1887

Chapter 2 : Identification and Characterization of Small Noncoding RNAs in Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Identification and Characterization of Small Noncoding RNAs in Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555815851/9781555814694_Chap02-2.gif

Abstract:

This chapter reviews the evidence that implicates small noncoding RNAs (sRNAs) in the regulation of virulence and the recent development of bioinformatic tools that facilitate the identification of putative sRNA encoding genes in a wide variety of bacterial pathogens. Most sRNAs characterized to date act as posttranscriptional regulators by forming duplexes with specific target mRNAs, modulating mRNA stability and/or altering the access of mRNAs to the translational machinery. The versatile and highly responsive nature of sRNA-dependent regulation suggests that these riboregulators may be very effective in modulating cellular responses to the rapidly changing environmental conditions often encountered by bacterial pathogens during the course of infection. The recent advances in the identification of sRNAs can be attributed mainly to the development and utilization of new bioinformatic approaches to predict sRNA encoding genes on a genome-wide scale. To facilitate the identification of sRNA encoding genes in a wide variety of bacterial species, the authors have developed a program called sRNA-Predict that flexibly integrates different combinations of genetic features to rapidly identify putative sRNA-encoding genes in the intergenic regions (IGRs) of any annotated bacterial genome.

Citation: Livny J, Waldor M. 2007. Identification and Characterization of Small Noncoding RNAs in Bacterial Pathogens, p 23-30. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch2

Key Concept Ranking

Toxin Coregulated Pilus
0.48954055
Ribosome Binding Site
0.40897322
0.48954055
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic of an sRNAPredict search for putative sRNA-encoding genes. TFBS, transcription factor binding site.

Citation: Livny J, Waldor M. 2007. Identification and Characterization of Small Noncoding RNAs in Bacterial Pathogens, p 23-30. In Brogden K, Minion F, Cornick N, Stanton T, Zhang Q, Nolan L, Wannemuehler M (ed), Virulence Mechanisms of Bacterial Pathogens, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815851.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815851.ch02
1. Argaman, L., and, S. Altuvia. 2000. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex. J. Mol. Biol. 300:11011112.
2. Brown, L., and, T. Elliott. 1996. Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J. Bacteriol. 178:37633770.
3. Ding, Y.,, B. M. Davis, and, M. K. Waldor. 2004. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol. Microbiol. 53:345354.
4. Fang, F. C.,, S. J. Libby,, N. A. Buchmeier,, P. C. Loewen,, J. Switala,, J. Harwood, and, D. G. Guiney. 1992. The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. USA 89:1197811982.
5. Fortune, D. R.,, M. Suyemoto, and, C. Altier. 2006. Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun. 74:331339.
6. Gottesman, S. 2004. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu. Rev. Microbiol. 58:303328.
7. Griffiths-Jones, S.,, S. Moxon,, M. Marshall,, A. Khanna,, S. R. Eddy, and, A. Bateman. 2005. Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 33:D121D124.
8. Hershberg, R.,, S. Altuvia, and, H. Margalit. 2003. A survey of small RNA-encoding genes in Escherichia coli. Nucleic Acids Res. 31:18131820.
9. Lease, R. A., and, M. Belfort. 2000. A transacting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc. Natl. Acad. Sci. USA 97:99199924.
10. Lease, R. A.,, M. E. Cusick, and, M. Belfort. 1998. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. USA 95:1245612461.
11. Lenz, D. H.,, M. B. Miller,, J. Zhu,, R. V. Kulkarni, and, B. L. Bassler. 2005. CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae. Mol. Microbiol. 58:11861202.
12. Lenz, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen, and, B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
13. Livny, J.,, A. Brencic,, S. Lory, and, M. K. Waldor. 2006. Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res. 34:34843493.
14. Livny, J.,, M. A. Fogel,, B. M. Davis, and, M. K. Waldor. 2005. sRNAPredict: an integrative computational approach to identify sRNAs in bacterial genomes. Nucleic Acids Res. 33:40964105.
15. Masse, E.,, F. E. Escorcia, and, S. Gottesman. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17:23742383.
16. Nakao, H.,, H. Watanabe,, S. Nakayama, and, T. Takeda. 1995. yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene (hfq). Mol. Microbiol. 18:859865.
17. Opdyke, J. A.,, J. G. Kang, and, G. Storz. 2004. GadY, a small-RNA regulator of acid response genes in Escherichia coli. J. Bacteriol. 186:66986705.
18. Robertson, G. T., and, R. M. J. Roop. 1999. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol. Microbiol. 34:690700.
19. Sonnleitner, E.,, S. Hagens,, F. Rosenau,, S. Wilhelm,, A. Habel,, K. E. Jager, and, U. Blasi. 2003. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb. Pathog. 35:217228.
20. Valentin-Hansen, P.,, M. Eriksen, and, C. Udesen. 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51:15251533.
21. Vogel, J., and, C. M. Sharma. 2005. How to find small non-coding RNAs in bacteria. Biol. Chem. 386:12191238.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error