol. II. Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
31. Hirata, R.,, Y. Ohsumk,, A. Nakano,, H. Kawasaki,, K. Suzuki, and, Y. Anraku. 1990. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265:67266733.
32. Hull, C. M., and, A. D. Johnson. 1999. Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. Science 285:12711275.
33. Hull, C. M.,, R. M. Raisner, and, A. D. Johnson. 2000. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307310.
34. Johnson, A. D. 1995. Molecular mechanisms of cell-type determination in budding yeast. Curr. Opin. Genet. Dev. 5:552558.
35. Jones,, T., N. A. Federspiel,, H. Chibana,, J. Dungan,, S. Kalman,, B. B. Magee,, G. Newport,, Y. R. Thorstenson,, N. Agabian,, P. T. Magee,, R. W. Davis, and, S. Scherer. 2004. The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA 101:73297334.
36. Keeling, P. J., and, A. J. Roger. 1995. The selfish pursuit of sex. Nature 375:283.
37. Kellis, M.,, B. W. Birren, and, E. S. Lander. 2004. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617624.
38. Kellis, M.,, N. Patterson,, M. Endrizzi,, B. Birren, and, E. S. Lander. 2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241254.
39. Kurischko, C.,, P. Fournier,, M. Chasles,, H. Weber, and, C. Gaillardin. 1992. Cloning of the mating-type gene MATA of the yeast Yarrowia lipolytica. Mol. Gen. Genet. 232:423426.
40. Kurischko, C.,, M. B. Schilhabel,, I. Kunze, and, E. Franzl. 1999. The MATA locus of the dimorphic yeast Yarrowia lipolytica consists of two divergently oriented genes. Mol. Gen. Genet. 262:180188.
41. Kurtzman, C. P., and, J. W. Fell. 2000. The Yeasts: a Taxonomic Study. Elsevier, Amsterdam, The Netherlands.
42. Lafontaine, I.,, G. Fischer,, E. Talla, and, B. Dujon. 2004. Gene relics in the genome of the yeast Saccharomyces cerevisiae. Gene 335:117.
43. Lahtchev, K. L.,, V. D. Semenova,, I. I. Tolstorukov,, I. van der Klei, and M. Veenhuis. 2002. Isolation and properties of genetically defined strains of the methylotrophic yeast Hansenula polymorpha CBS4732. Arch. Microbiol. 177:150158.
44. Lin, X.,, C. M. Hull, and, J. Heitman. 2005. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434:10171021.
45. Logue, M. E.,, S. Wong,, K. H. Wolfe, and, G. Butler. 2005. A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot. Cell 4:10091017.
46. Louis, E. J. 1995. The chromosome ends of Saccharomyces cerevisiae. Yeast 11:15531573.
47. Magee,, B. B., M. Legrand,, A. M. Alarco,, M. Raymond, and, P. T. Magee. 2002. Many of the genes required for mating in Saccharomyces cerevisiae are also required for mating in Candida albicans. Mol. Microbiol. 46:13451351.
48. Magee, B. B., and, P. T. Magee. 2000. Induction of mating in Candida albicans by construction of MTLa and MTLα strains. Science 289:310313.
49. Miller, M. G., and, A. D. Johnson. 2002. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110:293302.
50. Mortimer, R. K. 2000. Evolution and variation of the yeast (Saccharomyces) genome. Genome Res. 10:403409.
51. Pawlowska,, T. E. 2005. Genetic processes in arbuscular mycorrhizal fungi. FEMS Microbiol. Lett. 251:185192.
52. Pietrokovski, S. 1994. Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins. Protein Sci. 3:23402350.
53. Pujol,, C., K. J. Daniels,, S. R. Lockhart,, T. Srikantha,, J. B. Radke,, J. Geiger, and, D. R. Soll. 2004. The closely related species Candida albicans and Candida dubliniensis can mate. Eukaryot. Cell 3:10151027.
54. Richard, G. F.,, A. Kerrest,, I. Lafontaine, and, B. Dujon. 2005. Comparative genomics of hemiascomycete yeasts: genes involved in DNA replication, repair, and recombination. Mol. Biol. Evol. 22:10111023.
55. Russell, D. W.,, R. Jensen,, M. J. Zoller,, J. Burke,, B. Errede,, M. Smith, and, I. Herskowitz. 1986. Structure of the Saccharomyces cerevisiae HO gene and analysis of its upstream regulatory region. Mol. Cell. Biol. 6:42814294.
56. Schwartz, M. A., and, H. D. Madhani. 2004. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu. Rev. Genet. 38:725748.
57. Soll, D. R.,, S. R. Lockhart, and, R. Zhao. 2003. Relationship between switching and mating in Candida albicans. Eukaryot. Cell 2:390397.
58. Souciet, J.,, M. Aigle,, F. Artiguenave,, G. Blandin,, M. Bolotin-Fukuhara,, E. Bon,, P. Brottier,, S. Casaregola,, J. de Montigny,, B. Dujon,, P. Durrens,, C. Gaillardin,, A. Lepingle,, B. Llorente,, A. Malpertuy,, C. Neuveglise,, O. Ozier-Kalogeropoulos,, S. Potier,, W. Saurin,, F. Tekaia,, C. Toffano-Nioche,, M. Wesolowski-Louvel,, P. Wincker, and, J. Weissenbach. 2000. Genomic exploration of the hemiascomycetous yeasts. 1. A set of yeast species for molecular evolution studies. FEBS Lett. 487:312.
59. Srikantha, T.,, S. A. Lachke, and, D. R. Soll. 2003. Three mating type-like loci in Candida glabrata. Eukaryot. Cell 2:328340.
60. Strathern, J. N.,, E. Spatola,, C. McGill, and J. B. Hicks. 1980. Structure and organization of transposable mating type cassettes in Saccharomyces yeasts. Proc. Natl. Acad. Sci. USA 77:28392843.
61. Teunissen, A. W., and, H. Y. Steensma. 1995. Review: the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11:10011013.
62. Thompson, J. D.,, D. G. Higgins, and, T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:46734680.
63. Tsong, A. E.,, M. G. Miller,, R. M. Raisner, and, A. D. Johnson. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389399.
64. Verstrepen, K. J.,, A. Jansen,, F. Lewitter, and, G. R. Fink. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37:986990.
65. Wang, Y., and, H. G. Dohlman. 2004. Pheromone signaling mechanisms in yeast: a prototypical sex machine. Science 306:15081509.
66. Wong, S.,, M. A. Fares,, W. Zimmermann,, G. Butler, and, K. H. Wolfe. 2003. Evidence from comparative genomics for a complete sexual cycle in the ‘asexual’ pathogenic yeast Candida glabrata. Genome Biol. 4:R10.
67. Yun, S. H.,, M. L. Berbee,, O. C. Yoder, and, B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96:55925597.
68. Zhao, R.,, K. J. Daniels,, S. R. Lockhart,, K. M. Yeater,, L. L. Hoyer, and, D. R. Soll. 2005. Unique aspects of gene expression during Candida albicans mating and possible G1 dependency. Eukaryot. Cell 4:11751190.

Tables

Generic image for table
Table 15.1

Characteristics of species with high-coverage sequences of genomes

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Generic image for table
Table 15.2

Systematic nomenclature, or coordinates on contigs, when appropriate, of homologs of genes from cassettes, in species with multiple cassettes

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15
Generic image for table
Table 15.3

Sequence identity boxes in -like cassettes

Citation: Muller H, Hennequin C, Dujon B, Fairhead C. 2007. Ascomycetes: the Locus: Comparing in the Genomes of Hemiascomycetous Yeasts, p 247-263. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error