1887

Chapter 14 : Broad-Spectrum Peptide Antagonists of Superantigen Toxins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Broad-Spectrum Peptide Antagonists of Superantigen Toxins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555815844/9781555814243_Chap14-2.gif

Abstract:

Bacterial superantigens are among the most lethal of toxins. These stable proteins bind directly to most major histocompatibility (MHC) class II molecules and stimulate virtually all T cells bearing particular domains in the variable portion of the β-chain of the αβ T cell receptor (TCR), without need for processing by antigen-presenting cells. The peptides are capable of protecting mice from the lethal effects of superantigen toxins as widely different as staphylococcal enterotoxins (SE) SEB and toxic shock syndrome toxin 1 (TSST-1), and they can rescue animals already deeply into toxic shock. The superantigen antagonist peptides described in this chapter protect or rescue mice from lethal shock in a molar excess of as low as 20 fold over the toxin, implying that they bind tightly to a cellular target that is critical for superantigen action. The antagonist peptides described in the chapter provide a new molecular tool for understanding the mechanism of excessive human immune response activation by superantigens that occurs during toxic shock and for the identification of a novel target ligand that may interact with this superantigen domain. Removal of two amino acids from the dodecamer motif led to a significant decline in antagonist activity; this truncation may affect conformational stability or appropriate folding onto this putative receptor and reduce its affinity for the target.

Citation: Levy R, Nasie I, Hillman D, Arad G, Kaempfer R. 2007. Broad-Spectrum Peptide Antagonists of Superantigen Toxins, p 217-227. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch14

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.5714286
MHC Class II
0.5140521
0.5714286
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Peptide is an antagonist of SEB. Inhibition of SEB-mediated induction of IL-2, IFN-γ, and TNF-β mRNA by and is shown. Aliquots of 3 X 10 PBMCs were incubated with SEB, in the absence (No peptide) or presence of the indicated peptide (10X: 10 μg/ml). At times shown, total RNA was extracted and subjected to RNase protection analysis, using a P-labeled IL-2, IFN-γ, TNF-β, or ribosomal RNA (rRNA) antisense RNA probe. Autoradiograms show levels of mRNA; rRNA served as loading control. Reprinted from ( ) with permission of the publisher.

Citation: Levy R, Nasie I, Hillman D, Arad G, Kaempfer R. 2007. Broad-Spectrum Peptide Antagonists of Superantigen Toxins, p 217-227. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Antagonist peptide protects and rescues mice from SEB-induced lethal shock and protects mice from TSST-1-induced lethal shock. Groups of 10 BALB/c mice were challenged with 10 μg of SEB (A) or 5 μg of TSST-1 (B), alone or in the presence of antagonist peptide added at times shown. Reprinted from the ( ) (A) and ( ) (B) with permission of the publishers.

Citation: Levy R, Nasie I, Hillman D, Arad G, Kaempfer R. 2007. Broad-Spectrum Peptide Antagonists of Superantigen Toxins, p 217-227. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Antagonist-mediated acquisition of resistance to different superantigens. Five BALB/c mice received 5 μg SEB together with p (A, left panel). Without further injection of p survivors were rechallenged successively at 2-week intervals with SEB and SPEA (twice) and after a 9-week interval with TSST-1. At each challenge, 10 naive mice served as toxin controls. (B) Adoptive transfer of protection. Serum collected 2 weeks after TSST-1 challenge was injected into ten naive mice 1 h before challenge with 5 μg SEB. Groups of ten naive mice received serum from mice injected 2 weeks earlier with p or with 10 μg SEB without D-galactosamine sensitization. Eight naive mice served as SEB challenge controls. Survival remained constant beyond the times shown. Modified from ( ) with permission of the publisher.

Citation: Levy R, Nasie I, Hillman D, Arad G, Kaempfer R. 2007. Broad-Spectrum Peptide Antagonists of Superantigen Toxins, p 217-227. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

A novel receptor is selectively utilized for activation of the Th1 cytokine response to superantigen. In this proposed model, to activate Th1 cytokine gene expression, a superantigen must engage not only MHC-II and TCR but also a novel receptor that is dispensable for activation of Th2 cytokine genes. Binding of antagonist peptide to this receptor results in a selective block of Th1 activation, to yield survival as well as protective immunity mediated by the action of Th2 cytokines. For clarity, antigen-presenting cell and MHC-II were omitted.

Citation: Levy R, Nasie I, Hillman D, Arad G, Kaempfer R. 2007. Broad-Spectrum Peptide Antagonists of Superantigen Toxins, p 217-227. In Kotb M, Fraser J (ed), Superantigens. ASM Press, Washington, DC. doi: 10.1128/9781555815844.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815844.ch14
1. Arad, G.,, D. Hillman,, R. Levy, and, R. Kaempfer. 2001. Superantigen antagonist blocks Th1 cytokine gene induction and lethal shock. J. Leukoc. Biol. 69:921927.
2. Arad, G.,, D. Hillman,, R. Levy, and, R. Kaempfer. 2004. Broad-spectrum immunity against superantigens is elicited in mice protected from lethal shock by a superantigen antagonist peptide. Immunol. Lett. 91:141145.
3. Arad, G.,, R. Levy,, D. Hillman, and, R. Kaempfer. 2000. Superantigen antagonist protects against lethal shock and defines a new domain for T-cell activation. Nat. Med. 6:414421.
4. Arcus, V. L.,, T. Proft,, J. A. Sigrell,, H. M. Baker,, J. D. Fraser, and, E. N. Baker. 2000. Conservation and variation in superantigen structure and activity highlighted by the three-dimensional structures of two new superantigens from Streptococcus pyogenes. J. Mol. Biol. 299:157168.
5. Betley, M. J., and, J. J. Mekalanos. 1988. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J. Bacteriol. 170:3441.
6. Blomster-Hautamaa, D. A.,, B. N. Kreiswirth,, J. S. Kornblum,, R. P. Novick, and, P. M. Schlievert. 1986. The nucleotide and partial amino acid sequence of toxic shock syndrome toxin-1. J. Biol. Chem. 261:1578315786.
7. Bohach, G. A.,, D. J. Fast,, R. D. Nelson, and, P. M. Schlievert. 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit. Rev. Microbiol. 17:251272.
8. Buelow, R.,, R. E. O’Hehir,, R. Schreifels,, T. J. Kummerehl,, G. Riley, and, J. R. Lamb. 1992. Localization of the immunologic activity in the superantigen Staphylococcal enterotoxin B using truncated recombinant fusion proteins. J. Immunol. 148:16.
9. Choi, Y.,, A. Herman,, D. DiGiusto,, T. Wade,, P. Marrack, and, J. Kappler. 1990. Residues of the variable region of the T-cell-receptor beta-chain that interact with S. aureus toxin superantigens. Nature 346:471473.
10. Choi, Y. W.,, B. Kotzin,, L. Herron,, J. Callahan,, P. Marrack, and, J. Kappler. 1989. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc. Natl. Acad. Sci. USA 86:89418945.
11. Dinges, M. M.,, P. M. Orwin, and, P. M. Schlievert. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13:1634.
12. Fields, B. A.,, E. L. Malchiodi,, H. Li,, X. Ysern,, C. V. Stauffacher,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1996. Crystal structure of a T-cell receptor β-chain complexed with a superantigen. Nature 384:188192.
13. Fraser, J. D. 1989. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature 339:221223.
14. Herman, A.,, J. W. Kappler,, P. Marrack, and, A. M. Pullen. 1991. Superantigens: mechanisms of T-cell stimulation and role in immune responses. Annu. Rev. Immunol. 9:745772.
15. Janeway, C. A.,, J. Yagi,, M. E. Katz,, B. Jones,, S. Vregop, and, S. Buxser. 1989. T Cell responses to Mls and to bacterial proteins that mimic its behavior. Immunol. Rev. 107: 6168.
16. Jardetzky, T. S.,, J. H. Brown,, J. C. Gorga,, L. J. Stern,, R. G. Urban,, Y. I. Chi,, C. Stauffacher,, J. L. Strominger, and, D. C. Wiley. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368:711718.
17. Kaempfer, R. 2004. Peptide antagonists of superantigen toxins. Mol. Divers. 8:113120.
18. Kappler, J. W.,, A. Herman,, J. Clements, and, P. Marrack. 1992. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J. Exp. Med. 175:387389.
19. Kappler, J.,, B. Kotzin,, L. Herron,, E. W. Gelfand,, R. D. Bigler,, A. Boylston,, S. Carrel,, C. D. Posneit,, Y. Choi, and, P. Marrack. 1989. Vβ-specific stimulation of human T cells by staphylococcal toxins. Science 244:811814.
20. Kotzin, B. L.,, D. Y. Leung,, J. Kappler, and, P. Marrack. 1993. Superantigens and their potential role in human disease. Adv. Immunol. 54:99166.
21. Leder, L.,, A. Llera,, P. M. Lavoie,, M. I. Lebedeva,, H. Li,, R. P. Sekaly,, G. A. Bohach,, P. J. Gahr,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1998. A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor β chain and major histocompatibility complex class II.J. Exp. Med. 187:823833.
22. Li, H.,, A. Llera, and, R. A. Mariuzza. 1998. Structure-function studies of T-cell receptor-superantigen interactions. Immunol. Rev. 163:177186.
23. Li, H.,, A. Llera,, D. Tsuchiya,, L. Leder,, X. Ysern,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 1998. Three-dimensional structure of the complex between a T cell receptor β chain and the superantigen staphylococcal enterotoxin B. Immunity 9:807816.
24. McCormick, J. K.,, A. A. Pragman,, J. C. Stolpa,, D. Y. Leung, and, P. M. Schlievert. 2001. Functional characterization of streptococcal pyrogenic exotoxin J, a novel superantigen. Infect. Immun. 69:13811388.
25. McCormick, J. K.,, J. M. Yarwood, and, P. M. Schlievert. 2001. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55:77104.
26. Papageorgiou, A. C.,, H. S. Tranter, and, K. R. Acharya. 1998. Crystal structure of microbial superantigen staphylococcal enterotoxin B at 1.5 Å resolution: implications for superantigen recognition by MHC class II molecules and T-cell receptors. J. Mol. Biol. 277:6179.
27. Proft, T.,, S. L. Moffatt,, C. J. Berkahn, and, J. D. Fraser. 1999. Identification and characterization of novel superantigens from Streptococcus pyogenes. J. Exp. Med. 189:89102.
28. Schad, E. M.,, I. Zaitseva,, V. N. Zaitsev,, M. Dohlsten,, T. Kalland,, P. M. Schlievert,, D. H. Ohlendorf, and, L. A. Svensson. 1995. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 14:32923301.
29. Scholl, P.,, A. Diez,, W. Mourad,, J. Parsonnet,, R. S. Geha, and, T. Chatila. 1989. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules. Proc. Natl. Acad. Sci. USA 86:42104214.
30. Smoot, L. M.,, J. K. McCormick,, J. C. Smoot,, N. P. Hoe,, I. Strickland,, R. L. Cole,, K. D. Barbian,, C. A. Earhart,, D. H. Ohlendorf,, L. G. Veasy,, H. R. Hill,, D. Y. Leung,, P. M. Schlievert, and, J. M. Musser. 2002. Characterization of two novel pyrogenic toxin superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect. Immun. 70:70957104.
31. Sundberg, E. J.,, H. Li,, A. S. Llera,, J. K. McCormick,, J. Tormo,, P. M. Schlievert,, K. Karjalainen, and, R. A. Mariuzza. 2002. Structures of two streptococcal superantigens bound to TCR beta chains reveal diversity in the architecture of T cell signaling complexes. Structure 10:687699.
32. Sundberg, E. J.,, Y. Li, and, R. A. Mariuzza. 2002. So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr. Opin. Immunol. 14:3644.
33. Swaminathan, S.,, W. Furey,, J. Pletcher, and, M. Sax. 1992. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359: 801805.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error