Chapter 19 : Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap19-2.gif


In this chapter genes that are in or near the locus but do not function in determining mating-type specificity are referred to as non-mating-type MAT-linked genes. When trying to study the genes of mushroom fungi other than and , there are three major obstacles. First, the loci are likely to be complex and may comprise several genes. Second, the loci display high sequence variation among alleles and cannot be cloned by heterologous hybridization using probes from or . Finally, the absence of a transformation system in which to test the cloned fragments prevents definitive proof that an isolated DNA region carries . The chapter focuses on how MAT genes may be cloned in nonmodel mushroom species. Although most of this chapter has focused on how conserved gene order can be used to clone from nonmodel species, a more direct option is through PCR amplification of the homologues themselves. The authors have targeted the few conserved amino acids of the homeodomain region (HD1) by degenerate PCR and isolated the entire HD1 gene from this species by genome walking using cassette-mediated PCR.

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 19.1
Figure 19.1

Phylogeny of the Basidiomycota. The cladogram depicts the current knowledge of the relationships among the fungi discussed in the text. Data are derived from references , and , the Tree of Life Web project (http://tolweb.org/tree/phylogeny.html), and the Web project (http://mor.clarku.edu/).

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.2
Figure 19.2

Schematic showing conserved gene order of the chromosomal region surrounding in mushroom fungi. Arrows indicate genes and their direction of transcription. Vertical lines connect homologous genes between species. Genes with vertical stripes or horizontal stripes represent homeodomain-type-1 () genes and homeodomain-type-2 () genes, respectively ( ). Genes in gray are found in all four species, and genes in black are restricted to a single species. This map includes a number of additional genes for that were missed in the previous annotation of the region ( ). , gene encoding a conserved hypothetical protein.

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 19.3
Figure 19.3

Cosegregation of and - in . Shown is an agarose gel (2%) of amplicons digested with MseI. In lane P is the parental dikaryon (Guy.21.2) that is heterozygous at the locus. The other lanes show the progeny of Guy.21.2. Lanes are of the mating type and possess a allele that lacks an MseI cut site. Lanes are of the mating type and possess the MseI cut site that digests the 297-bp amplicon into two fragments of 148 and 149 bp. Lanes marked M contain DNA marker.

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aimi, T.,, R. Yoshida,, M. Ishikawa,, D. P. Bao, and, Y. Kitamoto. 2005. Identification and linkage mapping of the genes for the putative homeodomain protein (hox1) and the putative pheromone receptor protein homologue (rcb1) in a bipolar basidiomycete, Pholiota nameko. Curr. Genet. 48:184194.
2. Badrane, H., and, G. May. 1999. The divergence-homogenization duality in the evolution of the b1 mating type gene of Coprinus cinereus. Mol. Biol. Evol. 16:975986.
3. Banuett, F. 1998. Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol. Mol. Biol. Rev. 62:249274.
4. Baptistaferreira,, J. L. C., A. Economou, and, L. A. Casselton. 1983. Mitochondrial genetics of Coprinus—recombination of mitochondrial genomes. Curr. Genet. 7:405407.
5. Berbee, M. L., and, J. W. Taylor. 1993. Dating the evolutionary radiations of the true fungi. Can. J. Bot. 71:11141127.
6. Bodensteiner, P.,, M. Binder,, J. M. Moncalvo,, R. Agerer, and, D. S. Hibbett. 2004. Phylogenetic relationships of cyphelloid homobasidiomycetes. Mol. Phylogenet. Evol. 33:501515.
7. Boidin, J. 1971. Nuclear behavior in the mycelium and the evolution of the Basidiomycetes, p. 129–148. In R. H. Petersen (ed.), Evolution in the Higher Basidiomycetes. The University of Tennessee Press, Knoxville.
8. Bortfeld, M.,, K. Auffarth,, R. Kahmann, and, C. W. Basse. 2004. The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16:22332248.
9. Branda, S. S., and, G. Isaya. 1995. Prediction and identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J. Biol. Chem. 270:2736627373.
10. Brown, A. J., and, L. A. Casselton. 2001. Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet. 17:393400.
11. Butler, G.,, C. Kenny,, A. Fagan,, C. Kurischko,, C. Gaillardin, and K. H. Wolfe. 2004. Evolution of the MAT locus and its Ho endonuclease in yeast species. Proc. Natl. Acad. Sci. USA 101:16321637.
12. Casselton, L. A. 2002. Mate recognition in fungi. Heredity 88:142147.
13. Casselton,, L. A., R. N. Asante-Owusu,, A. H. Banham,, C. S. Kingsnorth,, U. Kües, S. F. O’Shea, and E. H. Pardo. 1995. Mating type of sexual development in Coprinus cinereus. Can. J. Bot. 73:S266S272.
14. Casselton, L. A., and, N. S. Olesnicky. 1998. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol. Mol. Biol. Rev. 62:5570.
15. Cvrčková, F.,, C. De Virgilio,, D. Manser,, J. R. Pringle, and, K. Nasmyth. 1995. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9:18171830.
16. Dandekar, T.,, B. Snel,, M. Huynen, and, P. Bork. 1998. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23:324328.
17. Davidson, R. C.,, C. B. Nicholls,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2003. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 49:469485.
18. Day, P. R. 1960. The structure of the A mating-type locus in Coprinus lagopus. Genetics 45:641651.
19. Drees,, B. L., B. Sundin,, E. Brazeau,, J. P. Caviston,, G. C. Chen,, W. Guo,, K. G. Kozminski,, M. W. Lau,, J. J. Moskow,, A. Tong,, L. R. Schenkman,, A. McKenzie,, P. Brennwald,, M. Longtine,, E. Bi,, C. Chan,, P. Novick,, C. Boone,, J. R. Pringle,, T. N. Davis,, S. Fields, and, D. G. Drubin. 2001. A protein interaction map for cell polarity development. J. Cell Biol. 154:549571.
20. Eichler, E. E., and, D. Sankoff. 2003. Structural dynamics of eukaryotic chromosome evolution. Science 301:793797.
21. Ferreira, A. V. B.,, S. Saupe, and, N. L. Glass. 1996. Transcriptional analysis of the mtA idiomorph of Neurospora crassa identifies two genes in addition to mtA-1. Mol. Gen. Genet. 250:767774.
22. Fischer, G.,, E. P. C. Rocha,, F. Brunet,, M. Vergassola, and, B. Dujon. 2006. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages. PLoS Genet. 2:e32.
23. Fowler, T. J.,, M. F. Mitton,, E. I. Rees, and, C. A. Raper. 2004. Crossing the boundary between the and mating-type loci in Schizophyllum commune. Fungal Genet. Biol. 41:89101.
24. Fowler, T. J.,, M. F. Mitton,, L. J. Vaillancourt, and, C. A. Raper. 2001. Changes in mate recognition through alterations of pheromones and receptors in the multisexual mushroom fungus Schizophyllum commune. Genetics 158:14911503.
25. Fraser, J. A.,, S. Diezmann,, R. L. Subaran,, A. Allen,, K. B. Lengeler,, F. S. Dietrich, and, J. Heitman. 2004. Convergent evolution of chromosomal sex-determining regions in the animal and fungal kingdoms. PLoS Biol. 2:22432255.
26. Fraser, J. A., and J. Heitman. 2006. Sex, MAT, and the evolution of fungal virulence, p. 13–33. In J. Heitman,, S. G. Filler,, J. E. Edwards,, Jr., and A. P. Mitchell (ed.), Molecular Principles of Fungal Pathogenesis. ASM Press, Washington, DC.
27. Giasson, L.,, C. A. Specht,, C. Milgrim,, C. P. Novotny, and, R. C. Ullrich. 1989. Cloning and comparison of mating-type alleles of the basidiomycete Schizophyllum commune. Mol. Gen. Genet. 218:7277.
28. Grützner, F.,, H. R. Crollius,, G. Lütjens, O. Jaillon,, J. Weissenbach,, H. H. Ropers, and, T. Haaf. 2002. Fourhundred million years of conserved synteny of human Xp and Xq genes on three Tetraodon chromosomes. Genome Res. 12:13161322.
29. Halsall, J. R.,, M. J. Milner, and, L. A. Casselton. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154:11151123.
30. Hibbett, D. S., and, M. Binder. 2002. Evolution of complex fruiting-body morphologies in homobasidiomycetes. Proc. R. Soc. Lond. B 269:19631969.
31. Hibbett, D. S., and, M. J. Donoghue. 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst. Biol. 50:215242.
32. Hiscock, S. J., and, U. Kües. 1999. Cellular and molecular mechanisms of sexual incompatibility in plants and fungi. Int. Rev. Cytol. 193:165295.
33. Hogberg, P.,, A. Nordgren,, N. Buchmann,, A. F. S. Taylor,, A. Ekblad,, M. N. Hogberg,, G. Nyberg,, M. OttossonLofvenius, and D. J. Read. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789792.
34. Hopple, J. S., Jr., and R. Vilgalys. 1999. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol. Phylogenet. Evol. 13:119.
35. Hurst, L. D., and, W. D. Hamilton. 1992. Cytoplasmic fusion and the nature of sexes. Proc. R. Soc. Lond. B 247:189194.
36. Hurst, L. D.,, C. Pal, and, M. J. Lercher. 2004. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5:299310.
37. Isaya, G.,, W. R. Sakati,, R. A. Rollins,, G. P. Shen,, L. C. Hanson,, R. C. Ullrich, and, C. P. Novotny. 1995. Mammalian mitochondrial intermediate peptidase—structure-function analysis of a new homolog from Schizophyllum commune and relationship to thimet oligopeptidases. Genomics 28:450461.
38. James, T. Y. 2003. The Evolution of Mating-Type Genes in the Mushroom Fungi (Homobasidiomycetes). Duke University, Durham, NC.
39. James, T. Y.,, U. Kües, S. A. Rehner, and, R. Vilgalys. 2004. Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the mating-type locus of mushroom fungi. Fungal Genet. Biol. 41:381390.
40. James, T. Y.,, S. R. Liou, and, R. Vilgalys. 2004. The genetic structure and diversity of the A and B mating-type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet. Biol. 41:813825.
41. James, T. Y.,, P. Srivilai,, U. Kües, and R. Vilgalys. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:18771891.
42. Kirk, P. M.,, P. F. Cannon,, J. C. David, and, J. A. Stalpers (ed.). 2001. Ainsworth & Bisby’s Dictionary of the Fungi, 9th ed. CAB International, Wallingford, United Kingdom.
43. Kothe, E. 2001. Mating-type genes for basidiomycete strain improvement in mushroom farming. Appl. Microbiol. Biotechnol. 56:602612.
44. Kües,, U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64:316353.
45. Kües, U., and, L. A. Casselton. 1993. The origin of multiple mating types in mushrooms. J. Cell Sci. 104:227230.
46. Kües, U.,, B. Göttgens, R. Stratmann,, W. V. J. Richardson,, S. F. O’Shea, and L. A. Casselton. 1994. A chimeric homeodomain protein causes self-compatibility and constitutive sexual development in the mushroom Coprinus cinereus. EMBO J. 13:40544059.
47. Kües, U.,, T. Y. James,, R. Vilgalys, and, M. P. Challen. 2001. The chromosomal region containing pab-1, mip, and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus. Curr. Genet. 39:1624.
48. Kües, U.,, A. M. Tymon,, W. V. J. Richardson,, G. May,, P. T. Gieser, and, L. A. Casselton. 1994. A mating-type factors of Coprinus cinereus have variable numbers of specificity genes encoding two classes of homeodomain proteins. Mol. Gen. Genet. 245:4552.
49. Larraya, L. M.,, G. Perez,, E. Ritter,, A. G. Pisabarro, and, L. Ramirez. 2000. Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl. Environ. Microbiol. 66:52905300.
50. Lee, N.,, G. Bakkeren,, K. Wong,, J. E. Sherwood, and, J. W. Kronstad. 1999. The mating-type and pathogenicity locus of the fungus Ustilago hordei spans a 500-kb region. Proc. Natl. Acad. Sci. USA 96:1502615031.
51. Lengeler, K. B.,, D. S. Fox,, J. A. Fraser,, A. Allen,, K. Forrester,, F. Dietrich, and, J. Heitman. 2002. The mating type locus of Cryptococcus neoformans: a step in the evolution of sex chromosomes. Eukaryot. Cell 1:704718.
52. Lengeler, K. B.,, P. Wang,, G. M. Cox,, J. R. Perfect, and, J. Heitman. 2000. Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. Proc. Natl. Acad. Sci. USA 97:1445514460.
53. Leveleki, L.,, M. Mahlert,, B. Sandrock, and, M. Bölker. 2004. The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis. Mol. Microbiol. 54:396406.
54. Liu, Y.-G., and, R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674681.
55. Lukens, L.,, H. Yicun, and, G. May. 1996. Correlation of genetic and physical maps at the A mating-type locus of Coprinus cinereus. Genetics 144:14711477.
56. Marion, A. L.,, K. A. Bartholomew,, J. Wu,, H. L. Yang,, C. P. Novotny, and, R. C. Ullrich. 1996. The Aα mating-type locus of Schizophyllum commune: structure and function of gene X. Curr. Genet. 29:143149.
57. Martinez, D.,, L. F. Larrondo,, N. Putnam,, M. D. S. Gelpke,, K. Huang,, J. Chapman,, K. G. Helfenbein,, P. Ramaiya,, J. C. Detter,, F. Larimer,, P. M. Coutinho,, B. Henrissat,, R. Berka,, D. Cullen, and, D. Rokhsar. 2004. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22:695700.
58. May, G.,, F. Shaw,, H. Badrane, and, X. Vekemans. 1999. The signature of balancing selection: fungal mating compatibility gene evolution. Proc. Natl. Acad. Sci. USA 96:91729177.
59. Moncalvo, J.-M., R. Vilgalys, S. A. Redhead, J. E. Johnson, T. Y. James, M. C. Aime, V. Hofstetter, S. Verduin, E. Larsen, T. J. Baroni, R. G. Thorn, S. Jacobsson, H. Clémençon, and O. K. Miller, Jr. 2002. One hundred and seventeen clades of euagarics. Mol. Phylogenet. Evol. 23:357400.
60. Murphy, J. F.,and O. K. Miller, Jr. 1997. Diversity and local distribution of mating alleles in Marasmiellus praeacutus and Collybia subnuda (Basidiomycetes, Agaricales). Can. J. Bot. 75:817.
61. O’Brien, H. E., J. L. Parrent, J. A. Jackson, J. M. Moncalvo, and R. Vilgalys. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl. Environ. Microb. 71:55445550.
62. Ochman, H., A. S. Gerber, and D. L. Hartl. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120:621623.
63. Olesnicky, N. S., A. J. Brown, Y. Honda, S. L. Dyos, S. J. Dowell, and L. A. Casselton. 2000. Self-compatible B mutants in Coprinus with altered pheromone-receptor specificities. Genetics 156:10251033.
64. O’Shea, S. F., P. T. Chaure, J. R. Halsall, N. S. Olesnicky, A. Leibbrandt, I. F. Connerton, and L. A. Casselton. 1998. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148:10811090.
65. Ramer, S. W., and R. W. Davis. 1993. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:452456.
66. Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. Ronald Press, New York, NY.
67. Raper, J. R., M. G. Baxter, and A. H. Ellingboe. 1960. The genetic structure of the incompatibility factors of Schizophyllum commune: the A factor. Proc. Natl. Acad. Sci. USA 46:833842.
68. Raper, J. R., and A. S. Flexer. 1971. Mating systems and evolution of the Basidiomycetes, p. 149–167. In R. H. Petersen (ed.), Evolution in the Higher Basidiomycetes. University of Tennessee Press, Knoxville.
69. Riquelme, M., M. P. Challen, L. A. Casselton, and A. J. Brown. 2005. The origin of multiple B mating specificities in Coprinus cinereus. Genetics 170:11051119.
70. Röhr, H., U. Kües, and U. Stahl. 1998. Organelle DNA of plants and fungi: inheritance and recombination. Prog. Bot. 60:3987.
71. Sato, K., T. Nishio, R. Kimura, M. Kusaba, T. Suzuki, K. Hatakeyama, D. J. Ockendon, and Y. Satta. 2002. Coevolution of the S-locus genes SRK, SLG and SP11/SCR in Brassica oleracea and B. rapa. Genetics 162:931940.
72. Saville, B. J., Y. Kohli, and J. B. Anderson. 1998. mtDNA recombination in a natural population. Proc. Natl. Acad. Sci. USA 95:13311335.
73. Schirawski, J., B. Heinze, M. Wagenknecht, and R. Kahmann. 2005. Mating type loci of Sporisorium reilianum: novel pattern with three a and multiple b specificities. Eukaryot. Cell 4:13171327.
74. Simchen, G. 1967. Genetic control of recombination and the incompatibility system in Schizophyllum commune. Genet. Res. 9:195210.
75. Smulian, A. G., T. Sesterhenn, R. Tanaka, and M. T. Cushion. 2001. The ste3 pheromone receptor gene of Pneumocystis carinii is surrounded by a cluster of signal transduction genes. Genetics 157:9911002.
76. Specht, C. A. 1996. Isolation of the and mating-type loci of Schizophyllum commune. Curr. Genet. 28:374379.
77. Specht, C. A., M. M. Stankis, C. P. Novotny, and R. C. Ullrich. 1994. Mapping the heterogeneous DNA region that determines the nine mating-type specificities of Schizophyllum commune. Genetics 137:709714.
78. Stankis, M. M., C. A. Specht, H. Yang, L. Giasson, R. C. Ullrich, and C. P. Novotny. 1992. The mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins. Proc. Natl. Acad. Sci. USA 89:71697173.
79. Stoll, M., D. Begerow, and F. Oberwinkler. 2005. Molecular phylogeny of Ustilago, Sporisorium, and related taxa based on combined analyses of rDNA sequences. Mycol. Res. 109:342356.
80. Suyama, M., and P. Bork. 2001. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17:1013.
81. Turgeon, B. G., H. Bohlmann, L. M. Ciuffetti, S. K. Christiansen, G. Yang, W. Schafer, and O. C. Yoder. 1993. Cloning and analysis of the mating-type genes from Cochliobolus heterostrophus. Mol. Gen. Genet. 238:270284.
82. Ullrich, R. C., and J. R. Raper. 1974. Number and distribution of bipolar incompatibility factors in Sistotrema brinkmannii. Am. Nat. 108:506518.
83. Urban, M., R. Kahmann, and M. Bölker. 1996. The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol. Gen. Genet. 250:414420.
84. Waalwijk, C., T. van der Lee, I. de Vries, T. Hesselink, J. Arts, and G. H. J. Kema. 2004. Synteny in toxigenic Fusarium species: the fumonisin gene cluster and the mating type region as examples. Eur. J. Plant Pathol. 110:533544.
85. Walser, P. J., M. Hollenstein, M. J. Klaus, and U. Kües. 2001. Genetic analysis of basidiomycete fungi, p. 59–90. In N. J. Talbot (ed.), Molecular and Cell Biology of Filamentous Fungi: a Practical Approach. Oxford University Press, Oxford, United Kingdom.
86. Wang, P., C. B. Nichols, M. B. Lengeler, M. E. Cardenas, G. M. Cox, J. R. Perfect, and J. Heitman. 2002. Mating-type-specific and nonspecific PAK kinases play shared and divergent roles in Cryptococcus neoformans. Eukaryot. Cell 1:257272.
87. Wendland, J., L. J. Vaillancourt, J. Hegner, K. B. Lengeler, K. J. Laddison, C. A. Specht, C. A. Raper, and E. Kothe. 1995. The mating-type locus Bα1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J. 14:52715278.
88. Whitehouse, H. L. K. 1949. Multiple allelomorph heterothallism in the fungi. New Phytol. 48:212244.
89. Yan, Z., C. M. Hull, J. Heitman, S. Sun, and J. P. Xu. 2004. SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr. Biol. 14:R743R744.
90. Yan, Z., and J. P. Xu. 2003. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 163:13151325.
91. Yun, S.-H., M. L. Berbee, O. C. Yoder, and B. G. Turgeon. 1999. Evolution of the fungal self-fertile reproductive life style from self-sterile ancestors. Proc. Natl. Acad. Sci. USA 96:55925597.


Generic image for table
Table 19.1

Linkage of and to and in basidiomycetes

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19
Generic image for table
Table 19.2

Non-mating-type linked genes in basidiomycetes that encode proteins targeted to mitochondria

Citation: James T. 2007. Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species, p 317-331. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error