1887

Chapter 3 : -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

-Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap03-2.gif

Abstract:

This chapter begins with an outline of the original observations that led to the discovery of -derived superantigen (MAM) and discusses the structural basis of its interaction with class II major histocompatibility complex (MHC) molecules and T-cell receptors (TCRs). It reviews recent work on the interaction of MAM with Toll-like receptors and their importance in control of innate and adaptive immunity and in disease expression. The chapter discusses the potential role of MAM-like superantigens (SAgs) in autoimmune disease and how this might relate to recent findings on Toll-like receptor (TLR) control of adaptive immunity. Antigen-induced activation of T cells leading to cytokine production and proliferation requires signals delivered by antigen-presenting cells (APC), i.e., macrophages or dendritic cells (DCs), through costimulatory molecules such as B7-1 (CD80) and B7-2 (CD86) that are related membrane-bound molecules. In view of the demonstrated allelic specificity of MAM for MHC molecules it is also tempting to project that these polymorphisms may influence the outcome of the MAM/TLR interactions. A recent observation that has relevance to the potential role of MAM-like SAgs in human rheumatoid arthritis (RA) is that in preliminary studies transgenic mice bearing the HLA-DR and HLA-DQ alleles that predispose to RA develop a type 1 adaptive cytokine profile in response to MAM, whereas cells from MAM-injected mice bearing those alleles that protect against RA develop a type 2 cytokine profile.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3

Key Concept Ranking

Infection and Immunity
0.6130334
Major Histocompatibility Complex Class II
0.5055085
Innate Immune System
0.460595
0.6130334
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Arthritis induced by in BALB/c and C3H/HeJ mice. Mice were injected i.v. with 1 X 10 CFU and scored for arthritis as described for 28 days. Mean scores for BALB/c ( ) and C3H/HeJ ( ) mice ±SEM are shown. C3H/HeJ mice were significantly more susceptible at all time periods (P < 0.002). Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Inducible cytokines in cells from MAM-injected mice 3 days postinjection. Splenocytes (10 cells/ml) from C3H/HeJ and C3H/HeSnJ mice injected 72 hours previously with MAM (0.1 to 100 ng/mouse) were rechal-lenged in vitro with a second dose of MAM (1 ng/ml) for an additional 24 h. Inducible cytokines (IL-2, IFN-γ, TNF-α, IL-4, -6 and -10) were analyzed by ELISA. Splenocytes from three to five mice were included in each experiment for each specific dose point; the data shown are representative of three different experiments. Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Early serum cytokines induced by MAM in C3H/HeSnJ and C3H/HeJ mice. Mice were injected i.v. with diluent PBS and MAM at doses of 0.1, 1, or 10 ng/mouse. After 90 minutes, mice were exsanguinated under anesthesia and the sera were collected for cytokine assays for IL-2, IL-6, IFN-γ, IL-10, TNF-α, and IL-12p40. Sera from three to five mice were assayed in each experiment for each specific dose point. Similar results were seen in three repeat experiments. Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Expression of TLR2 and TLR4 by macrophages in response to MAM. Peritoneal macrophages from C3H/HeSnJ (TLR2/TLR4) and C3H/HeJ (TLR2/TLR4) were treated with MAM (100 ng/ml) or NS for 18 h and then stained and analyzed for expression of TLR2 and TLR4. Flow cytometry was conducted, as before, for the expression of both TLR2 and TLR4. Insertions are the mean results of mean fluorescence intensity (MFI) ± SEM of three experiments. Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Regulation of TLR2 and IL-12p40 by MAM/TLR4 interaction. Resident peritoneal macrophages from C3H/HeN mice were pretreated with anti-mouse TLR4 (20 ng/ml) for 2 h. MAM (1 and 10 ng/ml, final concentration) was then added, followed by incubation for a further 18 h. Surface expression of TLR2 by macrophages was analyzed by flow cyto-metric analysis and the culture supernatants were assessed for IL-12p40. The data are the mean ±SEM for three experiments (*P < 0.05; **P < 0.01). Each experiment contained cells pooled from three to five mice. Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Effect of in vivo treatment with anti-B7-1 antibody on inducible cytokine profiles induced in cells from MAM-injected mice. Mice were injected with varying doses of MAM after treatment with anti-B7-1 or isotype-matched anti-mouse antibody (250 μg of each mAb per mouse, respectively) on two separate occasions. Twenty-four hours after MAM injection, splenocytes (10 cells/ml) were isolated and rechallenged in vitro with MAM (2.5 ng/ml) and culture supernatants were assayed for cytokines IL-2, IFN-γ, TNF-α, IL-4, and IL-10. The data shown are pooled from three different experiments (*P < 0.05; **P < 0.01). Reprinted from ( ) with permission of the publisher.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Proposed models for MAM selection of cytokine profiles triggered through different TLRs.

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815844.ch03
1. al-Daccak, R.,, K. Mehindate,, J. Hebert,, L. Rink,, S. Mecheri, and, W. Mourad. 1994. Mycoplasma arthritidis-derived superantigen induces proinflammatory monokine gene expression in the THP-1 human monocytic cell line. Infect. Immun. 62:24092416.
2. Anders, H. J.,, D. Zecher,, R. D. Pawar, and, P. S. Patole. 2005. Molecular mechanisms of autoimmunity triggered by microbial infection. Arthritis Res. Ther. 7:215224.
3. Anderson, K. V.,, L. Bokla, and, C. Nusslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42:791798.
4. Arbour, N. C.,, E. Lorenz,, B. C. Schutte,, J. Zabner,, J. N. Kline,, M. Jones,, K. Frees,, J. L. Watt, and, D. A. Schwartz. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25:187191.
5. Atkin, C. L.,, S. Wei, and, B. C. Cole. 1994. The Mycoplasma arthritidis superantigen MAM: purification and identification of an active peptide. Infect. Immun. 62:53675375.
6. Baccala, R.,, L. R. Smith,, M. Vestberg,, P. A. Peterson,, B. C. Cole, and, A. N. Theofilopoulos. 1992. Mycoplasma arthritidis mitogen. Vβ engaged in mice, rats, and humans, and requirement of HLA-DRα for presentation. Arthritis Rheum. 35:434442.
7. Banerjee, S.,, T. M. Haqqi,, H. S. Luthra,, J. M. Stuart, and, C. S. David. 1988. Possible role of Vβ T cell receptor genes in susceptibility to collagen-induced arthritis in mice. J. Exp. Med. 167:832839.
8. Bekoff, M. C.,, B. C. Cole, and, H. M. Grey. 1987. Studies on the mechanism of stimulation of T cells by the Mycoplasma arthritidis-derived mitogen. Role of class II IE molecules. J. Immunol. 139:31893194.
9. Bernatchez, C.,, R. Al-Daccak,, P. E. Mayer,, K. Mehindate,, L. Rink,, S. Mecheri, and, W. Mourad. 1997. Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules. Infect. Immun. 65:20002005.
10. Beutler, B. 2000. Tlr4: central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12:2026.
11. Blank, C.,, A. Luz,, S. Bendigs,, A. Erdmann,, H. Wagner, and, K. Heeg. 1997. Superantigen and endotoxin synergize in the induction of lethal shock. Eur. J. Immunol. 27:825833.
12. Cole, B. C. 1991. The immunobiology of Mycoplasma arthritidis and its superantigen MAM. Curr. Top. Microbiol. Immunol. 174:107119.
13. Cole, B. C. 1999. Mycoplasma-induced arthritis in animals: relevance to understanding the etiologies of the human rheumatic diseases. Rev. Rhum. Engl. Ed. 66:45S49S.
14. Cole, B. C.,, B. A. Araneo, and, G. J. Sullivan. 1986. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. IV. Murine T hybridoma cells exhibit differential accessory cell requirements for activation by M. arthritidis T cell mitogen, concanavalin A, or egg-white lysozyme. J. Immunol. 136:35723578.
15. Cole, B. C., and, C. L. Atkin. 1991. The Mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunol. Today 12:271276.
16. Cole, B. C.,, R. A. Balderas,, E. A. Ahmed,, D. Kono, and, A. N. Theofilopoulos. 1993. Genomic composition and allelic polymorphisms influence V beta usage by the Mycoplasma arthritidis superantigen. J. Immunol. 150:32913299.
17. Cole, B. C.,, R. A. Daynes, and, J. R. Ward. 1982. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis III. Ir gene control of lymphocyte transformation correlates with binding of the mitogen to specific IA bearing cells. J. Immunol. 129:13521359.
18. Cole, B. C.,, R. A. Daynes, and, J. R. Ward. 1981. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. I. Transformation is associated with an H-2-linked gene that maps to the I-E/ I-C subregion. J. Immunol. 127:19311936.
19. Cole, B. C., and, M. M. Griffiths. 1993. Triggering and exacerbation of autoimmune arthritis by the Mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 36:9941002.
20. Cole, B. C.,, D. R. Kartchner, and, D. J. Wells. 1989. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. VII. Responsiveness is associated with expression of a product(s) of the V beta 8 gene family present on the T cell receptor alpha/beta for antigen. J. Immunol. 142:41314137.
21. Cole, B. C.,, K. L. Knudtson,, A. Oliphant,, A. D. Sawitzke,, A. Pole,, M. Manohar,, L. S. Benson,, E. Ahmed, and, C. L. Atkin. 1996. The sequence of the Mycoplasma arthritidis superantigen, MAM: Identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. J. Exp. Med. 183:11051110.
22. Cole, B. C.,, H. H. Mu,, N. D. Pennock,, A. Hasebe,, F. V. Chan,, L. R. Washburn, and, M. R. Peltier. 2005. Isolation and partial purification of macrophage- and dendritic cell-activating components from Mycoplasma arthritidis: association with organism virulence and involvement with Toll-like receptor 2. Infect. Immun. 73:60396047.
23. Cole, B. C.,, M. W. Piepkorn, and, E. C. Wright. 1985. Influence of genes of the major histocompatibility complex on ulcerative dermal necrosis induced in mice by Mycoplasma arthritidis. J. Invest. Dermatol. 85:357361.
24. Cole, B. C.,, A. D. Sawitzke,, E. A. Ahmed,, C. L. Atkin, and, C. S. David. 1997. Allelic polymorphisms at the H-2A and HLA-DQ loci influence the response of murine lymphocytes to the Mycoplasma arthritidis superantigen MAM. Infect. Immun. 65:41904198.
25. Cole, B. C.,, R. N. Thorpe,, L. A. Hassell, and, J. R. Ward. 1983. Toxicity but not arthritogenicity of Mycoplasma arthritidis for mice associates with the haplotype expressed at the major histocompatibility complex. Infect. Immun. 41:10101015.
26. Cole, B. C.,, J. R. Ward, and, L. Golightly-Rowland. 1973. Factors influencing the susceptibility of mice to Mycoplasma arthritidis. Infect. Immun. 7:218225.
27. Collins, A. V.,, D. W. Brodie,, R. J. Gilbert,, A. Iaboni,, R. Manso-Sancho,, B. Walse,, D. I. Stuart,, P. A. van der Merwe, and, S. J. Davis. 2002. The interaction properties of costimulatory molecules revisited. Immunity 17:201210.
28. Cook, D. N.,, D. S. Pisetsky, and, D. A. Schwartz. 2004. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5: 975979.
29. Crow, M. K.,, G. Zagon,, Z. Chu,, B. Ravina,, J. R. Tumang,, B. C. Cole, and, S. M. Friedman. 1992. Human B cell differentiation induced by microbial superantigens: unselected peripheral blood lymphocytes secrete polyclonal immunoglobulin in response to Mycoplasma arthritidis mitogen. Autoimmunity 14:2332.
30. Daynes, R. A.,, J. M. Novak, and, B. C. Cole. 1982. Comparison of the cellular requirements for human T cell transformation by a soluble mitogen derived from Mycoplasma arthritidis and concanavalin A. J. Immunol. 129:936938.
31. Dietz, J. N., and, B. C. Cole. 1982. Direct activation of the J774.1 murine macrophage cell line by My-coplasma arthritidis. Infect. Immun. 37: 811819.
32. D’Orazio, J. A.,, B. C. Cole, and, J. Stein-Streilein. 1996. Mycoplasma arthritidis mitogen Up-regulates human NK cell activity. Infect. Immun. 64:441447.
33. Edfeldt, K.,, J. Swedenborg,, G. K. Hansson, and, Z. Q. Yan. 2002. Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:11581161.
34. Etongue-Mayer, P.,, M. A. Langlois,, M. Ouellette,, H. Li,, S. Younes,, R. Al-Daccak, and, W. Mourad. 2002. Involvement of zinc in the binding of Mycoplasma arthritidis-derived mitogen to the proximity of the HLA-DR binding groove regardless of histidine 81 of the beta chain. Eur. J. Immunol. 32:5058.
35. Freeman, G. J.,, V. A. Boussiotis,, A. Anumanthan,, G. M. Bernstein,, X. Y. Ke,, P. D. Rennert,, G. S. Gray,, J. G. Gribben, and, L. M. Nadler. 1995. B7–1 and B7–2 do not deliver identical costimulatory signals, since B7–2 but not B7–1 preferentially costimulates the initial production of IL-4. Immunity 2:523532.
36. Friedman, S. M.,, M. K. Crow,, J. R. Tumang,, M. Tumang,, Y. Q. Xu,, A. S. Hodtsev,, B. C. Cole, and, D. N. Posnett. 1991. Characterization of human T cells reactive with the Mycoplasma arthritidis-derived superantigen (MAM): generation of a monoclonal antibody against Vβ7, the T cell receptor gene product expressed by a large fraction of MAM-reactive human T cells. J. Exp. Med. 174:891900.
37. Friedman, S. M.,, D. N. Posnett,, J. R. Tumang,, B. C. Cole, and, M. K. Crow. 1991. A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum. 34:468480.
38. Guler, M. L.,, N. G. Jacobson,, U. Gubler, and, K. M. Murphy. 1997. T cell genetic background determines maintenance of IL-12 signaling: effects on BALB/c and B10.D2 T helper cell type 1 phenotype development. J. Immunol. 159:17671774.
39. Haqqi, T. M.,, G. D. Anderson,, S. Banerjee, and, C. S. David. 1992. Restricted heterogeneity in T-cell antigen receptor Vβ gene useage in the lymph nodes and arthritic joints of mice. Proc. Natl. Acad. Sci. USA 89:12531255.
40. Hodtsev, A. S.,, Y. Choi,, E. Spanopoulou, and, D. Posnett. 1998. Mycoplasma superantigen is a CDR3-dependent ligand for the T cell antigen receptor. J. Exp. Med. 187:319327.
41. Hoffman, R. W.,, F. X. O’Sullivan,, K. R. Schafermeyer,, T. L. Moore,, D. Roussell,, R. Watson-McKown,, M. F. Kim, and, K. S. Wise. 1997. Mycoplasma infection and rheumatoid arthritis: analysis of their relationship using immunoblotting and an ultrasensitive polymerase chain reaction detection method. Arthritis Rheum. 40:12191228.
42. Hopkins, P. A.,, J. D. Fraser,, A. C. Pridmore,, H. H. Russell,, R. C. Read, and, S. Sriskandan. 2005. Super-antigen recognition by HLA class II on monocytes up-regulates toll-like receptor 4 and enhances proinflammatory responses to endotoxin. Blood 105:36553662.
43. Howell, M. D.,, J. P. Diveley,, K. A. Lundeen,, A. Esty,, S. T. Winters,, D. J. Carlo, and, S. W. Brostoff. 1991. Limited T-cell receptor β-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 88:1092110925.
44. Kappler, J. W.,, A. Herman,, J. Clements, and, P. Marrack. 1992. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 175:387396.
45. Kline, J. B., and, C. M. Collins. 1996. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Infect. Immun. 64:861869.
46. Kotzin, B. 1993. Presented at the Keystone Conference.
47. Kotzin, B. L.,, D. Y. Leung,, J. Kappler, and, P. Marrack. 1993. Superantigens and their potential role in human disease. Adv. Immunol. 54:99166.
48. Krause, D., and, D. Taylo-Robinson. 1992. Mycoplasma which infect humans, p. 417444. In J. Maniloff (ed.), Mycoplasma: Molecular Biology and Pathogenesis. American Society for Microbiology, Washington, D.C.
49. Kuchroo, V.,, M. Das,, J. Brown,, A. Ranger,, S. Zamvil,, R. Sobel,, H. Weiner,, N. Nabavi, and, L. Glimcher. 1995. B7–1 and B7–2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80:707718.
50. Langlois, M. A.,, Y. El Fakhry, and, W. Mourad. 2003. Zinc-binding sites in the N terminus of Mycoplasma arthritidis-derived mitogen permit the dimer formation required for high affinity binding to HLA-DR and for T cell activation. J. Biol. Chem. 278:2230922315.
51. Langlois, M. A.,, P. Etongue-Mayer,, M. Ouellette, and, W. Mourad. 2000. Binding of Mycoplasma arthritidis-derived mitogen to human MHC class II molecules via its N terminus is modulated by invariant chain expression and its C terminus is required for T cell activation. Eur. J. Immunol. 30:17481756.
52. Lanier, L. L.,, S. O’Fallon,, C. Somoza,, J. H. Phillips,, P. S. Linsley,, K. Okumura,, D. Ito, and, M. Azuma. 1995. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J. Immunol. 154:97105.
53. Lenschow, D. J.,, T. L. Walunas, and, J. A. Bluestone. 1996. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14:233258.
54. Levine, B. L.,, Y. Ueda,, N. Craighead,, M. L. Huang, and, C. H. June. 1995. CD28 ligands CD80 (B7–1) and CD86 (B7–2) induce long-term autocrine growth of CD4+ T cells and induce similar patterns of cytokine secretion in vitro. Int. Immunol. 7:891904.
55. Li, H.,, S. Van Vranken,, Y. Zhao,, Z. Li,, Y. Guo,, L. Eisele, and, Y. Li. 2005. Crystal structures of T cell receptor (beta) chains related to rheumatoid arthritis. Protein Sci. 14:30253038.
56. Maniloff, J.,, R. McElhaney,, R. Lloyd, and, J. Baseman (ed.). 1992. Mycoplasmas: Molecular Biology and Pathogenesis, 1st ed. American Society for Microbiology, Washington, D.C.
57. Maxwell, J. R.,, R. J. Rossi,, S. J. McSorley, and, A. T. Vella. 2004. T cell clonal conditioning: a phase occurring early after antigen presentation but before clonal expansion is impacted by Toll-like receptor stimulation. J. Immunol. 172:248259.
58. Medzhitov, R., and, C. Janeway, Jr. 2000. Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173:8997.
59. Medzhitov, R., and, C. A. Janeway, Jr. 1998. Innate immune recognition and control of adaptive immune responses. Semin. Immunol. 10:351353.
60. Mu, H. H.,, J. Humphreys,, F. V. Chan, and, B. C. Cole. 2006. TLR2 and TLR4 differentially regulate B7–1 resulting in distinct cytokine responses to the mycoplasma superantigen MAM as well as to disease induced by Mycoplasma arthritidis. Cell. Microbiol. 8: 414426.
61. Mu, H. H.,, N. D. Pennock,, J. Humphreys,, C. J. Kirschning, and, B. C. Cole. 2005. Engagement of Tolllike receptors by mycoplasmal superantigen: downregulation of TLR2 by MAM/TLR4 interaction. Cell. Microbiol. 7:789797.
62. Mu, H. H.,, A. D. Sawitzke, and, B. C. Cole. 2000. Modulation of cytokine profiles by the Mycoplasma superantigen Mycoplasma arthritidis mitogen parallels susceptibility to arthritis induced by M. arthritidis. Infect. Immun. 68:11421149.
63. Mu, H. H.,, A. D. Sawitzke, and, B. C. Cole. 2001. Presence of Lps(d) mutation influences cytokine regulation in vivo by the Mycoplasma arthritidis mitogen superantigen and lethal toxicity in mice infected with M. arthritidis. Infect. Immun. 69:38373844.
64. Mullick, A. E.,, P. S. Tobias, and, L. K. Curtiss. 2005. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115:31493156.
65. Muraille, E.,, C. De Trez,, B. Pajak,, M. Brait,, J. Urbain, and, O. Leo. 2002. T cell-dependent maturation of dendritic cells in response to bacterial superantigens. J. Immunol. 168:43524360.
66. Paliard, X.,, S. G. West,, J. A. Lafferty,, J. R. Clements,, J. W. Kappler,, P. Marrack, and, B. L. Kotzin. 1991. Evidence for the effects of a superantigen in rheumatoid arthritis. Science 253:325329.
67. Pentcheva-Hoang, T.,, J. G. Egen,, K. Wojnoonski, and, J. P. Allison. 2004. B7–1 and B7–2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity 21:401413.
68. Poltorak, A.,, X. He,, I. Smirnova,, M. Y. Liu,, C. V. Huffel,, X. Du,, D. Birdwell,, E. Alejos,, M. Silva,, C. Galanos,, M. Freudenberg,, P. Ricciardi-Castagnoli,, B. Layton, and, B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:20852088.
69. Posnett, D. N. 1993. Do superantigens play a role in autoimmunity? Semin. Immunol. 5:6572.
70. Posnett, D. N.,, A. S. Hodtsev,, S. Kabak,, S. M. Friedman,, B. C. Cole, and, N. Bhardwaj. 1993. Interaction of Mycoplasma arthritidis superantigen with human T cells. Clin. Infect. Dis. 17(Suppl. 1):S170S175.
71. Rink, L.,, J. Luhm,, M. Koester, and, H. Kirchner. 1996. Induction of a cytokine network by superantigens with parallel TH1 and TH2 stimulation. J. Interferon. Cytokine Res. 16:4147.
72. Rossi, R. J.,, G. Muralimohan,, J. R. Maxwell, and, A. T. Vella. 2004. Staphylococcal enterotoxins condition cells of the innate immune system for Toll-like receptor 4 stimulation. Int. Immunol. 16:17511760.
73. Sawada, T.,, R. Pergolizzi,, K. Ito,, J. Silver,, C. Atkin,, B. C. Cole, and, M. D. Chang. 1995. Replacement of the DR alpha chain with the E alpha chain enhances presentation of Mycoplasma arthritidis superantigen by the human class II DR molecule. Infect. Immun. 63:33673372.
74. Sawitzke, A. D.,, H. Mu, and, B. Cole. 1999. Superantigens and autoimmune disease: are they involved? Curr. Opin. Infect. Dis. 12:213219.
75. Schaeverbeke, T.,, M. Clerc,, L. Lequen,, A. Charron,, C. Bebear,, B. de Barbeyrac,, B. Bannwarth, and, J. Dehais. 1998. Genotypic characterization of seven strains of Mycoplasma fermentans isolated from synovial fluids of patients with arthritis. J. Clin. Microbiol. 36:12261231.
76. Schiffenbauer, J.,, H. Johnson, and, J. Soos. 1997. Superantigens in autoimmunity: their role as etiologic agents, p. 525549. In Y. Leung,, B. Huber, and, P. Schlievert (ed.), Superantigens: Molecular Biology, Immunology, and Relevance to Human Disease. Marcel Dekker, Inc, New York, N.Y.
77. Schroder, N. W., and, R. R. Schumann. 2005. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect. Dis. 5:156164.
78. Seki, N.,, Y. Sudo,, T. Yoshioka,, S. Sugihara,, T. Fujitsu,, S. Sakuma,, T. Ogawa,, T. Hamaoka,, H. Senoh, and, H. Fijiwara. 1988. Type II collagen-induced murine arthritis. I. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J. Immunol. 140:14771484.
79. Sordet, C.,, A. Cantagrel,, T. Schaeverbeke, and, J. Sibilia. 2005. Bone and joint disease associated with primary immune deficiencies. Joint Bone Spine 72:503514.
80. Takeda, K.,, T. Kaisho, and, S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335376.
81. Takeuchi, O.,, A. Kaufmann,, K. Grote,, T. Kawai,, K. Hoshino,, M. Morr,, P. F. Muhlradt, and, S. Akira. 2000. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J. Immunol. 164:554557.
82. Tumang, J. R.,, E. P. Cherniack,, D. M. Gietl,, B. C. Cole,, C. Russo,, M. K. Crow, and, S. M. Friedman. 1991. T helper cell-dependent, microbial superantigen-induced murine B cell activation: polyclonal and antigen-specific antibody responses. J. Immunol. 147:432438.
83. Voelker, L.,, K. Weaver,, L. Ehle, and, L. Washburn. 1995. Association of lysogenic bacteriophage MAV1 with virulence of Mycoplasma arthritidis. Infect. Immun. 63:40164023.
84. Washburn, L. R.,, E. J. Miller, and, K. E. Weaver. 2000. Molecular characterization of Mycoplasma arthritidis membrane lipoprotein MAA1. Infect. Immun. 68: 437442.
85. Washburn, L. R.,, K. E. Weaver,, E. J. Weaver,, W. Donelan, and, S. Al-Sheboul. 1998. Molecular characterization of Mycoplasma arthritidis variable surface protein MAA2. Infect. Immun. 66:25762586.
86. White, J.,, A. Herman,, A. M. Pullen,, R. Kubo,, J. W. Kappler, and, P. Marrack. 1989. The Vβ-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56:2735.
87. Zhao, Y.,, Z. Li,, S. J. Drozd,, Y. Guo,, W. Mourad, and, H. Li. 2004. Crystal structure of Mycoplasma arthritidis mitogen complexed with HLA-DR1 reveals a novel superantigen fold and a dimerized superantigen-MHC complex. Structure (Camb.) 12:277288.

Tables

Generic image for table
Table 1.

Disease caused by

Citation: Cole B, Mu H. 2007. -Derived Superantigen (MAM), a Unique Class of Superantigen That Bridges Innate and Adaptive Immunity, p 37-57. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error