1887

Chapter 28 : Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555815837/9781555814212_Chap28-2.gif

Abstract:

This chapter reviews and discusses recent experimental studies using the model basidiomycetous yeast to test the effects of spontaneous mutations and biological interactions that may have contributed to the distribution of asexual fungal strains and species in nature. To begin with, the author first introduces some background information on fungal sexuality and spontaneous mutations. The study of fungal sexuality could be traced back to over 100 years ago when Blakeslee discovered obligatory cross-fertilization in the Mucorales. At the population level, evidence for clonality and asexual reproduction has been found in many groups of microorganisms, including both sexual and asexual fungi. Spontaneous mutation is the ultimate source of all heritable variations in all organisms. It can occur in both replicating and nonreplicating genetic materials in cells or viral particles. The genome-wide mutation rate and the average effect per mutation are most commonly estimated using mutation accumulation (MA) experiments. In these experiments, spontaneous mutations are allowed to accumulate in replicate lines in the absence of selection for the trait under investigation. Sexuality in fungi is typically considered a qualitative trait. Two strains are considered either capable or not capable of mating with each other to produce meiotic progeny. The chapter summarizes three recent studies that tested the three hypotheses on fungal asexuality: the loss of sex, the cost of sex, and the fitness consequences of fungal asexual clones in experimental populations of .

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 28.1
Figure 28.1

Schematic representation of a typical MA in facultative sexual organisms. (Modified from reference , reprinted with permission from .)

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.2
Figure 28.2

The mean loss of sex and the among-line divergence over 600 mitotic generations for each of the two parental strains JEC50 and MCC3: (A) mating ability and (B) filamentation ability. In all four graphs, the axis shows the number of asexual generations, while the axis represents the mean and standard deviation of losses of mating or filamentation. For each data point, the mean and standard deviation were obtained from eight MA lines (from reference , reprinted with permission from ).

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.3
Figure 28.3

A negative correlation between mating ability ( axis) and the relative vegetative fitness in the presence of active mating partners ( axis, the inverse of cost of sex) for the 16 MA clones at G600 ( = −0.777; < 0.0001). (From reference , reprinted with permission from .)

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 28.4
Figure 28.4

Relative mean fitness of MA lines grown in four different conditions, on the axis from left to right: (i) 25°C on SD medium; (ii) 25°C on YEPD medium; (iii) 37°C on SD medium; (iv) 37°C on YEPD medium. Only clones from G600 are shown here. Panel A shows MA lines maintained at 25°C on YEPD medium; panel B shows MA lines maintained at 37°C on YEPD medium (from reference , reprinted with permission from ).

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815837.ch28
1. Blakeslee, A. F. 1904. Sexual reproduction in the Mucorineae. Proc. Am. Acad. Sci. 40:206219.
2. Brandt,, M. E., L. C. Hutwagner,, L. A. Klug,, W. S. Baughman,, D. Rimland,, E. A. Graviss,, R. J. Hamill,, C. Thomas,, P. G. Pappas,, A. L. Reingold,, R. W. Pinner, and the CDC Cryptococcal Disease Active Surveillance Group. 1996. Molecular subtype distribution of Cryptococcus neoformans in four areas of the United States. J. Clin. Microbiol. 34:912917.
3. Burt, A.,, D. A. Carter,, G. L. Koenig,, T. J. White, and, J. W. Taylor. 1996. Molecular markers reveal cryptic sex in the human pathogen Coccidioides immitis (Ascomycota). Proc. Natl. Acad. Sci. USA 93:770773.
4. Callac, P.,, S. Hocquart,, M. Imbernon,, C. Desmerger, and, J. M. Olivier. 1998. Bsn-t alleles from French field strains of Agaricus bisporus. Appl. Environ. Microbiol. 64:21052110.
5. Casadevall, A., and, J. R. Perfect. 1998. Cryptococcus neoformans. ASM Press, Washington, DC.
6. Charlesworth, B., and, N. H. Barton. 1996. Recombination load associated with selection for increased recombination. Genet. Res. 67:2741
7. Charlesworth, B., and, D. Charlesworth. 1998. Some evolutionary consequences of deleterious mutations. Genetica 103:319.
8. Cooper, T. F.,, D. E. Rozen, and, R. E. Lenski. 2003. Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli. Proc. Natl. Acad. Sci. USA 100:10721077.
9. Cowen, L. E.,, A. Nantel,, M. S. Whiteway,, D. Y. Thomas,, D. C. Tessier,, L. M. Kohn, and, J. B. Anderson. 2002. Population genomics of drug resistance in Candida albicans. Proc. Natl. Acad. Sci. USA 99:92849289.
10. Crow, J. F. 1992. Mutation, mean fitness, and genetic load. Oxf. Surv. Evol. Biol. 9:342.
11. Da Silva, J., and, G. Bell. 1992. The ecology and genetics of fitness in Chlamydomonas VI. Antagonism between natural selection and sexual selection. Proc. R. Soc. Lond. B. 249:227233.
12. Drake, J. W.,, B. Charlesworth,, D. Charlesworth, and, J. F. Crow. 1998. Rates of spontaneous mutation. Genetics 148:16671686.
13. Escandon, P.,, A. Sanchez,, M. Martinez,, W. Meyer, and, E. Castaneda. 2006. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia. FEMS Yeast Res. 6:625635.
14. Fields, S. 1990. Pheromone response in yeast. Trends Biochem. Sci. 15:270273.
15. Geiser,, D. M., W. E. Timberlake, and, M. L. Arnold. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13:809817.
16. Hawkesworth, D. L.,, P. M. Kirk,, B. C. Sutton, and, D. N. Pegler. 1995. Ainsworth and Bisby’s Dictionary of the Fungi, 8th ed. International Mycological Institute, Surrey, England.
17. Houle, D.,, B. Morikawa, and, M. Lynch. 1996. Comparing mutational variabilities. Genetics 143:14671483.
18. Hull, C. M.,, M.-J. Boily, and, J. Heitman. 2005. Sexspecific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot. Cell 4:526535.
19. Hull, C. M., and, J. Heitman. 2002. Genetics of Cryptococcus neoformans. Annu. Rev. Genet. 36:557615.
20. James, T. J. 2005. The population genetics of phycomycetes, p. 117–148. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.
21. Keightley, P. D., and, A. Caballero. 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94:38233827.
22. Kibota, T. T., and, M. Lynch. 1996. Estimate of the genomic mutation rate deleterious to overall fitness in Escherichia coli. Nature 381:694696.
23. Kidd, S. E.,, H. Guo,, K. H. Bartlett,, J. Xu, and, J. W. Kronstad. 2005. Comparative gene genealogies indicate that two clonal lineages of Cryptococcus gattii in British Columbia resemble strains from other geographical areas. Eukaryot. Cell 4:16291638.
24. Kondrashov, A. S. 1997. Evolutionary genetics of life cycles. Annu. Rev. Ecol. Syst. 28:391435.
25. Kurtzman,, C. P., and C. J. Robnett. 1998. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 73:331371.
26. Kwon-Chung, K. J. 1976. Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 67:821833.
27. Lan, L., and, J. Xu. 2006. Multiple gene genealogical analyses suggest divergence and recent clonal dispersal in the opportunistic human pathogen Candida guilliermondii. Microbiology 152:15391549.
28. Lande, R. 1995. Mutation and conservation. Conserv. Biol. 9:782791.
29. Litvintseva,, A. P., R. Thakur,, R. Vilgalys, and, T. G. Mitchell. 2006. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172:22232238.
30. LoBuglio, K. F.,, J. I. Pitt, and, J. W. Taylor. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of a sexual Talaromyces state among asexual Penicillium species in subgenus Biverticillium. Mycologia 85:592604.
31. Lynch, M., and, B. Walsh. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA.
32. McClelland, C. M.,, Y. C. Chang,, A. Varma, and, K. J. Kwon-Chung. 2004. Uniqueness of the mating system in Cryptococcus neoformans. Trends Microbiol. 12:208212.
33. Michod, R. E., and, B. R. Levin. 1988. The Evolution of Sex: An Examination of Current Ideas. Sinauer Associates Inc., Sunderland, MA.
34. Moncalvo, J.-M. 2005. Molecular Systematics: major fungal phylogenetic groups and fungal species concepts, p. 1–34. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.
35. Mukai, T. 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50:119.
36. Partridge,, L., and N. H. Barton. 1993. Optimality, mutation and the evolution of aging. Nature 362:305311.
37. Pringle, A., and, J. W. Taylor. 2002. The fitness of filamentous fungi. Trends Microbiol. 10:474481.
38. Pujol, C.,, A. Dodgson, and, D. R. Soll. 2005. Population genetics of ascomycetes pathogenic to humans and animals, p. 149–188. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.
39. Raper, J. R. 1966. Genetics of Sexuality in Higher Fungi. The Ronald Press Company, New York, NY.
40. Schultz, S. T.,, M. Lynch, and, J. H. Willis. 1999. Spontaneous deleterious mutations in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96:1139311398.
41. Sia, R. A.,, K. B. Lengeler, and, J. Heitman. 2000. Diploid strains of the pathogenic basidiomycete Cryptococcus neoformans are thermally dimorphic. Fungal Genet. Biol. 29:153163.
42. Taylor, J. T.,, D. J. Jacobson, and, M. C. Fisher. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197246.
43. Tibayrenc, M. 1999. Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. Annu. Rev. Genet. 33:449477.
44. Wang,, P., and D. S. Fox. 2005. Cryptococcus neoformans evolves as a model of choice for studying signal transduction, p. 321–338. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.
45. Xu, J. 1995. Analysis of inbreeding depression in Agaricus bisporus. Genetics 141:137145.
46. Xu,, J. 1996. Mating and Population Genetic Analyses of the Basidiomycete Fungus, Agaricus bisporus. Ph.D. thesis. University of Toronto, Toronto, Canada.
47. Xu, J. 2002. Estimating the spontaneous mutation rate of loss of sex in the human pathogenic fungus Cryptococcus neoformans. Genetics 162:11571167.
48. Xu,, J. 2004. The prevalence and evolution of sex in microorganisms. Genome 47:775780.
49. Xu, J. 2004. Genotype-environment interactions of spontaneous mutations affecting vegetative fitness in the human pathogenic fungus Cryptococcus neoformans. Genetics 168:11771188.
50. Xu,, J. 2005. Cost of interacting with sexual partners in a facultative sexual microbe. Genetics 171:15971604.
51. Xu, J. 2005. Fundamentals of fungal molecular population genetic analyses, p. 87–116. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.
52. Xu, J.,, M. Cheng,, Q. Tan, and, Y. Pan. 2005. Molecular population genetics of basidiomycete fungi, p. 189–220. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, Unitd Kingdom.
53. Xu, J., and, T. G. Mitchell. 2002. Strain variation and clonality in Candida spp. and Cryptococcus neoformans, p. 739–750. In R. A. Calderone and, R. L. Cihlar (ed.), Fungal Pathogenesis: Principles and Clinical Applications. Marcel Dekker, Inc. New York, NY.
54. Xu, J., and, T. G. Mitchell. 2003. Comparative gene genealogical analyses of strains of serotype AD identify recombination in populations of serotypes A and D in the human pathogenic yeast Cryptococcus neoformans. Microbiology 149:21472154.
55. Xu, J.,, P. A. Horgen, and, J. B. Anderson. 1993. Media and temperature effects on mating interactions of Agaricus bisporus. Cultivated Mushroom Res. Newsl. 1:2532.
56. Xu, J.,, P. A. Horgen, and, J. B. Anderson. 1996. Variation in mating interactions in Agaricus bisporus. Cultivated Mushroom Res. Newsl. 3:2330.
57. Xu, J.,, R. J. Vilgalys, and, T. G. Mitchell. 2000. Multiple gene genealogies reveal recent dispersion and hybridization in the human pathogenic fungus Cryptococcus neoformans. Mol. Ecol. 9:14711481.
58. Yan, Z.,, X. Li, and, J. Xu. 2002. Geographic distribution of mating type alleles of Cryptococcus neoformans in four areas of the United States. J. Clin. Microbiol. 40:965972.
59. Yan, Z.,, C. M. Hull,, J. Heitman,, S. Sun, and, J. Xu. 2004. SXI1α controls uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr. Biol. 14:R743R744.
60. Yan, Z., and, J. Xu. 2003. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 163:13151325.
61. Zeyl, C. 2005. Rates and effects of spontaneous mutations in fungi, p. 289–320. In J. Xu (ed.), Evolutionary Genetics of Fungi. Horizon Bioscience, Norfolk, United Kingdom.

Tables

Generic image for table
Table 28.1

Decreases in mating and filamentation abilities in mutation accumulation lines of 600 asexual generations

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.2

A cost of interacting with active mating partners in

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.3

Reductions in the cost of sex in asexually evolved MA lines after 30 transfers in experimental populations of

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.4

Estimates of mutational parameters on vegetative fitness in using two MA conditions and four testing environments

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.5

Three-way analysis of variance and evidence for significant genotype-environment interactions of spontaneous mutations on vegetative fitness in experimental populations of

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.6

Summary of vegetative fitness comparisons between clinical and environmental samples of at 25 and 37°C

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28
Generic image for table
Table 28.7

Two-way analysis of variance table showing a significant interaction between strain source and incubation temperature in vegetative growth of strains of

Citation: Xu J. 2007. Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using , p 461-475. In Heitman J, Kronstad J, Taylor J, Casselton L (ed), Sex in Fungi. ASM Press, Washington, DC. doi: 10.1128/9781555815837.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error